
 

  

 

Abstract—In this paper, an improved particle swarm 

optimization (PSO) with multiple subpopulations is developed 

for PID control system designs.  The original single population 

needs to be divided into several subpopulations, and each 

subpopulation then tackles a corresponding performance index 

of the system.  Under this proposed structure, several PID 

controllers can be simultaneously designed to meet different 

performance indexes when the algorithm is executed only one 

time.  It is a great improvement because the general PSO 

algorithm with a single population can only deal with one 

performance index.  To demonstrate the feasibility of the 

proposed scheme, a complicated chemical nonlinear process 

called the continuously stirred tank reactor (CSTR) is 

illustrated.  Three different kinds of control operations are 

simulated including the step response control, set-point tracking 

control, and unstable equilibrium point control.  For each 

control case five different performance indexes are assigned to 

guide the PID controller design combined with the nonlinear 

CSTR system.  Simulation results will sufficiently confirm the 

superiority of the proposed algorithm. 

 
Index Terms—Multi-strategy particle swarm optimization, 

subpopulations, PID control, continuously stirred tank reactor 

(CSTR); nonlinear systems.   

 

I. INTRODUCTION 

Particle swarm optimization (PSO) was proposed by 

Kennedy and Eberhart in 1995 and has been proven to be an 

effective and simple algorithm for solving engineering 

optimization problems.  This algorithm consists of two basic 

adjusting mechanisms to update the related design 

parameters for achieving the optimization, i.e., the velocity 

and position updating formulas.  The initial idea is motivated 

from the social behavior of fish and bird swarms.  Over recent 

two decades, it has been widely applied in a variety of 

engineering fields and has successively solved many 

optimization problems because of the excellent searching 

capacity, for examples, the signal processing [2][3], power 

system optimization design [4]-[6], controller design 

problem [7][8], job shop scheduling [9][10], and other 

engineering application researches [11]-[16].     
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In recent years, a multi-population or multi-swarm 

architecture for meta-heuristic algorithms were successively 

developed and discussed [17]-[23].  In the proposed 

techniques, the original single population used in the 

algorithm is replaced by multiple ones in order to prompt the 

algorithm searching capacity or to tackle some particular 

problems.  In [17], the authors developed a multi-population 

electromagnetic algorithm to track the dynamic changes.  

Each sub-population takes charge in exploring or exploiting 

the search space.  In [21], a variation of fly optimization 

algorithm (FOA) was presented and named multi-swarm 

FOA to significantly improve the performance. By 

examining some benchmark functions, simulation results 

show that the proposed method has an effective improvement 

in its performance over original FOA.  Furthermore, in our 

previous work a modified PSO algorithm has been proposed 

for solving multimodal function optimization problems [22].  

The original population is also divided into several 

subpopulations and the best particle in each subpopulation is 

enrolled and then utilized in the modified velocity updating 

formulas.  The proposed scheme has successfully solved the 

multimodal function optimization.   

Another topic of this paper is about the proportional-

integral-derivative (PID) control system design.  It is well 

known that PID controller has been used for a long time in 

most of practical industries because of its simplification in 

architecture and mature theory analysis.  This kind of 

controller structure is still popular and accepted even though 

a large of new control techniques have successively proposed.  

As shown in its name, the PID controller has three control 

behaviors including the proportion, integration, 

differentiation on the system error corresponding to three 

control gains: proportional gain pK , integral gain iK , and 

derivative gain dK , respectively.  The PID controller design 

problem lies in how to properly and reasonably design these 

gains in order for meeting certain control specification and 

requirement.  Recently, the related studies on the PID control 

system have been massively reported and discussed by means 

of different design strategies [24]-[30].  In [26], a new PID 

controller design method was proposed based on the direct 

synthesis (DS) approach of controller design in frequency 

domain.  The PID controller parameters are derived through 

frequency response matching with the DS controller.  An 

interval type-2 fuzzy PID controller was developed and 

applied in controlling an inverted pendulum on a cart system 

with an uncertain model.  Simulation and practical results 

show that the proposed method has a better control 

performance over the type-1 fuzzy PID controller [27].   

In this paper, a multi-strategy PSO algorithm with multiple 

subpopulations is employed to design several PID controllers 

in accordance with several control performance indexes.  In 
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the proposed manner, the number of subpopulations is equal 

to the number of the PID controllers which will be designed.  

