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Abstract—In the process of petrochemical fire rescue, 

temperature is an important reference index, which can be used 
to analyze the possibility of domino accident and tank collapse. 
A method for predicting temperature field by bicubic spline 
interpolation is proposed in this paper. It collects data from 
unmanned aerial vehicles (UAVs), and the accuracy of 
prediction is influenced by the sampling strategy. It's not that 
the more UAV routes are, the higher the overall prediction 
accuracy of temperature field will be. And the smaller the data 
interval, the more conservative the prediction results in the 
high- temperature zones. 
 

Index Terms—cubic spline interpolation, unmanned aerial 
vehicles (UAVs), temperature field prediction, image similarity 
 

I. INTRODUCTION 
The traditional method for fire spatial information 

acquisition is remote sensing, but there is a gap between it 
and emergency practice [1]. In recent years, with the 
investment of Chinese government in safety, unmanned 
aerial vehicles (UAVs) have become a kind of equipment. 
The flexibility and cheapness of UAVs are popular in the 
rescue of petrochemical fire [2]. UAV visualization can 
better help the safety inspection of the operation site [3]. In 
addition, UAVs are used for rescue in various accident scenes, 
such as fire control, monitoring, exploration, data collection, 
transmission of signals and so on [4, 5]. 

This paper will continue to study the application of UAV 
in petrochemical fire rescue. In case of fire, there are many 
uncertain factors [6]. Accurate and rapid prediction of 
temperature field can be used to prevent tank collapse or 
domino events [7] and protect the safety of firefighters [8], 
[9]. In this paper, a method is proposed to predict the 
temperature field of petrochemical fire by UAVs. The data 
acquisition process and prediction model of the UAVs are 
studied. By simulating a petrochemical fire process, the 
accuracy of the data acquisition strategy of the UAVs is 
analyzed. The application of this prediction method in 
engineering is studied theoretically. 
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II. DYNAMIC PREDICTION OF FIRE TEMPERATURE 

A. The Method of Data Collection 
Petrochemical fires are characterized by large scale and 

randomness, which can be destructive to equipment if rescue 
teams are not used in the correct way [10]. Fire exploration is 
the first step of fire rescue, which will be limited by terrain 
and environment. In the process of UAV investigation, it can 
realize all-round no dead angle investigation, which can not 
only improve the investigation efficiency, but also effectively 
improve the investigation effect [11]. With the development 
of UAV technology, UAVs are playing an increasingly 
important role in fire exploration [12]. 

The data of the temperature field in a fire are collected by 
UAVs for the dynamic prediction. The hardware system of 
UAV includes UAV body, Global Positioning System (GPS) 
module, tripod head, wireless transmission module, 
temperature sensor and camera. As shown in Fig. 1, the 
communication protocol between UAVs and ground station 
is micro air vehicle link (MAV Link) [13]. And the 
communication protocol of GPS is NMEA-0183 [14]. In 
order to reduce the difficulty of operation, leader-follower 
structure is designed in UAV formation. Communication 
links in communication network topology are used to realize 
information exchange during UAV formation flight. As 
shown in Fig. 2, the operator controls the speed, height, 
spacing, coordinates and direction of the leader. Followers 
receive the leader's flight information and interval 
instructions to confirm their formation requirements. And 
they only transmit image information, temperature data, and 
location information to ground stations. Unless the leader 
fails, a follower can be selected as the new leader to receive 
instructions from the ground station. 

 
 

Fig. 1. Communication process diagram. 
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Fig. 2. The method of data collection. 
 
The data interval is affected by the navigation speed of the 

UAV, which can be controlled by the operator. The product 
of the UAV’s navigation speed and the sensor's sampling 
period is the data interval. Therefore, the navigation speed of 
UAVs indirectly affects the accuracy of dynamic prediction. 
The influence of data interval on the accuracy of dynamic 
prediction will be studied in the discussion. 

B. The Data Analysis Prediction 
Comparing the different spline interpolation method on the 

greenhouse temperature field visualization performance in 
reference [15], the result is that the bicubic spline 
interpolation method is applicable to the temperature field 
fitting at a certain moment. Cubic spline interpolation is a 
method of constructing cubic functions from known data and 
approaching the minimum points of functions to be solved 
with their minimum points [16]. The temperature in its output 
picture changes smoothly by UAV camera. and has a 
temperature gradient, which can be a good guide for the 
rescue teams. 

Because the final result is the three-dimensional 
relationship between temperature and horizontal coordinates, 
bicubic spline interpolation method is used to obtain the 
relationship [17]. And the method is used to fit the prediction 
image composed of collected data [18]. Construct a 
two-dimensional relative coordinate system with the ground 
station as the origin point. Coordinate X in the same direction 
of travel on the plane of UAVs. Coordinate Y perpendicular 
to the direction of travel on the plane of UAVs. Every UAV 
delivers three parameters to the ground station for prediction. 
They are the coordinates ( )jiji yx ,, ,  and temperature jiT ,  for 
each data collection point. 

