
  

  

Abstract—The article presents a method for identifying and 

locating damages in an aluminum plate using Lamb waves. For 

this, a network of PZT wafer type actuators/sensors is used to 

generate and detect Lamb waves. The damage location 

algorithm is sketched taking into account the network 

configuration of PZT sensors. The experimental results 

confirm the calculation procedure.  

 
Index Terms—Tructural health monitoring, Lamb waves, 

PZT sensors/actuators, aluminum plate specimen. 

 

I. INTRODUCTION 

In the aerospace field, as well as in many other 

engineering areas, the Predictive Maintenance techniques, 

also called Condition Based Maintenance (CBM) are 

designed to preserve the structures in their functional 

parameters with reducing the huge costs related to their 

maintenance. As an example, NASA spent $2.16 billion in 

2019 for the maintenance of the structures [1]. By 

intelligently associating the actuators and sensors in a 

complex network connected to computer systems, a 

significant economy can be reached [2]. As a result, the 

overall lifecycle cost of an aircraft, for example, can be 

reduced with the use of a Structural Health Monitoring 

(SHM) system as a part of a CBM approach.  

SHM is a complex process of monitoring the ‘health’ 

status of structures usually online or whenever it is 

necessary [3]. It consists in acquisition, validation and 

analysis of technical data to facilitate life-cycle management 

decisions.  

Several methods are well-known and used as a non-

destructive SHM techniques for damage identification, each 

of them having its own potential and being suitable for 

different types of applications. The most used methods in 

literature are represented by electromechanical impedance 

[4]-[7], and by ultrasonic guided waves [8]-[13]. Among the 

types of the transducers, one can mention the piezoelectric 

wafer active sensors [14] or the vast class of fiber optics 
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[15].  

The SHM techniques are sensitive to every change that 

appear in the physical properties of the structure [16], [17]. 

For this reason, the structure is continuous monitored and 

the data are constantly compared with a baseline 

corresponding to a pristine state of a structure, an initial 

state without damage. 

The type of damage, crack, corrosion, delamination, etc. 

requires a change or adaptation of the identification 

methodology. This methodology could be one of Big Data. 

For a given active sensor and actuators network, a series of 

digital damage fingerprints (DDF) can be established for all 

the signals captured by the sensor network, using the same 

principle [18]. One particular damage case is uniquely 

defined with one set of DDF. The entire amount of patterns 

obtained is stored in a damage parameter database (DPD). 

Then, through pattern recognition techniques that use 

artificial neural networks [19], [20], this DPD is used to 

confront and identify the concrete situation of defect 

analyzed. 

 In this article, a know-how is used to illustrate the 

identification and localization of a defect in an aluminum 

plate specimen based on guided waves. In the second 

Section of the paper, a short description of the method is 

presented. The third Section is dedicated to the experimental 

setup and to the research findings.  

 

II. LAMB WAVES BASED SHM FOR DAMAGE 

IDENTIFICATION AND LOCALIZATION METHODOLOGY 

The Lamb waves are ultrasonic waves which, as soon as 

they are generated by a device, are intrinsically guided 

between two parallel free surfaces, such as the upper and 

lower surfaces of a plate [8], [18], [21]. Their great 

advantage is that the waves can travel relatively long 

distances without a significant loss of energy, thus providing 

a large coverage area [22], [23]. Lamb waves are used in 

diverse applications because of their high sensitivity at 

damage identification. The disadvantage refers to the fact 

that this SHM method can be applied to plate and cylindrical 

structures [22], [24]. 

Active piezoelectric sensors mounted on aluminium plate 

were used to identify and localize damage by means of the 

Lamb waves. Piezoelectric lead zirconate titanate (PZT) 

sensors offer excellent performance at generating and 

collecting Lamb waves being suitable for integration on a 

structure as generators and/or as sensors, due to their 

negligent mass, excellent mechanical strength, high 

operating frequency, low energy consumption and low costs. 

The information is obtained by analysing the parameters of 

the reflected and transmitted waves resulting from the 

interaction between the incident wave and damage [25]. 
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(4) 

In the case of a sufficiently thin structure, for example a 

plate whose thickness is of the order of the wavelength, 

surface waves degenerate into Lamb waves.  

