

Abstract—The paper describes the characteristics of a new

experimental automated web testing approach and component

that allows the users to test functionalities of a web-based

software under test (SUT) using a succession of parametrizable

predefined test templates. The parametrizable templates usage

supports a minimal validation of a finalized work without

automated testing skills development because these are

provided by default. The independent web developers without

the required resources to automatically test the functionality of

their applications could successfully integrate solutions based

on the presented approach into their practice. The tactic allows

the configuration of the test cases with the specific values

required by the desired SUT characteristics through a novel

graphic-based policy for the definition of test cases.

Index Terms—Test automation, functional testing,

graphic-based testing approach, test templates, knowledge

database.

I. INTRODUCTION

Software testing represents a process to verify and validate

whether the product completely satisfies its predefined

requirements, usually provided through specific documents

such as “Software Requirements Specification”, “User

Interface Requirements”, “Functional Requirements

Document” and a few more. These documents usually deliver

the input and the best references for specific test development.

Data based technique implies the usage of test data vectors

such as (input data, expected results) in order to obtain a

certain outcome/output based on the software execution.

Generally, static and dynamic approaches are used in order

to test the product. The implementation complexity and

desired requirements fulfilment transform the testing process

into a complex activity, the possibility of an exhaustive test

case generation and execution being automatically excluded

based on its evident lack of efficiency.

The current work was developed in order to address a

certain degree of normalization to the manual definition and

automated execution of the test cases for web developments

for minimal criteria such as: validation of forms, content

(mainly text), user case scenarios, and functionalities by

using predefined formats for test implementation.

Also, for smog or acceptance testing, usually based on the

client’s usage experience and requirements, the availability

of an approach that does not need anything else but web

navigations skills and business know-how, could be a strong

Manuscript received March 15, 2022; revised May 12, 2022. This work

was supported in part by the Romanian Government under Grant

PN-III-P2-2.1-SOL-2020-0157.

Iulia Stefan, Ovidiu Stan, and Liviu Miclea are with the Department of

Automation, Technical University of Cluj Napoca, Cluj, Romania (e-mails:

{iulia.stefan, ovidiu.stan, liviu.miclea}@aut.utcluj.ro).

plus. The web based experimental component developed

implements the graphic-based new approach’s functionalities.

The article includes 7 chapters: I. Introduction - briefly

presenting the concepts and the main objective, II. Web

testing and related work – introducing several published

results regarding solutions for requirements-based testing

and the associated challenges, III. Web functionalities

analysis – the chapter underlines the common functionalities

to multiple web applications that need testing, a common

ground for parametrizable templates IV. The proposed

approach - the chapter evidencing the solution for

implementation, V Comparative results - underlines reports

of runs for similar tests in Selenium IDE, a web-based

approach of test generation using record and playback

features, and VI. Conclusion – pointing out the finalized and

future work.

II. WEB TESTING AND RELATED WORK

Automation in tests’ generation of the test cases, execution

or/and results evaluation is a representative concern in a

competitive web development market. There are several

approaches regarding the testing of web pages.

Yu et al. present a new method for automatically

generating test cases using page objects [1]. The application

exploits the new states of the application and automatically

generated tests, accordingly. The method is useful for

exploratory testing but does not offer the possibility to

explicitly specify the expected output regarding the

evaluation of a test case obtained results, specifically

designed for the familiarized testers with java and Selenium

SDK, as our work does.

Madhan et al. formalize the software requirements’

process for critical systems through a natural language

processor in order to obtain completeness and correctness of

the requirements’ specification [2]. Our work tends to obtain

the same completes and correctness by providing templates

for the test case definition through a friendly user interface

that reduces the effort of the developer for the software

functionalities description.

Other authors try to resolve the issue of unidentified pages

in test case generation, by expanding the Selenium IDE

capabilities [3]. Here, the automation is enhanced without

explicitly specifying the initial requirements regarding the

web page functionalities: if the identified pages should exist

or not, or if they should have a specific content or not. Similar

to our experimental tool, a minimum knowledge about

automated tool in testing is required in order to finalize a

testing activity.

