
  

  

Abstract—The paper presents a set of deep learning 

algorithms for detecting vibration anomalies in bearings using 

multivariate time series on datasets provided by Case Western 

Reserve University. The study considers a problem of 

multiclassification of the condition of the bearings depending on 

the type of defect, but also on the degree of defect, considering 

only punctual defects in an incipient phase. Once the data sets 

are correctly labeled and the algorithms are trained on this data, 

they can accurately predict the type and the size of defect. The 

model with the best results in the set is RNN - CNN (Recurrent 

Neural Network with Convolutions) giving an accuracy greater 

than 97% in all (load) cases. 

 
Index Terms—DNN, CNN, RNN, LSTM, anomaly detection, 

fault diagnosis, deep anomaly detection, vibration analyses 

condition monitoring, Industry 4.0. 

 

I. INTRODUCTION 

Vibration analysis plays a critical role in the condition-

based maintenance of rotating equipment. The vibration 

signals can be interpreted to provide early indicators of 

developing problems. Variations in vibration characteristics 

over time are key indicators of the state of a machine’s 

mechanical health. 

Conditions that cause abnormal vibration, other than the 

normal signature of a machine vibration, could be imbalance, 

misaligned races, poor lubrication, loose parts, damage to the 

gear or damage to the rolling element bearing, all these 

generating specific signature in the vibration signal [1].  

The features in the time domain, extracted from vibration 

signal for anomaly detection are root-mean-square (RMS), 

peak, kurtosis, crest factor, impulse factor, shape factor or 

clearance factor of vibration signals [2] which are good 

indicators for incipient faults, but as the defects increases and 

spreads along the surface, these indicators values return to the 

normal level, because the vibration signal becomes random, 

the imperfection simply becomes slightly smoother and the 

amplitude can reduce over time. Instead, in the frequency 

domain, as the defect becomes severe, features such as energy 

and RMS of the spectral difference (Rdo) indicates a fault that 

exists [3].  

Envelope analysis can separate the vibration of a defective 

bearing from the vibration generated by the other machine 

elements, by progressively filtering out unwanted parts of the 

vibration spectrum until the signal of a bearing defect can 

clearly be seen. [4].  

 
Manuscript received March 26, 2021; revised July 23, 2022.

 
The anthers  are with University “Politehnica” of Bucharest,

 

Rumania

 

(e-

mail: george.deac@impromedia.ro, crina.deac@impromedia.ro,

 
radu.parpala@gmail.com,laur.popa79@gmail.com,popescuadrian_c@yaho

o.com).

 

Envelope analysis demodulates the vibration signals at the 

resonance that the impulse excited, extracts out the periodic 

excitation of the resonance and the frequency extracted is the 

frequency of the impulse, which is the characteristic bearing 

defect frequency, by this, localizing the component of the 

defect in the bearing. The purpose is not only localizing the 

incipient defects but maximize the useful service life of 

bearings by delaying their replacement after detecting an 

incipient fatigue defect (spall or wear). This means to monitor 

the defect size.  

There are many methods for this [5]. One of the methods 

is vibrational jerk method, by differentiating the acceleration 

data provided by the accelerometer. In this way the entry/exit 

points are better detectable. The time span between these two 

events is correlated with the spall size.  

This approach is recently developed using a Savitzky-

Golay differentiator (SGD) that transform the acceleration 

response to a jerk response having a better energy balanced 

excitation for the entry into the spall / exit from the spall 

events, when crossing the defect, making them better 

recognizable in comparison to raw acceleration responses [6]. 

The fault size on the jerk response is computed by the time 

difference between the entry and exit peaks after appropriate 

scaling on the bearing geometry, the sampling frequency, and 

the rotational speed. 

 Furthermore, for multiple and severe defects, a new 

technique based on monitoring the bearing unbalance is used 

[6].  

  Vibration measurement is done with sensors that need to 

be mounted properly, the most reliable sensor for vibration 

monitoring is usually the accelerometer, because it has a wide 

frequency range, a wide dynamic range, also measuring the 

combination vibration/temperature. The signal processing 

techniques applied to accelerometer measurements, like 

acceleration integrated to velocity allows low-frequency 

measurement, while high frequency acceleration signals 

processed by using acceleration enveloping technique is 

useful for determining repetitive impact type vibrations 

generated by rolling bearing defects, lack of lubrication or 

gear faults [1]. 

Deep learning has demonstrated a lot of success in learning 

feature representations from different types of raw data for 

anomaly detection, showing tremendous capabilities in 

learning expressive representations of complex data such as 

temporal data and high-dimensional data, depending only on 

the temoral coherence of the raw times series.  