 

There are two types of Lamb waves, symmetrical and 

antisymmetric, which satisfy the equation of the elastic 

wave and the boundary conditions and propagate 

independently of each other. Their characteristic equations, 

named Rayleigh-Lamb (R-L) equations, one for each mode, 

are given by [9] 
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corresponding to the symmetric mode when the exponent is 
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with   the angular frequency, k  the wavenumber, pc  the 

phase velocity, and d  the specimen half-thickness. Lc  

represents the velocity of longitudinal wave and Tc is the 

velocity of the transverse wave  
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where E  is the Young’s modulus and  is the Poisson’s 

ratio of the material. Solving R-L equations provides the 

dispersion curves of symmetric iS  and antisymmetric iA  

Lamb modes defined in both the plan ( ),pc   and the plan 

( ), .gc   gc is the group velocity with which the overall 

shape of the amplitudes of the wave (known as the 

modulation or envelope of the wave) propagates through 

space; this is the actual velocity captured in experiments (the 

velocity of wave energy transportation). The phase velocity 

pc  is the propagation velocity of the wave phase of a 

particular frequency contained in the overall wave signals, 

which can be linked with the wavelength w  by the 

relation ( )/ 2p wc =    . Thus, we are approaching an 

important parameter in locating a defect, namely the time-

of-flight (ToF) of the wave packet propagating along a 

sensing path, defined as  

g

l
t

c
=  

where l  is the propagation distance between transmitter and 

receiver. ToF represents the time required that the wave 

travel from the actuator to the sensor. 

There are a few methods to localize the damage. One of 

them is the triangulation method. The method used in this 

paper is based on [22]. This method is briefly described 

below. 

A coordinate system originating in (0,0),A which 

represents the position of the actuator ,A  is considered. 

Cartesian coordinates of the sensors are expressed as 

( , ),i i iS x y  with 1, , ,i n=  indicating the sensor number, 

and the coordinates of the damage are denoted by 

( , ).d dD x y  In real-time SHM applications, the coordinates 

of the sensors are known but not the damage location. 

Consider r  the radial distance between the actuator A  and 

the damage ,D and   the angle made by the radial axis with 

the x -axis. The objective is to find the Cartesian 

coordinates ( , )d dx y of the damage. Also, consider it  the 

total time that the Lamb wave requires to propagate from the 

actuator A to the sensors iS via the damage by the shortest 

direction .id  Thus, the polar coordinates of the radial 

distance and the angle are given by 
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The Cartesian coordinates are simply obtained by using 

the relations 

cos , sin .x r y r=  =   (7) 

III. EXPERIMENTAL SETUP AND RESULTS 

An aluminium plate with the dimensions 1000 mm x 200 

mm x 2 mm instrumented with 13 PZT sensors was chosen 

as a specimen, see Fig. 1. The coordinates of each sensor 

can be found in Table 1. The sensors were bought from 

STEMiNC and had a diameter of 10 mm and a thickness of 

0.4 mm. 

 
TABLE I: THE CARTESIAN COORDINATES OF THE SENSORS ON THE 

ALUMINUM PLATE [MM] 

S1(200,  60) S5(250,  60) S8(300,  60) S12(450,  60) 

S2(200,100) S6(250,100) S9 (300,100) S13(450,100) 

S3(200,140)  S10(300,140)  

S4(200,180) S7(250,180) S11(300,180)  

 

The simulated damage consisted in a drill hole of 6 mm 

and a cut through-the-thickness of 30 mm x 1mm located at 

half of the distance between the sensors S6-S7, respectively 

S3-S10. Using a 33120A Hewlett Packard signal generator a 

three cycle Hanning modulated sinusoidal tone burst signal 

was generated at 100 kHz frequency. The amplitude of the 

signal was 10 VPP (peak-to-peak voltage). The Lamb wave 

signals were collected by a DSO-X-3034A Agilent 

Technologies InfiniVision oscilloscope. 

In the paper, the damage was simulated as a simple drilled 

hole, of diameter compatible with the frequency of the 

generated Lamb wave. It is known that the wavelength of 

Lamb waves that propagates in thin plates is of the order of 

magnitude of plate thickness, the upper and lower surfaces 
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of the plate serving as guides for their propagation. On the 

other hand, the half wavelength of a chosen wave mode 

must be at most equal to the damage size to allow the wave 

to interact with the damage. In these correlations one can 

evaluate the influence of plate thickness, or Lamb 

wavelength in the investigation of the damage. In all these 

approaches, the transducer noise must keep the same 

characteristics, so as not to compromise the results. 