In [4], the UML specified requirements are the starting

point in the automated test case generation proposed

Towards Automated Web Functional Testing Using

Predefined Templates

Iulia Ștefan, Ovidiu Stan, and Liviu Miclea

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

82DOI: 10.7763/IJMO.2022.V12.805

technique, in order to automatically define test cases. Our

solution replaces the UML specification of the requirements

by providing explicit options inside de graphical interface,

regarding input types, input characterization properties,

expected output identification data, URL’s description and

details and maintains the automation level at test run and at

test result analysis.

Related work regarding web testing involves the Finite

State Machine (FSM) [5], [11], [12] modelling approach for

automatically generating the tests. These instruments allow

the model creation directly with the testing tool. Our solution

reduces the model design to a series of specific features in

association to web based graphical user implementation, in

order to simplify the formation of tests and the usability of

the software component.

The proposed experimental tool provides a graphical user

interface to define, in fact, different states of an SUT

regarding a user interaction with the SUT, through the

graphical interface of the component, extracting the specific

configuration pairs of parameters in a JSON files, and

populating the tests suites with desired input values/expected

results. The proposed experimental tool runs the test suites,

with specific tests and test cases, automatically assesses the

results and exposes them to the user.

Other new approaches include, in a certain degree, the

usage of digital image processing and visual aids for UI

testing. In [6], for example, similar to code smells in source

code, the developed tool has visual design triggers called

“smells” to point out the need to address inconsistent aspects

of the UI design. In our tactic, the visual aids are offering a

graphic based interaction with the component in order to

implement, in fact, user stories.

Approaches based on graphic interaction with the tester are

reported mainly on image automated evaluation between

expected/actual snapshots comparisons including evaluating

the instruction set architecture’s activity [7].

The current work is not focusing on the automated

evaluation of results, instead is focusing on graphic aids for

user story definition for tests based on predefined templates

for tests. These templates represent, in fact, a test knowledge

database. The current work represents a similar approach to

behaviour driven testing in tools such as Cucumber, but with

exploitation of graphic aids, not natural language

programming.

The work could be, also placed, in the context of Concept

Maps presented by Elsayed et al. [9], as a resource for

content organization, in that case, in education.

III. WEB FUNCTIONALITIES ANALYSIS

There are several types of web content, dynamic or static.

Nowadays, the main majority is represented by prolific and

experienced web users and based on this experience, one can

confirm that all needed functionalities exposed by the GUI of

a web application is mainly based on links, events

(movement, clicks) and input elements. The user’s actions

activate the dynamic exposure of the content.

The analysis of several web sites, from e-commerce and

blogs, to business sites, media content, social media indicates

that the specificity of web exposure and implementation

supports the idea of predefined templates for a functional

testing approach, based on the user’s actions through the GUI

interface mainly, opened in browsers.

These templates represent a knowledge-database of test

structures. As also presented in a previous work by Stefan et

al. [10], these functional properties are mainly the ones

exposed in the following table.

TABLE I: WEB SITES FUNCTIONALITIES

User actions
Site’s specific functionalities

exposed by GUI

Test Templates

developed

Form’s

completion

User registration, comments,

email toward a specific

address, filters (e-commerce,

etc)

Predefined structure of

tests for form

evaluation

Specific

succession of

pages

Web site navigation

Predefined structures

for page succession

based on content

recognition

A web site navigation means, from the user’s point of view,

events, mainly mouse/hand events, and data completion of

forms. For test case generation based on user stories, the

graphic based approach is an improvement in relation to a

beginner level of automated testing.

IV. THE PROPOSED APPROACH

The proposed approach makes available, for a developer

not accustomed with the automated testing tools and testing

methods, a minimal set of configurable test case templates.

The use case diagram presented in Fig. 1 is offering a

clarification regarding the available actions for a specific user

when accessing the software component:

Fig. 1. UML use case diagram.

In Fig. 2, the overall architecture of the web component

exposing the structure and associated servers (web server,

database management server, Selenium standalone server)

with the testing component [15] is available.

Fig. 2. Client- server component’s architecture.

The Selenium server is running all tests based on the

configuration of the servers’ side predefined templates.

These templates are generating different test results based on

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

83

the parametrization made from the web interface of the

testing component.

The client-side functionalities run through the web

browser, and the AJAX calls update the database in relation

to a specific feature of a test.

Several features have been implemented such as:

authentication/registration for user access, new test cases

definition based on predefined templates for testing forms

and page navigation using the presented new graphic based

design approach, test objects instantiation and

parametrization, data_provider function implementation for

parameterizing test methods, asynchronous data update and

storage in the database/file storage, the possibility of

individual parametrization of tests according to the expected

behavior, automatic execution of tests, automatic user

graphic interface integration/presentation of results obtained

by automatic execution, directly in the component’s web

page.