Utilizing labeled data to learn expressive representations of 

normality/abnormality is crucial for accurate anomaly 
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detection. The proposed models are supervised learning 

models that recognizes the normal and fault data having a 

good accuracy in classification, learning directly from the raw 

time series data supplied by the accelerometers. The only 

condition is to have correct labeled examples. It should be 

noted that in practice limited anomaly examples may come 

from different anomaly classes, being not labeled in the 

supervised dataset, this scenario is fundamentally different 

from the general learning, in which the limited examples are 

class-specific and assumed to share the same class structure 

[2]. The trained model would assign one of the assumed 

classes for that anomaly eventually. In our following tests, all 

wrong predictions have been assigned to different classes 

associated with defects but not to the class representing the 

normal behavior, the models being able to discern the normal 

behavior quite well (99% accuracy).  

The presented method is for point anomalies - bearing 

defects in incipient phases, and cannot be used for group 

anomalies, also focuses on detecting anomalies from single 

data sources, not from multiple heterogeneous data sources.  

A previous study [9] validated the CNN and DNN models 

to classify and predict normal and defect status on the same 

dataset - Case Western Reserve University- considered in the 

current study, containing several types of defect but without 

considering the size of the defect and used univariate 

timeseries. C. Lu et al. propose a hierarchical convolutional 

network on the same open-source dataset, using a one-

dimensional Multi-Scale Deep Convolutional Neural 

Network model and obtaining 92,60% accuracy with 90% 

training sample percentage [10], while [11] presents a 

convolutional neural network-based approach using data 

from multiple sensors getting 99,40% with 70% training 

sample percentage. [12] obtained an accuracy of 94,75% on 

the same CWRU dataset modeling a Deep RNN.  

 

II. DATA PREPARATION 

We will validate deep learning neural network-based 

techniques for diagnosing failures using multivariate time 

series obtained from datasets provided by Case Western 

Reserve University (CWR) [8] The bearing dataset was 

acquired on a test stand which consists of a 2hp motor, a 

torque transducer, dynamometer, and control electronics. The 

test bearings support the motor shaft. Single point faults were 

introduced using electro-discharge machining to the test 

bearing (B1) having fault diameters of 0.007” and 0.021” at 

two different rotations: 1797 rpm, motor load (HP) 0 and 

1772 rpm, motor load (HP) 1. [9] 

In the outer raceway the faults are placed relative to the 

load zone of the bearing to affect the vibration response of the 

system, respectively in the drive end bearing (B1), in the load 

zone (6 o’clock), orthogonal to the load zone (at 3 o’clock) 

and opposite (at 12 o’clock) to the load zone, also punctual 

faults of 0.007” and 0.021” were placed in the B1, in the inner 

raceway and in the rolls.  

The fan end bearing B2 is considered normal, without 

defect in our study, but the proposed model could very well 

assume defects in B2, this implying adding more labels – 

indicatives of defects in the fan end (B2) - to the samples that 

will be formed. 

Data was acquired at a sampling rate of 12,000 

samples/second for both bearings, by using accelerometers 

attached to the motor housing with magnetic bases in the 

position of 12 o’clock at both, the drive end (B1) and fan end 

(B2), for each rotational speed. Datasets, comprising 

accelerations in the drive end (B1) and fan end (B2), where 

separately considered for two fault diameters 0.007” and 

0.021”, in two different load cases- motor Load 0 hp and 

motor Load 1 hp, for 5 types of faults:  in the inner race, in 

the ball and 3 faults types in the outer race: centered, 

orthogonal, opposite and also two dataset for the normal 

behavior at each load, resulting 11 classes in the end. This 

means the study will be done for each specific load (Load 0 

and Load 1) using 11 datasets each one (11 timeseries), a total 

of 22 datasets provided by CWR. Next, the time series will 

be formed segmented in samples to feed the proposed models.  

A total of 1464427 data points included in all those 11 files 

will make up the buffer size of our dataset in the study for 

Load 0. 

At Load 0, the rotational speed of the engine is 1797 

rotations per minute (RPM) and as the sampling rate is 

12000/s, it means 12000 data points recorded in a second and 

30 Rot/s with 400 data points contained in a rotation period. 

At Load 1, the rotational speed is 1772 rotations per minute 

(RPM) at the same sampling rate, meaning 29.53Rot/s, so for 

both cases the rotational speed will be approximated at 30 per 

second.  When local defects occur on the outer/inner raceway 

and rolling element (cracks, spalls), the interaction between 

the raceway and rolling element results in time-varying and 

non-uniform discontinuous contact forces that generate a 

specific signature in the vibration signal.  

