
  

   

Abstract—In the present study, we construct an improved 

vehicle routing problem with simultaneous delivery and pick-up 

model to reduce unnecessary waste and cost in urban cold-chain 

logistics distribution. This model considers real-time outside 

temperature during distribution and optimizes the total cost of 

transportation, cargo damage and refrigeration. The model is 

solved using a genetic algorithm to determine the distribution 

path with the optimal cost. Finally, the validity of the model and 

the effectiveness of the algorithm are numerically tested.  

 
Index Terms—Urban cold-chain logistics, vehicle routing 

problem, genetic algorithm 

 

I. INTRODUCTION 

In the modern world, people become increasingly 

concerned about the quality of life in various respects. The 

consumption of high-quality fresh products is increasing in 

both urban and rural areas, and food safety is drawing 

considerable attention. Therefore, urban cold-chain logistics, 

as a key factor that ensures cargo quality to reduce 

unnecessary loss during transportation, plays an increasingly 

important role in daily life. Urban cold-chain logistics is 

undergoing rapid growth and unprecedented development.  

However, due to the limited level of urban cold-chain 

logistics, many problems occur in the distribution process 

under traditional conditions [1]. These issues greatly affect 

circulation speed, and transportation efficiency and cause 

enormous waste in the distribution process.  

In this paper, a new model for the vehicle routing problem 

with simultaneous delivery and pick-up (VRPSDP) is 

constructed to improve the efficiency of cold-chain logistics 

transportation and reduce cargo damage and other logistics 

costs. This model takes real-time outside temperature into 

account, to fulfill the food quality required by customers 

while reducing the distribution cost. 

The vehicle routing problem was introduced by Dantzig 

and Ramser in 1959 [2]. They discussed a vehicle path 

problem where a single distribution center provides a 

distribution service to customer nodes with certain demands. 

The path optimization problem aims to complete distribution  
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tasks under the constraints of a certain number of vehicles 

with the minimal distribution cost. On this basis, many 

different directions and variations of the VRP have been 

developed for academic research and practical application 

[3]-[15]. 

To extend the VRP to bring it closer to reality, Hokey [4] 

proposed the VRPSDP, which has become an important form 

of the VRP. In the VRPSDP model, a client node contains 

pick-up and delivery requirements. In 2014, Zhang and Chen 

[5] studied the distribution of a variety of frozen foods with 

different temperature requirements that are loaded together, 

considering time window and loading weight constraints, 

especially the loading volume related to the units of different 

frozen foods. Hsu and Chen [6] studied the optimization of 

vehicle fleet size and distribution scheduling for the 

codelivery of various food products in different temperature 

zones.  

Hu et al. [7] constructed a VRPSDP model with different 

freezer zone compartments for various temperature 

requirements, taking into account the characteristics of the 

multi-temperature co-distribution transport process and the 

time window constraints of client nodes. In 2017, Liang and 

Zou [8] established a cold-chain logistics vehicle path 

optimization model that minimizes the total distribution cost 

including cargo damages. To weight the temperature-related 

cost of cargo damage and refrigeration, the model uses the 

temperature setting of vehicles as a decision variable, and a 

suitable temperature within the cargo’s required temperature 

range is selected as the vehicle’s distribution temperature; 

these measures lead to the optimal total distribution cost. 

This study discusses the vehicle routing problem in urban 

cold-chain logistics. The aim is to minimize the distribution 

cost, including transportation, damage and refrigeration costs. 

We pay special attention to real-time outside temperature in 

the distribution process and consider both delivery and pick-

up requirements. An improved model for distribution path 

optimization is developed and solved using a genetic 

algorithm [9]. 

The remaining part of this paper is organized as follows. 

Section II describes studied problem. Section III shows the 

model formulation, and Section IV presents the solution 

method, which adopts a genetic algorithm for the improved 

model. Section V explains the comprehensive computational 

experiment conducted, to demonstrate the validity of the 

proposed model and the effectiveness of the algorithm. 

Section VI contains the conclusion and future works. 

 

   

An Optimization Model for Vehicle Routing in Urban 

Cold-Chain Logistics 

Wang Chaofan and Song Yu 

International Journal of Modeling and Optimization, Vol. 12, No. 3, August 2022

76DOI: 10.7763/IJMO.2022.V12.804

mailto:mjm20101@bene.fit.ac.jp
mailto:song@fit.ac.jp


  

II. PROBLEM DESCRIPTION 

This study considers an urban cold-chain with single 

distribution center and multiple vehicles delivering cargo to 

multiple client nodes simultaneously, as shown in Fig. 1. The 

client nodes have both delivery and pick-up requirements.  

