
Abstract—Industrial robots that can respond to the current 

needs for variable-type and variable-volume production and 

that can play a variety of roles such as processing and 

transporting with a single robot to reduce time and cost. If 

realized, these robots will help save space in factories and 

increase production efficiency. However, this requires high 

positioning accuracy of the robot. In this study, we analyze the 

motion accuracy of industrial robots and their compensation 

method to construct this system. Here, we use a laser tracker to 

measure the coordinates of the hand tip of the robot when the 

robot is stationary. Subsequently, the error amount in an 

arbitrary posture is predicted using a Gaussian process. 

Furthermore, Bayesian optimization is used to efficiently search 

for points where the positioning error norm is likely to be large, 

which is then compensated for by a feedback method. This 

method successfully reduced the time cost of the experiment to 

approximately one-tenth of that required in the previous study 

and achieved a correction of approximately 66 %. However, 

because this method alone does not perform an exhaustive 

measurement, it is unclear whether all the points predicted to 

have small errors are so small that they do not require 

correction. Therefore, future studies, we will aim to verify this 

issue by considering the time efficiency. 

Index Terms—Component, automation, industrial robots, 

positioning error, gaussian process, bayesian optiomization 

I. INTRODUCTION

The development of an automatic teaching system with 

offline teaching is essential to expand the range of 

applications of industrial robots. However, vertically 

articulated robots exhibit a complex overlap of kinematic and 

non-kinematic errors, and the absolute positioning error is 

approximately 100 times higher than that of machine tools. In 

addition, geometric error factors, such as offset and rotational 

angle errors of each joint significantly affect the error vector. 

In previous studies, the D-H (Denaviet-Hartenberg) method 

[1], which is a type of geometric approach, was used [2]. 

However, the relationship between these parameters and the 

positioning error of the robot is complicated and could not be 

formulated [3]. Therefore, machine learning was used to 

observe the relationship between these parameters and the 
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positioning error of the robot. However, the proposed 

correction method required 600 measurements, and so, was 

time-consuming and costly. In this study, we predicted the 

error vectors in each axis direction using a Gaussian process 

and Bayesian optimization. 

II. EXPERIMENTAL EQUIPMENTS AND BASIC THEORY 

A. Experimental Equipmemt

Fig. 1 shows a model diagram of the experimental 

apparatus, a large robot made by Fujikoshi, in its initial 

posture. 𝐽𝑖  ( 𝑖 = 1~6 ) denotes each joint. A laser tracker

manufactured by IHI Escube was used to measure the 

positioning error. The measurement accuracy was ± 0.25 mm 

/ 2.0 m [4]. Fig. 2 shows the layout of the laser tracker. 

Fig. 1. Robot model. 

Fig. 2. Laser tracker layout. 

B. Coordinate Transform

First, if a point (x, y, z) in the laser tracker coordinates is 

(X, Y, Z) in the robot coordinate system, then using the 

parameters 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓, 𝑔, ℎ, 𝑖, 𝑗, 𝑘 

{

𝑋 = 𝑎𝑥 + 𝑑𝑦 + 𝑔𝑧 + 𝑗
𝑌 = 𝑏𝑥 + 𝑒𝑦 + ℎ𝑧 + 𝑘
𝑍 = 𝑐𝑥 + 𝑓𝑦 + 𝑖𝑧 + 𝑙

 (1) 
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The following is an example of the use of this expression. 

From this equation, 12 parameters 𝑎~𝑙 can be obtained if the 

measurement is performed using four reference points for 

coordinate transformation [5]. However, because the error is 

zero at the point used for coordinate transformation, the 

question is whether an accurate coordinate transformation can 

be performed. Therefore, we used the least-squares method to 

perform a coordinate transformation with more than four 

reference points. 