A. The Chosen Frameworks and Software Packages

The tool was developed using PHP 7, PHPUnit,

PHPUnit_Selenium frameworks, Selenium 2.x server,

Selenium Webdriver, at the server-side component

development.

PHP was chosen due to its HTML, JavaScript, CSS,

intercalation capabilities in web documents, with serious

improvements since PHP5, regarding OOP capabilities, and

last, but not least, PHP is one of the widest used languages in

server-side programming languages, in 2020 included, with a

market share equal to 79.2%, having important competitors

as: ASP.NET, Java, RUBY, JavaScript, as reported in [8] .

For current version of the component, the tests are run

automatically against Chrome and Firefox platforms and

Selenium webdriver, which was integrated based on its

capabilities to automatically execute a web browser using its

innate support for automation.

PHPUnit is integrated in order to automatically assess the

test results by calling assert type functions, to efficiently

provide the test data by data providers, to choose and define

testing dependencies, to save test result after test run in XML

files.

PHPUnit and Selenium integration [13], [14] is possible by

using PHPUnit_Selenium and PHPUnit_Extensions_

Selenium2TestCase packages. In order to access specific

elements from the web documents via the Document Object

Model (DOM), the PHP class DOMElement was used.

There are a minimum of 3 operations available for running

our predefined test cases based on the server side of the

proposed tool, functionalities are available through the web

GUI of the tool:

• Create account,

• Choose a test type (pages succession/navigation,
input validation, and combinations of first two,
etc),

• Configure test cases with specific details (e.g. site
under test web address, forms names, ids, resources
used, input types for the forms to be tested, names
of the pages, page’s specific text for test
evaluation),

• Request server to run tests,

• Access test results generated and sent by the server.

The solution was implemented using MVC architectural

pattern. Data provided to the tests can be generated by genetic

algorithm in order to obtain the site’s specific content as

presented in a previous work [15].

B. GUI Functionalities for the Client-side Component

The graphical interface (GUI) of the web client exposes

functionalities for login and register, choosing a testing

option, parametrization of the tests, results viewing.

As a novelty, the GUI exposes the graphic based definition

of test cases solution. The two main possibilities are: to test

forms and/or to test site navigation paths using specific

assessment in relation to site content and event validation.

The form testing choice allows new test generation

configuration or running/re-configuring an old test. Test

configuration options include: test name (Romanian

language “nume test”), test description (Romanian language

“descrierea testului”), site under test (SUT) URLs, add input

characteristics (type, id, name and/or size, value, if available)

and the address of the next page when the forms’ submit

button is clicked (0.) When the configuration is completely

specified, the “Send and test” button requests specific

operation on the server’s side.

Fig. 3. Set-up of the form testing.

The site navigation test choice allows the user to specify

the start page and the end page, with expected output.

The expected output is mainly a defining text inside the

page in order to uniquely validate the page, besides the URL.

To define the test case, one needs to define nodes and

relations. Each node has associated several methods or

actions to it, as presented in Fig. 4: Are you a parent; Are you

a child; Add specific URL (Romanian language “Introduc

URL”); Add title (Romanian language “Introduc Titlu”); Add

words on page (Romanian language “Introduc cuvinte

pagina”); Add form characteristics; Add focus event; Add

hover event.

The relationship parent – child defines the desired

succession of the pages or content change based on user

actions using, for example, a hyperlink clicks or hover events,

or a specific form submission, presented in Fig. 5 [15].

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

84

Fig. 4. The GUI based configuration of the site navigation test.

Fig. 5. The graphic based configuration of the site navigation test.

After the completion of the test’s input data and click on

the “Salveaza test” (translated as Save test), a button

available under the graph, the succession of pages and events

is available through a table format before running the test

cases and the result display. The table format is an operation

associated to the parametrization of the test, as presented in

Fig. 6 [15].

Fig. 6. Parametrization of the test – An extra step for correcting the graphic

based test template parametrization.

Based on the request generated by the client side of the

component, the server will access and run the required

scripts.

Mainly, the server starts a tread for each test call in order to

generate a test result file, by verifying the operating system

and executing the test runner application (PHPUnit).