Based on the characteristics of cold-chain logistics 

distribution, the distribution cost of the vehicles can be 

divided into three parts, namely, transportation cost, cargo 

damage cost, and refrigeration cost. The transportation cost 

depends on the transport cost per kilometer of each vehicle 

and its mileage. The cost of cargo damage includes two parts: 

(1) that caused by the accumulation of time during the 

distribution process, and (2) that caused during the loading 

and unloading when the vehicle door is opened and closed. 

The cost of refrigeration consists of two components: (1) that 

due to the difference between the outside and inside 

temperatures of the vehicle during delivery and (2) the cost 

of additional refrigeration consumed during loading and 

unloading at a client node when the door is opened [10]. 

The following assumptions are made for the proposed 

VRPSDP in urban cold-chain logistics. 

1) This paper studies problem with a single kind of cargo 

for distribution; 

2) Vehicle capacity is limited. 

3) Each client node is only serviced by one vehicle. 

4) Each vehicle can service multiple client nodes. 

5) Distribution is limited to intracity service so that the 

process produces minimal cargo damage cost. 

6) Cargo delivery to and pick-up from client nodes can be 

mixed. 

7) The vehicles depart from the distribution center and must 

return to it after completing their delivery tasks. 

8) Each client node may have simultaneous delivery and 

pick-up requirements. 

9) The locations of the distribution center and client nodes 

and the demands of the client nodes (including delivery 

and pick-up volumes) are given. 

10) The distances between the client nodes and the 

distribution center are known, and the service time of 

each client node is given. 

11) Cargo damage is uniformly distributed in the entire 

distribution process. 

Fig. 1. Example of vehicle routing problem. 

 

III. MODEL FORMULATION 

A. Notations 

In this paper, a mathematical model of cold-chain logistics 

that considers real-time outside temperature and 

simultaneous delivery and pick-up is established. The model 

obtains optimal vehicle paths, that is, those that minimize the 

total cost of transportation, cargo damage and refrigeration. 

The main parameters are follows: 

n: set of client nodes. 

|n|: number of elements in n. 

node 0: distribution center. 

K: set of vehicles. 

𝑎: transport cost per kilometer. 

𝑑𝑖𝑗: distance from client node i to j. 

𝑐: value of unit cargo. 

𝛽1 : cargo damage rate in unit time in the process of 

transportation. 

𝛽2: cargo damage rate during loading and unloading. 

𝑡𝑖𝑗: travel time of vehicle from client node i to j. 

𝑇𝑗: service time of vehicle at client node j. 

𝑞𝑗: delivery volume of client node j. 

𝑝𝑗: pick-up volume of client node j. 

𝑄: maximum load of vehicle. 

𝛼: degree of depreciation of vehicle. 

𝑊1: heat transmission coefficient of carrier. 

𝑆1: surface area of vehicle. 

𝛿: unit price of refrigerant. 

𝑡𝑘: time at which vehicle k completes distribution. 

𝑡k0: time at which vehicle k begins distribution. 

𝑊2: heat transmission coefficient of air. 

𝑆2: area where carrier door is open. 

 

Decision variables 

𝑥𝑖𝑗𝑘 = {
1, vehicle k drive from client node i to j,

0,        otherwise.                  
  

𝑦𝑖𝑘 : load volume of vehicle k at client node i after 

distribution. 

B. Transportation Cost 

The transportation cost of distribution is proportional to the 

distance traveled by the vehicle. It is expressed as follows: 

 

𝑪𝟏 = ∑ ∑ ∑ 𝒂𝒅𝒊𝒋𝒙𝒊𝒋𝒌

𝒌∈𝑲𝒋∈𝐧𝒊∈𝐧

. (1) 

 

C. Cargo Damage Cost 

In cold-chain logistics, the cost of cargo damage in the 

process of distribution is the loss of cargo quality caused by 

the accumulation of time and the changes in temperature. 