 

𝐴 = (

𝑥1 𝑦1
𝑥2 𝑦2

𝑧1 1
𝑧2 1

𝑥3 𝑦3 𝑧3 1
⋮

)     𝑋 = (

∆𝑎
∆𝑑

∆𝑏
∆𝑒

∆𝑐
∆𝑓

∆𝑔
∆𝑗

∆ℎ
∆𝑘

∆𝑖
∆𝑙

)  

 𝐿 = (
𝑋1−𝑓10 𝑌1−𝑓20 𝑍1−𝑓30
𝑋2−𝑓40 𝑌2−𝑓50 𝑍3−𝑓60

⋮

)   

𝑉 = (
𝑣1 𝑣2 𝑣3
𝑣4 𝑣5 𝑣6

⋮
) 

 

If we assume that 

 

 𝐴𝑋 = 𝐿 + 𝑉 (2) 
 

and finding the modification X such that the residual V is 

minimized, we obtain 

 

 𝐴𝑇𝐴𝑋 = 𝐴𝑇𝐿 (3) 

 

and the solution of this equation can obtain as Eq. (4). 

 

 𝑋 = (𝐴𝑇𝐴)−1𝐴𝑇𝐿 (4) 
 

C. Gaussian Process Regression 

We used a Gaussian process, which is a type of statistical 

method, to predict the error value instead of intuition at the 

work site. The basic theory is that the distribution of the 

function value 𝑓(𝑥) obtained from any n points 𝑋𝑛 follows a 

multidimensional Gaussian distribution in a stochastic 

process defined by a function 𝜇(𝑥), which gives the mean 

value and a kernel function 𝑘(𝑥, 𝑥′)  , which gives the 

covariance [6]. In this study, an RBF kernel was used as the 

kernel function. The formula is expressed as follows  

 

 𝑘(𝑥, 𝑥′) = exp (
−|𝑥−𝑥′|2

2𝜎2
) (5) 

 

When standard deviation σ is small, the individual training 

data are emphasized, and when σ is large, the data are 

neglected. This is called Gaussian process regression and is 

also effective for estimating nonlinear functions that cannot 

be fitted well by linear functions. In addition, it is necessary 

to set hyperparameters for this Gaussian process. The SCG 

method was employed as the parameter optimization method 

[7]. This method has the advantages of being less dependent 

on the initial values and less prone to local solutions than 

methods such as the gradient method. 

D. Bayesian Optimization 

Bayesian optimization is a method for designing 

experiments in which the response function is estimated using 

Gaussian process regression on the experimental results, and 

the experimental setup that maximizes (or minimizes) the 

gain function is searched according to the objective. The 

acquisition function used in this study is the Upper 

Confidence Bound (UCB) [8], which plays two roles: one is 

to utilize data where the mean value is large, and the other is 

to search for the data where the number of data points is small. 

Although there are other acquisition functions such as 

Expected Improvements and Probability of Improvement [8] 

that use expected improvement or probability of 

improvement as indices, the purpose of this paper is to 

"efficiently find postures with large positioning errors of the 

large industrial robot to be tested, keeping in mind the 

subsequent error correction"; and therefore, the acquisition 

function that reduces the number of search points as much as 

possible was preferred, and the acquisition function UCB was 

determined to be suitable for this purpose. Using the expected 

value 𝜇 of 𝑓(𝑥) and standard deviation 𝜎 of 𝑓(𝑥) indicated 

by the Gaussian process, the acquisition function 𝛼UCB(x) is 

as follows [9]:  

 

 𝛼UCB(x) = 𝜇 + √
log (𝑛)

𝑛
𝜎 (6) 

 

With this acquisition function, we can determine 𝑥 such 

that the expected value 𝜇 and standard deviation 𝜎 of 𝑓(𝑥) 
are large. 

 

III. EXPERIMENTAL METHOD 

A. Measuring Range and Teaching Motion to The Robot 

As shown in Fig. 3, the position and posture range of the 

robot is commanded in the cylindrical coordinate system 

(𝑅, 𝜃, 𝑍), and the range is set to 1000 ≤ 𝑅 [mm] ≤ 1800,
700 ≤ 𝑍 [mm] ≤ 1700, 0 ≤ 𝜃 [deg. ] ≤ 60. 