Each subpopulation is to tackle a defined performance index 

in order to obtain a corresponding PID controller.  The 

following five well-known integral performance indexes are 

considered including the integral of absolute error (IAE), the 

integral of squared error (ISE), the integral of time multiplied 

by absolute error (ITAE), the integral of time multiplied by 

squared error (ITSE), and the integral of square of time 

multiplied by error (ISTE), respectively.  Thus, after 

executing the proposed algorithm one time there can 

simultaneously derive several PID controller outcomes, not 

only a PID controller, for satisfying corresponding 

performance indexes.  It is rather different from the general 

PSO algorithm with a single population which was applied 

into the PID control system design.  On the other hand, the 

controlled plant considered in this study is the continuously 

stirred tank reactor (CSTR) that is a highly nonlinear process 

system and always occurs in the actual chemical industry.  

The rest of this paper is summarized in the following.  In 

Section II, an improved PSO algorithm with multiple control 

strategies is firstly introduced.  Section III simply describes 

the structure of PID controller and the controlled plant of the 

CSTR.  Design steps for PID controller design in the CSTR 

system are given based on the proposed PSO algorithm in 

Section IV.  In Section V, three different kinds of control 

cases are simulated and many simulation results are also 

demonstrated including the designed PID controllers and 

their convergence trajectories.  Finally, a simple conclusion 

and future work is addressed in Section VI.  

 

II. AN IMPROVED PSO ALGORITHM WITH MULTIPLE 

CONTROL STRATEGIES 

In the general PSO, the algorithm begins with generating 

a single population which consists of many particles.  These 

initial particles are randomly chosen from certain interval 

defined previously.  Each of them represents a possible 

candidate solution for the optimized problem.  Some 

important information during the evolution needs to be 

recorded; that is, the individual best for each particle and the 

global best for the whole population.  The individual best 

denoted by pbest is the best one for each particle until the 

present iteration, and the global best denoted by gbest refers 

to the best one for all particles in the population.  

Traditionally, these two particle information significantly 

guides the updating direction of all particles in the next 

iteration over the searching space.  To evaluate the particle’s 

performance, it is necessary to define a proper cost function 

for the designed problem.  In general, a so-called better 

particle means its cost function evaluated is smaller in 

solving the minimization problem.   

In order to formulate the PSO algorithm, let the vector 

],,,[ 21 n =  be the representation of a particle where 

j  is the designed parameter of the optimization problem for 

nj ,,2,1 = , and n is the number of designed parameters.  

Many such particles further form a population that will be 

evolved by certain mechanisms.  In the general PSO, there 

are two main updating formulas to guide the particle’s 

moving, i.e., the velocity updating formula and position 

updating formula given by Eqs. (1) and (2)  

 

))()(()()1( 11 kkpbestrckvwkv ijijijij −+=+  

))()((22 kkgbestrc ijj −+ , (1) 

)1()()1( ++=+ kvkk ijijij  ,                                       (2) 

 

where ij , ijpbest  , and jgbest  represent the jth position 

components of the ith particle, the ith individual best particle, 

and the global best particle, respectively, ijv  is the jth 

velocity component of the ith particle, all for Ni ,,2,1 =  

and nj ,,2,1 = , and N is the number of particles 

(population size), w is the inertia weight for balancing the 

global and local search, 1c  and 2c  are two positive constants 

assigned by the designer, 1r  and 2r  are two random numbers 

uniformly chosen from the interval [0, 1].  In the traditional 

fashion, the PSO utilizes these two formulas to achieve the 

optimization.   

Another improved version of the PSO algorithm was 

recently developed for solving the multimodal function 

minimization problem in our previous work [22].  This kind 

of multimodal function often consists of several optima 

which may be the global and local solutions.  By using the 

general PSO, however, it cannot find out all of optima 

synchronously because the algorithm contains only one 

global best particle and it can catch one optimum at best.  As 

a result, the general PSO with a single population is not 

applicable to solving such a multimodal function 

optimization problem.  In the modified version, a single 

initial population used in the algorithm is partitioned into 

several subpopulations, and the best particle inside each 

subpopulation needs to be recorded instead of the global best 

particle.  Subsequently, all particles included in the same 

subpopulation are moved and adjusted according to this best 

particle information.  The number of best particles is equal to 

the number of subpopulations.  It means that the proposed 

algorithm contains several best particles to catch different 

optimums separately and synchronously.  Under this manner, 

the global best particle jgbest  in Eq. (1) is replaced by the 

best particle of each subpopulation, and the relationship 

among subpopulations is fully independent on one another.     