This study mainly considers two kinds of cargo damage. One 

is damage due to the increase in distribution time and real-

time external temperature fluctuations in the process of 

distribution. The other is damage that occurs during service 

at the customer point, caused by the opening and closing of d 

carrier door, which cause hot air to enter the carrier. During 

this process, the carrier temperature rises, and cargo is 

damaged. The cargo damage cost is calculated as follows: 

𝑪𝟐 = 𝒄 [𝜷𝟏 ∑ ∑ ∑ 𝒕𝒊𝒋𝒚𝒊𝒌

𝒌∈𝑲𝒋∈𝒏𝒊∈𝒏

+ 𝜷𝟐 ∑ ∑ 𝑻𝒋𝒚𝒋𝒌

𝒌∈𝑲𝒋∈𝒏

]. 

(2) 
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D. Refrigeration Cost 

The external temperature tends to vary considerably during 

the day and is not constant. Assume that the temperature 

function of one day change in temperature with time is 𝐻(𝑡), 

the difference between in temperature inside and outside the 

carrier is ∆𝐻(𝑡), the delivery temperature of the cargo is 𝐻0. 

Then, ∆𝐻(𝑡) = 𝐻(𝑡) − 𝐻0.  

Refrigeration cost mainly includes two aspects. Heat 

transfer is caused by the real-time difference between the 

temperatures inside and outside the carrier during distribution. 

Moreover, the heat exchange is caused by air circulation 

during loading and unloading at client nodes. The damage 

cost can be calculated based on the refrigerant consumption. 

The refrigeration cost during distribution is as follows: 

 

η1 = (1 + 𝛼)𝑊1𝑆1𝛿 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘 ∫ Δ𝐻(𝑡)𝑑𝑡.
𝑡𝑘

𝑡k0𝑘∈𝐾𝑗∈𝑛𝑖∈𝑛

 (3) 

 

The refrigeration cost during service time at client nodes is 

as follows: 

 
η2 = 𝜔𝑊2𝑆2𝛿 ∑ ∑ ∑ 𝑥𝑖𝑗𝑘𝑇𝑗Δ𝐻(𝑡)

𝑘∈𝐾𝑗∈𝑛𝑖∈𝑛

, (4) 

where ω  is related to the frequency of the opening and 

closing of the door, as specified in Table I. 

 
TABLE I: COEFFICIENT RELATED TO DOOR-OPENING FREQUENCY 

Level Frequency of door opening Coefficient ( ω ) 

1 Not open 0.25 

2 6 times or less 0.50 

3 7−12 times 0.75 

4 More than 12 times 1.00 

 

Then, the refrigeration cost is as follows: 

 𝐶3 = η1 + η2. (5) 

E. Model Formulation 

This paper aims to minimize the distribution cost, in 

consideration of the transportation cost, cargo damage cost 

and refrigeration cost involved in the distribution process. We 

focus on the real-time outside temperature in the distribution 

process. The improved VRPSDP model is formulated as 

follows: 

 

𝐦𝐢𝐧 𝑭(𝒙𝒊𝒋𝒌) = 𝑪𝟏 + 𝑪𝟐 + 𝑪𝟑 (6) 

s.t: 

∑ ∑ ∑ 𝑥𝑖𝑗𝑘 = 𝑛

𝑘∈𝐾𝑗∈𝑛𝑖∈𝑛

                 (7) 

 ∑ ∑ 𝑥𝑖𝑗𝑘 = 1,

𝑘∈𝐾

       ∀𝑗 ∈ 𝑛;  𝑖 ≠ 𝑗    

𝑖∈𝑛

 (8) 

  ∑ ∑ 𝑥𝑖𝑗𝑘 = 1,       ∀𝑖 ∈ 𝑛;  𝑖 ≠ 𝑗 

𝑘∈𝐾𝑗∈𝑛

    (9) 

∑ 𝑥0𝑖𝑘 = 1,           ∀𝑗 ∈ 𝑛       

𝑖∈𝑛

 (10) 

∑ 𝑥𝑗0𝑘 = 1,             ∀𝑖 ∈ 𝑛       

𝑗∈𝑛

 (11) 

 0 ≤ 𝑦𝑖𝑘 ≤ 𝑄,             ∀𝑖 ∈ 𝑛;  𝑘 ∈ 𝐾 (12) 

  𝑦0𝑘 ≤ 𝑄,                    ∀ 𝑘 ∈ 𝐾      (13) 

𝑦𝑗𝑘 = ∑ 𝑥𝑖𝑗𝑘(𝑦𝑖𝑘 − 𝑝𝑗 + 𝑞𝑗),

𝑖∈𝑛

 ∀𝑗 ∈ 𝑛;  𝑘

∈ 𝐾 

(14) 

      𝑥𝑖𝑗𝑘 ∈ {0,1}.              ∀𝑖, 𝑗 ∈ 𝑛;  𝑘 ∈ 𝐾  
(15) 

 
The objective function (6) is the minimization of the total 

distribution cost. Equations (7) – (15) are constraints. 