 
Fig. 3. The range of measurement. 

 

Even if the same command coordinates are used, there is a 

possibility that the posture may change owing to a change in 

path. Therefore, the teaching motion is performed such that 

the robot returns to the initial posture one after another and 

then moves to the target command coordinates again. 

B. Initial Data and Evaluation Indicators 

To reduce the possibility of bias in the initial data used for 

the Gaussian process, 108 reference points were set evenly in 

Z

X

R
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(𝑅, 𝜃, 𝑍). The program used in this study rescales the range 

of R, θ, and Z from 0.0 to 1.0, and forms a grid by dividing it 

into 50 equal parts. The positioning error vector is defined by 

Eq. (7), where the taught posture is ( 𝑋, 𝑌, 𝑍 ), and the 

measured posture is (𝑋′, 𝑌′, 𝑍′). 
 

 {

Δ𝐿𝑥 = 𝑋 − 𝑋′

Δ𝐿𝑦 = 𝑌 − 𝑌
′

Δ𝐿𝑧 = 𝑍 − 𝑍′

 (7) 

 

The positioning error norm|∆𝐿| is the square root of the 

sum of the squares of  Δ𝐿𝑥, Δ𝐿𝑦 and Δ𝐿𝑧. 

C. Experimental Method 

The next posture to be measured, obtained from the initial 

data by Bayesian optimization, was used as the next 

command posture until the measurement with the laser 

tracker was performed. Subsequently, the measured data were 

added to the initial data, the next measurement posture was 

determined again by Bayesian optimization, and the 

experiment proceeded iteratively. After a certain amount of 

data was collected, the results of Bayesian optimization begin 

to converge to the same measurement posture, and the 

experiment is terminated when the results showed the same 

measurement posture twice in a row. 

 

IV. RESULTS AND CONSIDERATION 

A. Rotational Angle Errors Generated from Each Joints 

Offset and rotational angle errors are present at each joint. 

We rotated the joints and focused on the changes in the errors. 

As an example, a conceptual diagram of the errors caused by 

the angle of Joint 2 is shown in Fig. 4. Let R, P𝑐 , P𝑎 , and 

Δ𝐿𝑥=𝑦. the radius of rotation, the command coordinates, the 

measured coordinates, and the measurement error on the X =
Y plane, respectively. This is shown in Eq. (8). 

 

 Δ𝐿𝑥=𝑦 = (Δ𝐿𝑥 + Δ𝐿𝑦)/√2 (8) 

 

As shown in Fig. 4, if ∆𝜃 is sufficiently small, the error 

vectors 𝑅∆𝜃  of P𝑐  and P𝑎  can be approximated as straight 

lines, and each component of this vector is expressed as 

𝑅∆𝜃 = (−(𝑅𝛥𝜃)𝑠𝑖𝑛𝜃, (𝑅𝛥𝜃)𝑐𝑜𝑠𝜃) . Therefore, the 

relationship between X = Y , the Z-axis directional error 

Δ𝐿𝑥=𝑦, and Δ𝐿𝑍 is as follows: 

 

 Δ𝐿𝑧 = −
1

𝑡𝑎𝑛𝜃
Δ𝐿𝑥=𝑦 (9) 

 

 
Fig. 4. J2 joint angle error. 

 

Table I shows the correlation coefficients calculated for 

joints J1, J2 and J3, by comparing Δ𝐿𝑍 derived using Eq. (9) 

and Δ𝐿𝑍 measured. 

TABLE I.  CORRELATION COEFFICIENT BETWEEN 

Joint 1 Joint 2 Joint 3 

-0.83 -0.32 -0.47 

 

From this table, it can be concluded that the joint angle 

error arising from Joint 1 has the greatest influence on the 

error vector. Based on the above, we incorporated the joint 

angle of J1 into the evaluation index used for the Gaussian 

process. 

B. Search and Acquisition Function Transition by 

Bayesian Optimization 

Fig. 5 shows the points explored using Bayesian 

optimization. 