It can be observed the signature of the vibration specific to 

each type of defect and size and how the defect in one bearing 

induces vibrations in the second bearing without defect 

through the shaft (Fig. 1 and Fig. 2) 

 

 
Fig. 1. Drive end bearing B1 with outer race centered defect, 0.007”, Fan 

end bearing B2 normal, at Load 0. 

 

 
Fig. 2. Fan end bearing B2 with outer race centered defect, 0.007”,drive 

End bearing B1 normal, Load 0. 
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Vibrational signal has an amplitude of maximum 0.3 for 

the normal behavior in both B1 and B2 and increases in 

amplitude in B1 when the defect occurs in it, becoming 

greater than 2.  At the same time, the vibration in B2 increases 

in amplitude until 0.5-0.8 

One can be seen that the same type of defect at the same 

size of 0.007” in the outer race, center to the load zone, when 

it occurs in B2 has another signature and frequency than in 

B1. On the other hand, as the size of the defect increases in 

B1, at 0.021”, the signature of the vibration under the same 

defect type is changing (Fig. 2).  

The defect in the role at 0.007” size diameter was the most 

difficult to be learned by the models, maybe because the 

amplitude varies between the normal limits, while at 0.021” 

it reaches more than 1. 

 

III.  DEFINING, TRAINING AND TESTING MODELS 

For each load we tried to define and train several models. 

For some models, a change in structure, a larger number of 

layers, or a larger number of training epochs was required, 

when switching from Load 0 to Load 1, to obtain comparable 

results, but the best models worked the same for both cases. 

The first two models that were tried for both load cases 

were those from [9], a CNN and a DNN model, but this time 

receiving a separate input type. Then another 4 models had 

been chosen and presented in the following. The metrics for 

evaluating all the models are categorical accuracy, loss and 

the score F1. 

A. Model CNN – Convolutional Neural Network 

The CNN network composed from two sequences of two 

convolutional 1D layers with 12 filters, and kernel size of 5, 

separated by a max-pooling layer and finalized with a global 

average pooling layer and a dense layer of 11 units for the 

output, received a bidimensional input this time. The 

activation function in the layers is the rectified linear unit 

(ReLU) and in the final layer it is the Softmax. 

At Load 0, the model has been trained for 700 epochs, with 

a best learning rate for start of 2e-4, but at Load 1 the model 

needed 1000 epochs to get the plateau and accuracy to start 

saturating, and a best learning rate of 1e-4 was set. 

The accuracy on the test dataset was 94,10% with a score 

F1 = 0.96 at Load 0, respectively 92,14% with a score F1 = 

0.94 at Load 1. 

One notice that defect in the roller was the least detected 

defect by the CNN model, al Load 1 only in percent of 57% 

(Recall = 0.57 for Label 5 - defect in the roller 0.007”) and 

from total predicted Label 10:defect in the roller 0.021” – 

only 62% was true (Precision =0.62), then Label 4 (defect in 

the outer race opposite 0.007”) was correct detected in 

percent of 75%, the rest are well classified and the general 

result could be considered very good. 

Confusion matrix indicates the same, column 10, indicates 

the total number of samples classified as Label 10, it is the 

label more week detected by CNN, only 169 are corrected 

identified, 26 are actually Label 4, 73 are actually Label 5 and 

5 samples are belonging to Label 9. 

B. Model DNN – Deep Neural Network 

The second model, DNN network, composed from 5 

stacked layers in Load0 case, received a concatenate input 

like tensors B1+B2 of shape 200 (data points).   

After only 500 epochs the training model obtained 100% 

categorical accuracy on the training dataset, 92% accuracy on 

validation dataset and 89.36% on test dataset at Load 0, 

keeping the same worst detection for Label 5 defect in the 

roller 0.007” (Recall = 0.48), followed by a poorer detection 

for Label 7 (defect in the outer race centered 0.021”) with a 

Recall of 0.73, the rest of the labels being well detected 

(Recall > 0.84).  

The same architecture at Load 1 did not give the same good 

results. Even increasing the number of layers and the number 

of units from 100 to 400 in two layers, the model did not 

improve too much, the categorical accuracy got saturated 

after 600 epochs becoming 100% on the training dataset and 

the result on the validation dataset was only 80,68%, while 

on the test dataset got 78,76%.  

DNN detected worst on data at Load 1, the defect in the 

roller 0.007” Label 5 was detected only in percent of 26% 

(Recall 0.26), then the defect in the roller 0.021” Label 10 in 

percent of 36% and Label 9 - defect in the outer race opposite 

in proportion of 46%. At Load 0, excepting Label 5 (detected 

48%), all other classes were well detected. 