The site navigation test choice from the GUI of the client

side represents a request for the server to execute a specific

procedure. The script involves: extracting the test data

recorded into the database, choosing the test template to run,

automatically running the tests (access the web driver, open
the chosen browser, accessing the URL of the SUT, loading
the DOM document of the page under test, validating the
DOM, extracting the URL and validating the page through
the specified content, identifying the element chosen to

navigate to, executing the event to trigger the navigation,
identifying the new page’s URL, automatically navigate to
the new page/update the content, automatically asserting the
content or other identification elements of the new page),
publishing the result in the result file, updating the
component result page with specific content.

The form test choice request, for the server involved in the

execution, is similar and contains the following steps:

extracting the test data, specifying the browser to run the tests,

accessing each element specified by the form test in a json

file, evaluating each input and its properties: expected

(specified by the user) versus existing values (extracted by

the test), saving the test result, sending the test result to the

client (the page is updated).

Regarding the sequence of pages, for the implementation

of the graphic definition characteristics of the tests in the

browser, the HTML tag “canvas” was used in particular;

inside, specific graphic elements (lines) were created in order

to visually define the structure of the sequence of pages.

Through the specific functionalities, buttons were created

and added to visually abstract the concept of "page" as a node

in the sequence of pages represented as a network of nodes

and edges. In order to be able to associate a series of events to

these buttons, to support the definition of the page sequence,

JQuery methods were used. These events are: add parent

node, add child node, add page title, add URL, add specific

text, and more. The JQuery ajax method allowed the

triggering of asynchronous requests to the server, extracting

and saving relevant information from the database, such as

unique ids and information associated with a sequence

between the parent page - the child page. A conceptual

representation of the sequence graph, in which, in fact, each

node has a unique id generated and saved in the database, can

be observed in previous work [15].

C. Test Results

The results are available from the user account and involve

information related to number of assertions, tests, failures,

test case name as available in Fig. 8.

Fig. 8. Test results.

Each test result is saved in a different xml file with a

specific timestamp in order to obtain a unique identifier for

each test run.

V. COMPARATIVE RESULTS

Several tools were taken into consideration for a minimal

evaluation of the current experimental tool, in terms of

execution time: UFT One and Selenium IDE. Next, a short

feedback related to one of those is presented.

Several test cases (TCs) regarding a predefined web site

navigation were implemented in both, Selenium IDE and

graphic based component. The next results were obtained, as

presented in Table I.

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

85

TABLE I: EXPERIMENTAL RESULTS

TC Test description
Selenium

IDE

Graphic

based

component

#1 A 4 pages succession, 3 tests <18sec <=21sec

#2 A 3 text inputs form completion, 1 test ~3sec ~5sec

#3
Combination of 1 form completion and

2 pages succession
<10sec <12sec

In conclusion, the tool could represent an option for

functional testing and acceptance testing, but more tests

should be conducted for reducing the run time.

VI. CONCLUSION

 The presented experimental component offers a new

method to evaluate and document at a minimum the

functionalities of a developed site, by accessing predefined

test methods templates. The user can also access previous test

runs, previous configurations in order to re-test desired

functionalities. An improvement, in relation to test report

generation, could be represented by adding different details

on the graphic aids, in order to establish the defect

significance, detected by a test run.

The test report is not considered in the article due to the

fact that, in the current version, it does not represent a novelty

to the presented approach.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors have contributed equally. Iulia Ștefan

conducted the research and wrote the article, Ovidiu Stan and

Liviu Miclea analysed data, reviewed and concluded

feedback for the article.

ACKNOWLEDGMENT

This research was partially funded by the Ministry of

Education and Research of Romania, grant number

PN-III-P2-2.1-SOL-2020-0157 (10Sol/2020) and, also,

represents research conducted by the first author during her

PhD thesis.

REFERENCES

[1] B. Yu, L. Ma, and C. Zhang, “Incremental web application testing

using page object,” in Proc. 2015 Third IEEE Workshop on Hot Topics

in Web Systems and Technologies (HotWeb), Washington, DC, 2015,

pp. 1-6.

[2] V. Madhan, V. K. G. Kalaiselvi, and J. P. Donald, “Tool development

for formalizing the requirement for the safety critical software

engineering process,” in Proc. 2017 2nd International Conference on

Computing and Communications Technologies (ICCCT), Chennai,

2017, pp. 161-164.