 

 

Fig. 5. Measurement number and |∆𝐿| in those coordinates. 

 

The size of each point is the size of |∆𝐿|, and the numbers 

1–5 are the order of the search. From this figure, we can 

observe that the size of  |∆𝐿|  increases as the search 

progresses. Fig. 6 shows the distribution of the acquisition 

function in 2-dimensional space for the first and fifth searches, 

respectively, when R and Z are fixed. 

 

  
(i) First. 

 
(ii) Fifth. 

Fig. 6. The acquisition functions each time. 

This figure shows the distribution of the acquisition 

function for the posture with the largest acquisition function 

at each time point. From this figure, we can see that the 

acquisition function changes each time and that we can search 

for the posture with the largest value of |∆𝐿|. 

C. Error Vector Prediction and Correction Using 

Gaussian Processes 

As described in the previous section, the error vector 

arising from Joint 1 was found to be large. Taking this into 

account, we adopted a cylindrical coordinate system of 𝑅, 𝜃 
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and 𝑍 instead of X, Y, and Z coordinates, as the coordinates 

used in the Gaussian process. In addition, we predicted the 

error vectors for coordinates within the range shown in Fig. 

3. In this case, we gave the objective function 𝑓(𝑥) only Δ𝐿, 

Δ𝐿𝑥, Δ𝐿𝑦, Δ𝐿𝑧  ,and ΔR, Δ𝜃, Δ𝐿𝑧  and performed a Gaussian 

process for each of them. The results are shown in Fig. 7. 

ΔR, Δ𝜃 are polar coordinate transformations of Δ𝐿𝑥 , Δ𝐿𝑦 

in the XY plane. It was found that only (c) takes a different 

form from the other two. One possible reason for this is that 

regression analysis does not work well because Δ𝜃 is so small 

that it falls within the measurement error of the laser tracker. 

Therefore, we adopted Δ𝐿𝑥, Δ𝐿𝑦, Δ𝐿𝑧  as objective functions 

and predicted the error vectors in each axis direction using 

Gaussian process regression.  

 

  

(a). Δ𝐿                                              (b).   Δ𝐿𝑥 , Δ𝐿𝑦, Δ𝐿𝑧 

 

 
(c). ΔR, Δ𝜃, Δ𝐿𝑧 

Fig. 7. Gaussian process of each objective function. 

 

And we defined Δ𝐿′, Δ𝐿′′ as Eq. (10). 

 

 

{
 

 Δ𝐿′ = √Δ𝐿𝑥
2 + Δ𝐿𝑦

2 + Δ𝐿𝑧
2

Δ𝐿′′ = √ΔR2 + RΔ𝜃2 + Δ𝐿𝑧
2

 (10) 

D. Comparison of Error Correction and Efficiency  

For measured postures with an error of 1.5 mm or more, 

the measurement error vector was fed back for correction. As 

a result, all postures were corrected to an error of 1.5 mm or 

less, with an average correction rate of approximately 66%. 

This is approximately 1/6 of the training data and 

approximately 2/3 of the correction rate compared to the 

study by Y. Jiang et al. [10], which corrected an average error 

norm of 94.2% with 600 training data points using machine 

learning. Therefore, when correction is necessary only for 

points with error norms above a certain level, as in this study, 

the search by Bayesian optimization is effective from the 

viewpoint of time efficiency. 

 

V. SUMMARY 

The positioning error correction for offline teaching of a 

large industrial robot was examined using a Gaussian process. 

The results indicate that the error vector generated by joint J1 

is larger than that at other joints. Furthermore, Bayesian 

optimization based on Gaussian process regression is 

effective when error prediction is performed only for postures 

with large errors over a wide range. However, because this 

method alone does not perform exhaustive measurements, it 

is unclear whether all the points predicted to have small errors 

are so small that they do not require correction. Therefore, 

our future goal is to guarantee the certainty of the distribution 

based on the geometric factors of the robot. 
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