This paper will present a new controller design method 

with multiple control strategies based on the developed 

algorithm as mentioned above.  Fig. 1 displays the diagram 

of the proposed method where N denotes the population size; 

that is, the number of particles in the original single 

population and M is the number of subpopulations assigned.  

Under this architecture, each subpopulation contains MN  

particles and has an individual best particle denoted by the 

red.  Each best particle only guides the particles that are in 

the same subpopulation.  Moreover, each subpopulation is to 

deal with one corresponding control strategy, and therefore 

the proposed scheme can solve for M control strategies to 

derive M design outcomes simultaneously when the 

algorithm is executed one time.  This proposed scheme is 

superior to the general one because of having M design 

outcomes, not only one outcome.  It is noticed again in the 

proposed method that jgbest  used in the velocity updating 
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formulas of Eq. (1) is the best particle of each subpopulation, 

not the global best particle, and all of particles within the 

same subpopulation are guided according to this particle.     

 

single population 

with N particles

1st 

subpopulation  

2nd 

subpopulation  

Mth 

subpopulation  

best particle

best particle best particle

control strategy 1 control strategy 2 control strategy M

design outcome 2design outcome 1 design outcome M

 
Fig. 1.  The diagram of the proposed method with multiple control 

strategies. 
 

III. PID CONTROLLER AND THE CONTROLLED PLANT OF 

CSTR 

In the PID controller, there are three designed control 

parameters or gains including the proportional gain pK , 

integral gain iK  , and derivative gain dK .  The key of 

designing PID controller lies in how to give the right values 

for them to meet certain control specifications.  The original 

PID control law can be expressed by  

( ) ( ) ( ) ( )











++=  te

dt

d
Tde

T
teKtu d

t

i

p

0

1
 ,             (3) 

where u is the control input to the controlled plant, e is the 

error signal between the desired output and actual plant 

output, pK  is the proportional gain, iT  is the integral time 

constant, and dT  is the derivative time constant.  In addition, 

Eq. (3) can be further rewritten as  

( ) ( ) ( ) ( )te
dt

d
KdeKteKtu d

t

ip ++= 
0

 ,               (4) 

where ipi TKK =  represents the integral gain and 

dpd TKK =  is the derivative gain.  For convenience, let the 

gain vector be  321 ,,  =  dip KKK   ,,=  for the use of 

the proposed PSO algorithm.  In the viewpoint of the PSO, 

this gain vector represents the particle that is also a candidate 

solution of the system design.   

 The controlled plant considered in this study is the 

continuously stirred tank reactor (CSTR).  It is a highly 

nonlinear process system and often occurs in the practical 

chemical industry.  Such a CSTR system exhibits several 

nonlinear features such as having multiple equilibriums and 

system dynamics significantly depending on the parameters.  

Consequently, it is rather difficult and needs more efforts 

over the general system when the CSTR is controlled.  The 

dynamical equation of the CSTR system can be described by 

[24] 

)
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2
222
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1xy = ,                              (5c) 

where 1x  and 2x  are the dimensionless reactant 

concentration and reactor temperature, respectively, the 

control input u is the dimensionless cooling jacket 

temperature and is supplied by the PID controller, y 

represents the system output.  System parameters contained 

in the CSTR are aD ,  , B, and   which corresponds to the 

Damökhler number, activated energy, heat of reaction, and 

heat transfer coefficient, respectively, and their nominal 

values are given by 072.0=aD , 20= , 8=B  and 

3.0= .  Under these given parameters, the open-loop 

CSTR system, i.e., let 0=u , consists of three equilibrium 

points: sxx )886.0,144.0(),( 21 = , =),( 21 xx

un)74.2,445.0( , and sxx )705.4,765.0(),( 21 =  where the 

subscript s and un stand for the stable and unstable points, 

respectively.  Fig. 2 clearly displays the phase portraits of 

states 1x  and 2x  from various initial values converging to 

two stable equilibrium points and diverging from the unstable 

one [24].  It is a challenging control problem when the system 

state is regulated from the stable point to the unstable point.    

 
Fig. 2.  Phase portraits of states 

1x  and 
2x  from various initial values 

when 0=u . 

 

IV.  PID CONTROLLER DESIGN STEPS USING THE PROPOSED 

METHOD FOR THE CSTR 

In this section, the design steps of PID controller are 

clearly demonstrated based on the improved PSO algorithm 
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for the CSTR system.  Fig. 3 shows the overall diagram of 

PID control system where dy  is the desired output given by 

the designer, y is the output of the CSTR, e is the error signal 

between dy  and y, u is the control input generated by the PID 

controller to the controlled plant, pK , iK  , and dK  are three 

control gains that will be designed by the proposed scheme.  