C. Model RNN – Recurrent Neural Network 

The third model is RNN which is a neural network which 

uses recurrent layers. This sequentially processes sequence of 

inputs, sequences of quarts of rotations. We build an RNN 

that contains four recurrent layers and a final dense layer 

which will serve as the output for those 11 classes. The model 

will be fed with batches of sequences and it will output a 

batch of forecasts.  

The full input shape when RNN is used is three-

dimensional: the first dimension is the batch size (set in our 

study to 20), the second is the time steps or the number of the 

features (we have a window size of 100 points in time which 

are features, meaning a quart of rotation) and the third is the 

dimensionality of the inputs at each time step (in our case, 

dimensionality is 2, because we have a bidimensional tensor 

with data from B1 and B2) 

At Load 0, the model was trained over 500 epochs after 

choosing a best learning rate for start of 4e-6, until the loss 

and the categorical accuracy got the plateau, the categorical 

accuracy achieved on the training set was 99.91% and on the 

validation dataset 93,96%.  

Testing on the test dataset, the categorical accuracy got 

90.82% still smaller than CNN which remains the best model 

until this phase. At Load 1, in the same configuration of the 

model, it needed 1000 epochs for training which last more 

than 4 hours until the saturation of the metrics. The values 

received for the categorical accuracy were 99,89% on the 

training dataset and 89,98% on the validation dataset. When 

tested on test dataset it was obtained less than at Load 0, only 

89,12% 

This model obtained the worst detection in Label 5 in the 

Load 1 case, the precision is almost 0.05, this meaning from 

the total predictions for Label 5 only 0,5% was true and from 

the confusion matrix it is seen that this percent represents 

exactly one sample that was correct identified for this class. 

The rest of the labels were almost entirely detected, this giving 

the score still higher to the model. Next, we will try to improve 

this model by adding some convolutions and see if they will 

help better in the learning process. 

International Journal of Modeling and Optimization, Vol. 12, No. 2, May 2022

63



  

D. Model RNNCNN – Recurrent Neural Network with 

Convolutions 

We have constructed an RNNCNN model by alternating 

two sequences of two recurrent layers followed by two 

convolutions 1D, the first two convolutions have a max-

pooling layer of 3 (reducing three times the quantity of the 

parameters) and the next two convolutions are followed by a 

global average pooling layer, then the last layer of the model 

which is a Dense of 11 units for predicting the 11 classes.  

We kept 12 filters with a kernel of 5 for each convolution 

and changed the number of memory-cells from 100 to 50, 

because 100 cells overfitted the model. The results obtained 

were remarkable. 

After selecting the best start learning rate (ex. 1e-5 for 

Load 1and 7e-5 for Load 0), the model was trained over 1000 

epochs in both load cases.  

A total accuracy of 99.75% was obtained on training 

dataset and 98,40% on the validation dataset at Load 0, and a 

total accuracy of 100% on training dataset and 96,62% on the 

validation dataset at Load 1.  

When evaluating on test dataset, a very well accuracy of 

98,54% was achieved at Load 0, respectively 97,33% at Load 

1, with this result surpassing all other tried models. 

The recognition of the defect in the roller 0.007” Label 5 

has been improved, getting a Recall of 87% at Load 1 and 99% 

at Load 0.  

LSTM neural networks will be further tested to see if more 

than 97% total accuracy can be achieved. LSTM learns better 

long-temp temporal dependencies than RNN which have 

feedback loops in the recurrent layer to maintain the 

information in the cell memory over time. LSTM network is 

an RNN type that stores information in the memory cell for 

many, many timesteps using special units. The number of 

units is the size (length) of the internal state vector.  

Each unit can be seen as a standard LSTM unit, having a 

cell and three gates, input gate, output gate and forget gate, 

which regulate the flow of information into and out of the cell, 

controlling when information enters the memory, when it’s 

output, and when it’s forgotten. In this way data from an 

earlier window can have a great impact on the overall 

projection, than RNNs. 

A sequential model which is a linear stack of layers is used, 

two LSTM layers, one containing 20 units and another one 

with 10 units, followed by a Dense layer with 100 units and 

the output layer of 11 units. A greater number of units did not 

help the training, overfitted the model, even when tried to add 

a dropout layer after each LSTM layer to avoid overfitting.  