Constraint (7) ensures that all client nodes are served. 

Constraints (8) and (9) guarantee that only one delivery 

vehicle can arrive at and depart from each client node, 

respectively. Constraints (10) and (11) indicate that delivery 

vehicle k leaves a distribution center to start a delivery task 

and returns to the distribution center after finishing the task, 

respectively. Constraints (12) and (13) indicate that the cargo 

in any delivery vehicle does not exceed the vehicle capacity 

during delivery and at the distribution center, respectively. 

Finally, according to constraint (14), a vehicle’s current load 

volume is equal to tits load volume at the last client node 

minus the delivery volume plus pick-up volume.  

 

IV. THE GENETIC ALGORITHM FOR THE MODEL 

The improved VRPSDP model is an NP-hard problem, that 

is, no algorithm will exactly obtain the optimal solution. 

Therefore, we propose to use the genetic algorithm to solve 

the model. 

The genetic algorithm is an iterative search algorithm 

where a population of individuals of solutions is evolved from 

generation to generation toward the optimal solution [11]. We 

need to carefully design the chromosomes of the individuals 

so that each individual corresponds to a feasible solution. The 

crossover and mutation operations also have to be designed 

well. Fitness calculation is conducted in each generation, if 

the preset termination conditions are met, then the population 

is a solution to the genetic algorithm. Otherwise, the fitness 

calculation is repeated after selection, crossover and mutation 

until the termination conditions are satisfied. 

The flow of the designed genetic algorithm in this study is 

shown below. 

Step 1: initialize a population of individuals with a 

chromosome length of |n| and a population size of L. 

Step 2: insert the distribution center 0 into the 

chromosomes and calculate the individual chromosome 

fitness, and label the value of fitness. 

Step 3: select individuals with high fitness using the 

roulette wheel selection strategy thereby generating a new 

population. 

Step 4: select chromosomes for crossover operations with 

crossover probability. Two parental chromosomes cross 

genes to form a new chromosome, which then enters the new 

population. Chromosomes that do not undergo crossover 

operations enter the new population directly. 

Step 5: perform a chromosome mutation operation with 

mutation probability. Change the position of chromosome 

genes according to the corresponding probability to produce 

a new population. Chromosomes that do not undergo 

mutation directly enter the new population. 

Step 6: generate a new generation of populations. If the 

termination conditions are met, then the algorithm terminates. 

Otherwise, revert to step 2. 
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Each of these steps is described below. 

A. Encoding of Chromosomes 

The improved VRPSDP model is designed with a natural 

number coding approach to its chromosome coding. A 

permutation of natural numbers from 1 to |n| generates the 

base of a chromosome for an individual. Then we insert 

several 0s to complete the chromosome. For example, 

345216987 is a full permutation of natural numbers, and the 

number 0 is inserted into it; that is, the distribution center is 

inserted into the distribution sequence, thus constituting three 

distribution routes 345, 216 and 987. A sample of the 

chromosome for the genetic algorithm is shown in Fig. 2. 

 
3 4 5 2 1 6 9 8 7 0 

 

0 3 4 5 0 2 1 6 0 9 8 7 0 

Fig. 2 Example of chromosome 

 

B. Initialization 

The initial population is an |n|-L 2-dimensional matrix, 

where |n| is the number of client nodes and L is the preset 

population size. The initial population of L individuals is 

generated randomly. Each individual stands for one solution 

that satisfies the problem. The population size affects the 

convergence speed and solution diversity.  

C. Fitness Function 

Genetic algorithms use fitness to assess the merit of 

individuals during the search process. This is an important 

basis for the algorithm operation. In this study, the inverse of 

the objective function is used as the fitness function. The 

fitness function is as follows: 

 

𝐹𝑖𝑡(𝑥𝑖𝑗𝑘) =
1

𝐹(𝑥𝑖𝑗𝑘)
. 