[3] S. J. Lee, J. L. You, and S. Y. Hsieh, “Automatically locating unnamed

windows and inner frames for web regression testing,” in Proc. 2017

International Conference on Applied System Innovation (ICASI),

Sapporo, 2017, pp. 184-187.

[4] D. Clerissi, M. Leotta, G. Reggio, and F. Ricca, “Towards the

generation of end-to-end web test scripts from requirements

specifications,” in Proc. 2017 IEEE 25th International Requirements

Engineering Conference Workshops (REW), Lisbon, 2017, pp.

343-350.

[5] B. Song, S. Gong, and S. Chen, “Model composition and generating

tests for web applications,” in Proc. 2011 Seventh International

Conference on Computational Intelligence and Security, Hainan, 2011,

pp. 568-572.

[6] S. S. Singh and S. R. Sarangi, “ISAMod: A tool for designing ASIPs by

comparing different ISAs,” in Proc. 2021 34th International

Conference on VLSI Design and 2021 20th International Conference

on Embedded Systems (VLSID), 2021, pp. 1-6.

[7] B. Yang, Z. Xing, X. Xia, C. Chen, D. Ye, and S. Li, “UIS-Hunter:

Detecting UI design smells in android apps,” in Proc. 2021 IEEE/ACM

43rd International Conference on Software Engineering: Companion

Proceedings (ICSE-Companion), 2021, pp. 89-92.

[8] Technologies Report. [Online]. Available:

https://w3techs.com/technologies/report/pl-php

[9] O. Elsayed, C. Limongelli, F. Sciarrone, M. Lombardi, A. Marani and

M. Temperini, "An on-line Framework for Experimenting with

Concept Maps," in Proc. 2019 18th International Conference on

Information Technology Based Higher Education and Training

(ITHET), 2019, pp. 1-8, doi: 10.1109/ITHET46829.2019.8937376.
[10] I. Stefan and L. Miclea, "The usage of contextual information to

develop data test vectors," in Proc. 2012 IEEE International

Conference on Automation, Quality and Testing, Robotics,

Cluj-Napoca, 2012, pp. 302-306.

[11] A. Arora and M. Sinha, "Applying variable chromosome length genetic

algorithm for testing dynamism of web application," in Proc. 2013

International Conference on Recent Trends in Information Technology

(ICRTIT), Chennai, 2013, pp. 539-545.

[12] H. Shahriar and M. Zulkernine, "PhishTester: Automatic testing of

phishing attacks," in Proc. 2010 Fourth International Conference on

Secure Software Integration and Reliability Improvement, Singapore,

2010, pp. 198-207.

[13] Phpunit. [Online]. Available: https://phpunit.de/

[14] Seleniumhq. [Online]. Available: http://www.seleniumhq.org/

[15] I. Ștefan, Methods for Increasing Dependability in Decision Making

Process Levels for Cyber-Physical Systems, UT Press, 2020.

[16] I. Stefan and L. Miclea, “The usage of contextual information to

develop data test vectors,” in Proc. IEEE International Conference on

Automation, Quality and Testing, Robotics, Cluj-Napoca, may 2012,

pp. 302-306.

Copyright © 2022 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted

use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Ștefan I. is a member of the Dependability System

Research Group at Automation Department at

Technical University of Cluj-Napoca. Her work and

research interests include: automation testing, system

dependability, computer aided design, augmented

reality industrial application, serious games

development for cognition, learner centered approach

and methods in education. She is an IEEE Member. In 2015, she received

the ITC Gerry Gordon Student Volunteer Award.

Stan O. is an associate professor at the Automation

Department at the Technical University of

Cluj-Napoca. His research interests include medical

informatics, semantic interoperability, information

management in the age of the Internet, dependability

and fault-tolerant systems. Stan received a PhD in

systems engineering from the Technical University

of Cluj-Napoca. He is a member of IEEE.

Miclea L. is a full professor the Automation

Department at the Technical University of

Cluj-Napoca. He is also the dean of the same faculty.

He is the author or co-author of 17 books, 40 research

works and more than 180 scientific publications. His

research interests include are dependability,

cyber-physical-systems, agent systems. Miclea is a

Senior member of IEEE and is regular the general

chairman of the IEEE-CS-TTTC-AQTR conference.

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

86