After choosing the best learning rate for start, 1e-4 for Load 

1 datasets and 4e-5 for Load 0, model needed more than 1000 

epochs to fit, and more than 4 hours to train and the accuracy 

obtained was 95,6% on the training dataset, 87,30% on the 

validation at Load 0, and only 82% on the training dataset and 

71,69% on the validation dataset at Load 1. On evaluation, 

the total accuracy obtained on test dataset was 79% at Load 0 

and 65,52% at Load 1. 

The model did not detect at all the defect in the roller at 

0.007” at every Load, but it seems once the defect becomes 

bigger it could be detected by all the models (Recall = 0.84 

for Label 10 at Load 1 and 0.90 at Load 0, the percent at 

detection being very well at 0.021”).  Also, defect detection 

in the outer race, centered and opposite to the load zone and 

inner race were poor at Load 1 (Label 4,6 and 7). 

The next tests with LSTM will consist of adding 

convolutions to see if the learning process could be improved. 

E. Model LSTMCNN – Long Short-Term Memory with 

Convolutions 

The sixth’s model added convolutions to LSTM layers and 

alternated sequence of LSTM and 1D convolution layers 

followed by a global average pooling and a dense layer for 

the output. 

1300 epochs were necessary to train the model until the 

accuracy and loss got the plateau and accuracy touched 95,23% 

on training dataset and 90,63% on validation dataset at Load 

0, respectively 89,58% and 84,02% at Load 1 having a start 

learning rate of 5e-5. The convolutions increased 

significantly the score F1 of LSTM from 0.68 to 0.85 in Load 

1 case. 

 

 
Fig. 3. Loss variation during 1300 epochs over training and validation 

dataset, load 0, LSTMCNN model. 

 

The convolutions enhanced the detection in Labels 5,6 and 

7 and, at evaluation on dataset the accuracy obtained was 

87,35% at Load 0 and 84,18% at Load 1. 

F. Models Summary Score 

 
TABLE I: MODELS SUMMARY 

Model Total  

Accuracy  

on test dataset 

Load 0 

F1 

on test 

dataset 

Load 0 

Total 

Accuracy  

on test dataset 

Load 1 

F1 

on test 

dataset 

Load 1 

1. CNN 94% 0.96 92% 0.94 

2. DNN 89% 0.93 79% 0.82 

3. RNN 90% 0.94 89% 0.91 

4. RNNCNN 98,50% 0.99 97,35% 0.98 

5. LSTM 79% 0.85 66% 0.68 

6. LSTMCNN 86,61% 0.91 82.29% 0.85 

 

Table I presents a summary of the scores for each of the 6 

models in the table. The best models are RNNCNN and CNN. 

A function in python is written (4) to do a weighted average 

elementwise between the models’ predictions for each class 

to see if the score could be improved. The function takes as 

argument an array containing the best models and the test 

dataset. For Load 0, the mediation model obtained the 

maximum accuracy of 97,94% and a score F1=0,987 on two 

models: CNN and RNNCNN, which nod exceeded 

RNNCNN, at Load 1 the mediation slightly enhanced the 

accuracy to 98,19% (Table II). 
 

TABLE II: BEST MODELS SUMMARY 

Best Model Accuracy  

test dataset 

Load 0 

F1 

test 

dataset 

Load 0 

Accuracy  

test dataset 

Load 1 

F1 

test 

dataset 

Load 1 

RNNCNN 98,50% 0.990 97,35% 0.980 
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Average Model 

(model1, model4) 

97,94% 0.987 98,19% 0.987 

IV.   CONCLUSION 

We succeed to obtained models that detected very well 5 

types of defects at two size diameters, having a labeled 

bidimensional dataset - a multivariate time series (B1, B2)- 

containing 11 Labels and defects only in B1, B2 being normal. 

Also, these models detected very well the normal behavior 

(B1 normal, B2 normal). Further tests were done on 

multivariate timeseries (B1, B2) with B1 normal and B2 

containing defects, on the 6 models. The normal behavior in 

B1 was not recognized in this case, because of the defect in 

B2 and the vibration influence in B1. This means B2 (fan end 

bearing) has a different signature in vibration on diameters 

sizes 0.007” and 0.021”, influences B1 normal and it is 

required that a separate model to be trained for defects only 

in B2 or another approach, to extend the labeling in the 

models proposed, with defects in B2. On the other hand, in 

the bearings there are many diameters’ defects sizes that 

should be labeled, and a better approach would be to train 

models that are able to detect “defect intervals” or classes of 

defects. Many industrial partners maybe are not interested to 

know exactly the fault size but an interval of the defect size 

or at least one-two-three categories for each defect type:  

incipient phase, medium, advanced. It is interesting to see if 

neural network models could identify common features in 

such a categorization. 
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