(16) 

D. Selection Operation 

In the present study, the selection of parental individuals is 

based on the roulette rule. Individuals with high fitness are 

more likely to be selected as parents to produce a new 

population. The basic idea of the selection of genetic 

operators is that the probability of an individual to be selected 

is proportional to its fitness [12]. A certain percentage of the 

best solution in each iteration is retained to keep the best 

individuals of the current population in the next generation. 

This may improve the convergence of the genetic algorithm. 

E. Crossover Operation 

In this study, partial matching crossover is used to generate 

the crossover operator, but as some information is lost in the 

crossover process, the gene positions of the chromosomes 

need to be changed according to the corresponding 

probability, and a variation operator is generated [13]. 

Individual chromosomes are selected for reversal with a 

certain mutation probability to produce two mutated node 

genes, which are then are subjected to the reversal operation 

to form a new population.  

To illustrate, an example is shown in Fig. 3. The gene 

values at three randomly selected gene positions in parent1 

are first copied to the same gene positions in the child. Then 

parent2 genes with the same gene values are removed. Finally, 

the gene values at the remaining gene positions in parent2 are 

sequentially copied to the corresponding position in the child 

[14]. If a gene position already has a gene value, then that 

position is skipped, and the operation continues at next 

position. 

 
parent1 0 3 4 5 0 2 1 6 0 9 8 7 0 

parent2 0 8 6 9 0 1 7 4 0 2 3 5 0 

child 0 8 4 6 0 7 1 0 2 9 3 5 0 

Fig. 3. Example of crossover operation. 

 

F. Mutation Operation 

Some important genetic information may be lost in the 

crossover operation, and a moderate amount of mutation (a 

certain probability of changing the gene positions of the 

chromosomes) must be introduced. In this paper, a 

chromosomal individual is selected with a certain probability 

of mutation, and two mutated gene nodes are created on the 

gene string of the individual. An example of the mutation 

operation is shown in Fig. 4, where the boldface 

chromosomes are the genes being mutated. 

 
parent 0 3 4 5 0 2 1 6 0 9 8 7 0 

child 0 3 4 9 0 2 1 6 0 5 8 7 0 

Fig. 4. Example of mutation operation. 

 

V. EXPERIMENTAL ANALYSIS 

In order to verify the validity of the model and the 

effectiveness of the algorithm, we tested it through numerical 

experiments [15]. In the numerical example, the coordinates 

of the distribution center and the 100 individual client nodes, 

basic data about the delivery and pick-up volumes and the 

service times at the client nodes are generated randomly. Part 

of the data are shown in Table II. 

 
TABLE II: DATA OF CLIENT NODES 

Node 

No. 

Coordinates 

(X,Y) 

Delivery 

volume(unit) 

Pick-up 

volume(unit) 

Service 

time(min) 

0 (35,35) 0 0 0 

1 (45,49) 10 25 15 

2 (35,17) 7 15 20 

3 (55,45) 13 0 15 

4 (55,20) 19 35 17 

5 (15,20) 26 0 22 

6 (15,30) 3 24 16 

8 (20,50) 5 17 18 

9 (10,43) 9 0 20 

10 (55,60) 16 18 25 

… … … … … 

100 (45,20) 20 11 16 

 

Based on the preceding analysis of statistical data, the 

distribution center has sufficient vehicles. The vehicles are of 

the same type, and the main model parameters are specified 

in Table III. 

 
TABLE III: MAIN MODEL PARAMETERS 

𝑎 c β1 β2 𝛼 𝛿 

0.25 100 0.0015 0.025 0.08 0.2 
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We conducted many experiments to improve the parameter 

settings of the genetic algorithm, and the experimental results 

suggest that the parameter settings in Table IV are the best 

choice. In the selection operation, we retain 10% of the best 

solutions for the next iteration.  

TABLE IV: PARAMETER SETTING 

Population 

size 

Crossover 

rate 

Mutation 

rate 

Number of 

iterations 

50 0.9 0.1 1000 

 

The proposed model is compared with the original 

VRPSDP model. Let 𝐹0(𝑋)  and 𝐹(𝑋)  be the values of the 

objective functions of the original VRPSDP model and the 

improved VRPSDP model, respectively. Several experiments 

are performed for comparison. First, we solve the original 

VRPSDP model to obtain 𝑋∗ (the optimal vehicle route of 

solution) and 𝐹0(𝑋∗) (the optimal value). Then, we substitute 

𝑋∗ into the improved model to obtain 𝐹(𝑋∗) , which is the 

value of the objective function of the improved model. Next, 

we solve the improved model to obtain the optimal vehicle 

route of solution 𝑋′ and the optimal value 𝐹(𝑋′).  