 

 
(a) 

  
(b) 

Fig. 1. The distribution of PZT sensors on aluminium plate (a) drawing (b) 

the aluminium specimen with PZT and damage.  

 

 
Fig. 2. Experimental identification of the group velocity. 

 

Locating defects in a structure with a complex geometry 

is difficult to achieve. This involves the design of a well-

defined network of sensors and their optimal bonding on the 

tested specimen. Moreover, the guided Lamb waves are 

dispersive leading to a strong dependency between the 

group and phase velocities and the product fd  of the 

frequency f and the plate half-thickness .d  For a given 

frequency-thickness product, for each solution of the R-L 

equation, the corresponding Lamb wave velocity and the 

corresponding Lamb wave mode are found. In Fig. 2 is 

depicted the variation of the group velocity with the 

frequency. 

Signal measurements were performed for a wide range of 

frequencies, starting from 60 to 200 kHz to establish the 

optimal frequency. It was observed that the signal amplitude 

decreases as the frequency increases (Fig. 3), and the 

identification of wave packages becomes difficult to 

perform.  

The measurement frequency was chosen as 100 kHz 

because the signal has a high amplitude and the wave 

packets are clearly delimited. The optimal oscillation 

frequency is influenced by the frequency characteristic of 

the transducers and the material.  

 
Fig. 3. Maximum amplitudes of Lamb waves depending on frequency. 

 

The theoretical velocities were calculated using the 

aluminum material properties: Young modulus -
972 10 Pa, 

Poisson’s ratio - 0.33 and density - 2800 kg/m3. According 

to (3), the longitudinal velocity is equal with 5071 m/s, and 

the transverse velocity is equal to 3109 m/s. 

Three transducers from the configuration in Fig. 1 were 

chosen as it follows: transducer 7 as actuator and 6 and 11 

as sensors. In Fig. 4 one can see the response recorded by 

the sensors for the pristine case.  

In order to identify the damage, the signals recorded 

before and after the defect in the aluminum plate were 

compared. It was observed a decrease in amplitude, a 

change of ToF, and appearance of new wave packets as 

shown in Fig. 5. Also, to highlight these changes, the Hilbert 

transform was applied. 

 

 
Fig. 4. Signal recorded by sensors S6 and S11 on pristine specimen. 

Excitation signal generated by actuator A7: (up) overlapping signals and 

(down) individual signals. 

 

The next step of the experiment was to locate the position 

of the damage. For that, the method described above by (5)-
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(7) was applied. In order to identify the Cartesian 

coordinates of the defect, the geometric scheme from Fig. 6 

is considered. 

The distance between actuator A7 and sensor S11 is 

denoted by d, and by d1 the distance from A7 to the damage 

position D. The distance from the actuator to the sensor S11 

via the damage is 2 1.d r d= +  According to the 

experimental set-up from Fig. 1a, r = 39.5 mm, d =50 mm 

and d2=103.22 mm. 

 

 
Fig. 5. The signal response of the sensors S1-S10 on pristine and damage specimen. The signal was generated by transducer A7

 
Fig. 6. Lamb wave propagation scheme 

 

The polar coordinate (r,θ) are determined according to 

(5). In this case ( ) 90m = . Thus, replacing with numerical 

values it is obtained 39.49999.r = Therefore, the Cartesian 

coordinates of the damage D are D(0,39.49999) which 

correspond to the real position where the damage was made 

on the aluminium plate. 

 

IV. CONCLUSION 

The method presented for detecting a simulated damage, 

for a chosen configuration of sensors-actuators bonded to an 

aluminum specimen, is the triangulation method. This 

method provides, in principle, a good accuracy. The Hilbert 

transform of the wave packet was used to measure the group 

velocities of the Lamb waves. Solving the Rayleigh-Lamb 

equations, otherwise difficult, has been avoided by 

experimentally identifying the basic frequency of the 

propagation modes. A method of accurately locating defects 

in a structure has been substantiated. 
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