Bicubic spline interpolation first divides the whole large 
interval into multiple cells. There are ( ) ( )11 +×+ nm  data 
points in the space 0S , which is divided into nm ×  small 
spaces jiS ,  

 
 njmiyyxxS jjiiji ,...,1,0;,...1,0],,[],[ 11, ==⊗= −−  (1) 

 ( ){ }, 0 0 1 0 1,i j m nS S x y a x x x b c y y y d+ +∈ | = ≤ ≤ = ∩ = ≤ ≤ =  (2) 
 

The temperature function is defined as: 
 

 njmiTyxP jijiji ,...,1,0;,...,1,0),,,( ,,, ===   (3) 

 
Eq. (4) is that in each small cell, the temperature T is cubic 

polynomial. And the partial derivative of each node in 
adjacent cell is continuous. 
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Eq. (4) shows that there are ( ) )3(3 +×+ nm  undetermined 

coefficients }{ ,,, lkjiA  in its expression. But only 
( ) )1(1 +×+ nm  data points are known, leaving 

( ) 4)1(212 ++++ nm  remaining degrees of freedom. 
Therefore, the range that can be predicted by using 
( ) )1(1 +×+ nm  data points is ( ) )1(1 −×− nm . 

 

III. FIRE SIMULATION AND ANALYSIS 

A. Simulation Introduction 
This work shows how to simulate a pool fire development 

by a tank storing liquefied petroleum gas (LPG). The 
simulation is used in two aspects of follow-up research: 
provide data and data comparison. 

The software used for the simulation is PYROSIM 2019 
developed by Thunderhead Engineering, which is mostly 
used for fire simulation. It can accurately predict and analyze 
the temperature, movement and concentration of fire and flue 
gas. 

B. Geometric Model and Boundary Conditions 
There are 6 groups of tanks storing liquefied petroleum gas, 

4 tanks with a volume of 5000 m3 in each of 4 groups, and 6 
tanks with a volume of 5000 m3 in each of 2 groups, shown in 
Fig. 3. Furthermore, fire dikes are set up for each group of 
containers. The model does not consider the effect of tank fire 
sprinklers on fire temperature. 

In order to reduce the amount of calculation, the real model 
is reduced by a ratio of 1:10. The model of the tank is 1.5 m 
high and 2.4 m diameter. The height of the fire dikes model is 
0.25 m. The ambient temperature is 25 ℃. The wind speed of 
the model is 1.0 m/s. Excluding the ground and the direction 
of the wind, the other directions are opened. 

 

 
Fig. 3. Three-dimensional model of fire simulation. 

 

C. Simulation Results 
Since wind field loading takes some time, the fire burns in 

a windless environment within 0 to 10s, during which time 
the flame shape is similar to a straight cylinder, as shown in 

Wind 

Ignition source 
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Fig. 4(a). As shown in Fig. 4(b), within 10 to 60s, the flame 
evolves from a straight cylinder into an oblique cylinder. As 
shown in Fig. 4(b) and Fig. 4(c), the flame reaches its 
maximum tilt angle at a certain point in time, and the shape of 
the flame remains the same, but the smoke will spread with 
the wind. As shown in Fig. 4(d), after 60s, the fire site has 
reached a stable state. The circulating state of flue gas makes 
it easier for flue gas to diffuse in the form of surface between 
tank groups [19]. 

 
(a). Fire simulation in the windless 

 

 
(b). Fire propagation under wind speed loading 

 

 
(c). Flue gas stability under wind speed loading 

 

 
(d). Flame stability under wind speed loading 

 

Fig. 4. 3D visualization of fire development. 
 

 
 

(a). 15s, the fire plane temperature distribution 
 

 
 

(b). 30s, the fire plane temperature distribution 
 

 
 

(c). 45s, the fire plane temperature distribution 

 
 

(d). 60s, the fire plane temperature distribution 
 

Fig. 5. Development of fire plane temperature distribution. 
 
Fig. 5 shows the temperature development process over 

time on the fire plane, thermal feedback on blockages is 
enhanced by blockages nearby pool fires, which is consistent 
with the conclusion in reference [20]. 

 

IV. VISUALIZATION OF FIRE TEMPERATURE FIELD 

A. Visual Introduction 
This work will simulate the process of temperature data 

collection of UAVs. On the fire simulation model, 
thermocouples are arranged on the data acquisition path of 
the UAVs to collect the data. The temperature field predicted 
by the data will be compared with the simulated image results. 
This will be used to compare the accuracy of predictions of 
different temperature gradients at different times. Actually, 
the temperature changes with time and therefore does with 
the data collection time.  In this paper, lose sight of the 
change, and hypothesis: The UAV's data collection process 
does not take time. 