Table V shows the difference between 𝐹(𝑋′) and 𝐹(𝑋∗). 

We can see that the improved model has a significant 

reduction in the average operating cost for the same operating 

route. Compare with to the original model, the improved 

VRPSDP model has an average cost reduction of nearly 1.6%. 

Therefore, the distribution cost can be reduced by considering 

the real-time external temperature of urban cold-chain 

logistics distribution. Therefore, the improved VRPSDP 

model is superior to the original one. Fig. 5 shows an 

examples of distribution routes, where the red star indicates 

the distribution center and the blue points are the client nodes. 

 
TABLE V: COMPARISON OF ORIGINAL AND IMPROVED VRPSDP 

Case No. 𝐹(𝑋′) 𝐹(𝑋∗) Difference Rate (%) 

1 3890 3977 −87 2.24 

2 3887 3951 −64 1.65 

3 3929 3976 −48 1.22 

4 3925 3920 4 −0.11 

5 3851 3927 −76 1.97 

6 3852 3909 −57 1.49 

7 3848 3994 −146 3.81 

8 3924 3951 −27 0.69 

9 3876 3933 −58 1.49 

10 3919 3982 −63 1.61 

Average 3890 3952 −62 1.60 

 

In addition, we conducted a number of experiments to 

demonstrate the effectiveness of the proposed genetic 

algorithm. For example, we increased the number of cities 

from 15 to 100 to demonstrate that the algorithm can solve 

small-scale problems as well as it can solve large-scale ones. 

In Table VI, the data for each case are the averages of 10 

experiments with an initial populations of 50 and 500 

iterations. As can be seen in the table, as the number of cities 

increases, the computing time increases moderately. Hence, 

the algorithm effectively solved large-scale problems. 

However, the number of iterations needed to obtain the 

results is close to the maximum iteration of 500, so we need 

to consider increasing the number of iterations. 

 

 
Fig. 5. Examples of distribution routes. 

 
TABLE VI: COMPARISON OF INCREASE OF CITIES 

Number of 

cities 

Improved model 

Iteration 
Total 

cost 

Computing 

time(s) 

15 122.4 595 27.9 

20 210.0 879 36.4 

25 291.3 1063 40.5 

30 436.3 1288 52.5 

50 468.0 2120 69.8 

100 490.9 4212 117.3 

 

For further improvement of the values of the objective 

function of the new model in large-scale problems, we 

repeated the experiment with an initial population of 50 and 

a fixed number of cities of 100. The results shown in Table 

VII. From the table we can clearly see that as the number of 

iterations increases, the number of iterations converges 

increasingly steadily for both the original model and the 

improved model. However, given a trade-off between the 

computational time and the objective functions, we select 100 

iterations as the final output. 

 
TABLE VII: COMPARISON OF INCREASE OF ITERATIONS 

Number of 

iterations 

Improved model 

Iteration 
Total 

cost 
Computing time(s) 

500 490.9 4212 117.3 

1000 975.7 4010 236.5 

1500 1463.8 3908 356.2 

  

VI. CONCLUSION 

This paper studied the VRPSDP model in urban cold-chain 

logistics. Based on the characteristics of urban cold-chain 

logistics systems, we analyzed the costs involved in the 

process of cold-chain logistics distribution. We paid special 

attention to the real-time outside temperature and established 

an improved VRPSDP model to minimize the comprehensive 

transportation costs. Since the model is an NP-hard problem, 

we designed a genetic algorithm to solve the improved model. 

Numerical experiments demonstrated that the improved 
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model is superior to the original model, and reduces the 

distribution costs and improves the distribution efficiency. 

Numerical results also show that the proposed genetic 

algorithm can effectively obtain the operation path with 

optimal cost for cold-chain logistics transport vehicles. 

However, there are some issues that need to be addressed 

in this paper. We did not examine the weight of each cost in 

the cold-chain logistics distribution process, and all costs 

were given the same weight. In addition, there is room for 

improvement regarding the convergence curve of the genetic 

algorithm. We can consider combining the exact algorithm to 

find the initial solution, instead of starting with a heuristic 

algorithm to obtain the initial solution, and then using the 

heuristic algorithm to solve it based on the initial solution 

obtained by the exact algorithm. 
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