B. Temperature Data Based on UAV 
Simulation scenarios for 30th and 45th seconds are used as 

the predictors of the temperature field, as shown in Table I 
and Table II. Set up five UAV routes with a data interval of 4 
m and set 9 thermocouples on each route. The route 
parameter of UAV route (1) is y1 = 15 m and z1 = 1.5 m; the 
route parameter of UAV route (2) is y2 = 11 m and z2 = 1.5 m; 
the route parameter of UAV route (3) is y3 = 7 m and z3 =1.5 
m; the route parameter of UAV route (4) is y4 = 3m and z4 = 
1.5 m; the route parameter of UAV route (5) is y5 = -1 m and 
z5 =1.5 m. 

 
TABLE I: THE TEMPERATURE DATA FOR THE 30TH SECOND 

T (℃), z = 1.5 m 
xi

 

yi
 14 m 18 m 22 m 26 m 30 m 34 m 38 m 42 m 46 m 

15 m 25.75 26.3 25.95 26.41 25.96 25.78 26.90 34.51 25.17 

11 m 48.89 44.63 45.25 46.01 47.47 40.11 26.84 25.28 25.09 
7 m 26.75 29.63 29.74 33.08 35.10 40.88 43.63 35.90 25.00 
3 m 25.40 25.95 26.42 32.39 36.19 41.00 25.10 25.02 25.00 
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-1 m 25.41 25.59 25.62 26.02 27.78 27.82 25.03 25.01 25.00 

TABLE II: THE TEMPERATURE DATA FOR THE 45TH SECOND 
T (℃), z = 1.5 m 

xi
 

yi 
14 m 18 m 22 m 26 m 30 m 34 m 38 m 42 m 46m 

15 m 25.61 26.12 25.94 27.14 27.50 26.11 25.92 26.94 27.59 
11 m 50.96 43.99 43.19 45.82 46.43 56.23 44.04 28.78 29.39 
7 m 26.62 29.78 29.42 32.38 33.64 43.66 41.58 46.93 34.3 
3 m 25.33 25.81 26.60 27.22 32.55 40.49 44.35 32.80 25.34 
-1 m 25.31 25.47 25.69 25.81 29.35 29.80 25.51 36.83 25.09 

 

C. Predictive Image of the Temperature Field 
Bicubic spline interpolation of temperature data is the core 

of dynamic prediction. Fig. 6 shows a visualization of the 
cube interpolation of temperature data. The predicted 
temperature line changes gently and the temperature changes 
in a gradient. 

 

 
(a). Fire temperature map of the 30th second 

 

 
(b). Fire temperature map of the 45th second 

 
Fig. 6. The temperature distribution map based on bicubic spline 

interpolation. 
 
The high-temperature area of fire is an important 

parameter in the dynamic prediction results of the 
temperature field. Fig. 7 and Fig. 8 show predictive and 
simulated images at different temperatures in the same area. 

 

25℃   

30℃   

35℃   

40℃   

45℃   

Fig. 7. Comparison of bicubic spline interpolated image (left) and simulated 
image (right) at different temperatures in the 30th second. 

 

30℃   

35℃   

40℃   

45℃   

50℃   

Fig. 8. Comparison of bicubic spline interpolated image (left) and simulated 
image (right) at different temperatures in the 45th second. 

 

D. Image Similarity Comparison and Analysis 
In engineering applications, a visual image of the fire 

temperature field has been calculated before. This work is to 
verify the similarity between the predicted image and the 
simulated image, which is in place of real fire conditions. 
This image similarity comparison is based on the perceptual 
hash algorithm (PHA) [21]. As shown in Fig. 9, the basic 
principle is to convert the image feature into a "fingerprint" 
string, and to compare the "fingerprint" to get the similarity 
of the image. The steps of the perceived hash algorithm are as 
follows: 

Step 1: Read the picture data and reduce the picture for 
grayscale processing, into 256 orders of grayscale map. 

Step 2: Reduce it to 32 × 32 sizes. 
Step 3: Calculate the discrete cosine transformation (DCT). 

The DCT of the grayscale graph is carried out by the 
frequency and trapezoidal decomposition for the picture, and 
the DCT matrix of 32 × 32 is obtained. 

Step 4: Zoom out of the DCT matrix. In the DCT results 
obtained by step 3, the 8 × 8 matrix in the upper left corner is 
retained, representing the lowest frequency of the picture. 

Step 5: Calculate and reduce the average of the DCT 
matrix, traversal the matrix, and get the hash fingerprint map 
of 8 × 8. 

Step 6: Calculate the similarity using the Hamming 
distance.  
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Fig. 9. The process of image similarity comparison. 

 
Fig. 10 shows the similarity between the bicubic spline 

interpolated image and simulated image in Fig. 7 and Fig. 8. 
The higher the similarity, the greater the accuracy of the 
prediction. As can be seen from Fig. 9, under this method of 
prediction of temperature field, the prediction accuracy of 
different temperature regions is close. 

 

 
 

Fig. 10. The similarity curve between the bicubic spline interpolated image 
and the simulated image. 

 
The comparison of image similarity is a conservative 

method. During the comparison of image similarity, the area 
that does not actually occur but is predicted to occur is a 
conservative prediction area. The prediction result of this 
area will make the rescue team take too much rescue and will 
not affect the rescue team to take wrong measures. As shown 
in Fig. 8, there are many conservative prediction areas, so the 
image similarity data obtained in Fig. 10 will be lower than 
the prediction results actually used for fire rescue. 

 

V. DISCUSSION 
In the analysis of fire simulation and visualization results, 

we have investigated the similarity of visual images obtained 
by bicubic spline interpolation method. The results show that 
the similarity between the temperature field image and the 
simulated image obtained by this method is more than 70%. 
The amount of data has an important effect on the accuracy of 
the visual image. Therefore, we investigated the effect of data 
volume on the accuracy of visual images, the technical route 
chosen is the same as before, and the solution process is 
omitted here. 

From the data acquisition process, it can be concluded that 
there are two factors that determine the amount of data: the 
number of UAV routes ∆R and the data interval ∆L. 
Therefore, we changed the number of UAV routes and the 
data interval separately, based on previously investigated 
models. We considered the UAV routes ∆R = {4, 5 ,6, 7, 8}, 

with a data interval ∆L = 4 m and the UAV routes ∆R = 5, 
with data intervals ∆L = {5 m, 4.5 m, 4 m, 3.5 m, 3 m, 2.5 m}. 
As Shown in Fig. 11, these images are grayscale and reduced 
to 32 × 32 sizes.  

 

 
(a) Simulation              (b)                 (c)  

 
(d)               (e)              (f)  

 
(g)           (h)            (i)  

 
 

(j)           (k)          (l)  
 

Fig. 11. Predictive images under different data acquisition strategies. 
 
We compared the similarity between the predicted image 

and the simulated image. The similarity results are shown in 
Fig. 12. The number of routes has a greater impact on image 
accuracy, but the cost of the application will increase. And 
the data interval will affect the calculator's calculation time. 
Theoretically, there must be a deviation in the predicted 
result. But the benefit of this method is that it provides 
quantifiable field data for rescue teams. These data can be 
used to conduct in-depth studies of fire temperature fields. 
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Fig. 12. Predicted image similarity for different quantity routes and different 
data intervals. 

 
Image similarity is one of the fastest evaluation methods. 

Most of the similarity in Fig. 12 is between 60% and 80%. 
This comparison result is relatively low. From the principle 
of image similarity, the size of the image range will affect the 
similarity result. Therefore, we don't have to pay too much 
attention to the value of similarity, we pay more attention to 
the rules of strategies that can improve the similarity. We 
compared the quantitative results of Fig. 12 with the 
qualitative results of Fig. 10. Obviously, it's not that the more 
UAV routes there are, the smoother the predictions are for 
different temperature ranges. The data interval has a greater 
effect on the prediction accuracy of the high-temperature 
zones than in the low-temperature zones. Conclusively, the 
most appropriate number of routes is ∆R = {5, 8} and the 
most appropriate data intervals is 2.5–4 m. We hope these 
findings can help to operate UAVs on site. 

 

VI. CONCLUSION 
In this paper, a method for predicting temperature field of 

petrochemical fire using UAVs to collect field data is 
proposed. The process of simulating petrochemical fires is 
used to theoretically verify the accuracy of the prediction 
method. The results are as follows: 

(1) In the simulation of this paper, the similarity of the 
predicted image of double three spline interpolation is 60% to 
85%. Because the accuracy of the prediction is influenced by 
the drone's sampling strategy, it is possible to be higher than 
85%. Sampling strategy mainly includes data interval and 
route number. 

(2) The speed of the UAV and the sampling cycle of the 
sensor determine the data interval. The data interval has a 
greater effect on the prediction results of the fire 
high-temperature zones. The smaller the data interval, the 
wider the range of conservative predictions for high 
temperature zones. 

(3) The overall prediction accuracy is more affected by the 
number of UAV routes. It's not that the more UAV routes 
there are, the more accurate and stable the overall prediction 
will be. 
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