Moreover, five well-known integral performance indexes 

that correspond to five control strategies used in the 

improved PSO algorithm are considered in this study, 

including the integral of absolute error (IAE), integral of 

squared error (ISE), integral of time multiplied by absolute 

error (ITAE), integral of time multiplied by squared error 

(ITSE), and integral of square of time multiplied by error 

(ISTE) defined as follows [31]: 

 

dtte


=
0

)(IAE ,                             (6) 

dtte


=
0

2 )(ISE ,                               (7) 

dttet


=
0

)(ITAE ,                         (8) 

dttet


=
0

2 )(ITSE ,                         (9) 

( )( ) dttet


=
0

2
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The control purpose is to adjust PID control gains so that 

these indexes can reach a minimum value.  According to 

these five different performance indexes, there can solve for 

five different PID controller outcomes by the proposed 

method when the algorithm is executed only one time.  Thus, 

in the case the number of subpopulations employed is also 

five as the same with the number of indexes defined.   

Based on the improved PSO algorithm with multiple 

control strategies, the design steps of PID controller for the 

CSTR system are listed below:   

Step I. Create an initial population consisting of N particles 

that are randomly generated from the interval  1,0 .   

Step II. Partition the original population into 5=M  

subpopulations by the order of particles, and there are 5/N  

particles contained in each subpopulation.   

Step III. Check whether the number of iterations G is 

accomplished.  If yes, the algorithm stops; otherwise, Step IV 

is executed.   

Step IV. Evaluate the corresponding performance indexes 

as described above for each subpopulation and record the 

individual best particle pbest for each particle and the best 

particle gbest for each subpopulation, respectively.   

Step V. Perform the modified velocity updating formula of 

Eq. (1) for each particle, where the global best is replaced by 

the best particle of each subpopulation.   

Step VI. Execute the position updating formula of Eq. (2) 

for each particle.   

Step VII. Go back to Step III. 

 

V.  SIMULATION RESULTS   

In the following simulations, the related parameters used 

in the improved PSO algorithm are listed in Tab. 1, and the 

sampling time of the system here is set to 1.0=T  for 

implementing the differential equations of Eq. (5).  The 

above mentioned five different performance indexes as 

shown in Eqs. (6)-(10) are all considered.  Each 

subpopulation is utilized to tackle one corresponding index.  

After executing the algorithm once we can obtain five 

different sets of PID controllers for each simulation case.    In 

order to demonstrate the feasibility of the proposed method, 

three different control cases for the controlled plant of the 

CSTR are simulated including (a) the step response control, 

(b) the set-point tracking control, and (c) the unstable 

equilibrium point control.   

PID  

controller

controlled 

plant of CSTR  

+

_

e y
dy

improved PSO 

with multiple 

control strategies

pK
iK

dK

u

 
Fig. 3.  PID controller design using the improved PSO with multiple 

control strategies for the controlled plant of CSTR. 

 
TABLE I.  RELATED PARAMETERS SETTING USED IN THE IMPROVED PSO 

ALGORITHM 

Populatio

n size 

Number of 

subpopulatio

ns  

Number of 

iterations 

Inertia 

weight 

Two positive 

constants 

150=N  5=M  1000=G  8.0=w  0.121 == cc  

 

 Step response control  

In the first example, a simple step response control is 

examined by the proposed scheme.  Here, two initial states of 

the nonlinear CSTR system are assumed to be 3.0)0(1 =x  

and 3.0)0(2 =x , and the system parameter 1=B  is given 

for this simulation case.  The control purpose is that the 

system output is regulated to  5.0=dy  from the initial value 

3.0)0()0( 1 == xy .  After executing the proposed algorithm, 

five different sets of PID controllers are derived according to 

five different performance indexes.  Simulation results are 

listed in Tab. 2 and displayed in Figs. 4-9, respectively.  Tab. 

2 lists all the derived PID controller gains and their final 

evaluated performance index values.  It can be seen that the 

design outcomes are different because of different 

performance indexes.  In addition, Fig. 4 then shows the step 

responses according to the derived PID controllers, and their 

convergence trajectories of PID gains with respect to the 

number of iterations are shown in Figs. 5-9, respectively.  

They can approximate the steady states after about 100 

iterations.   

 
TABLE II: PID CONTROL GAINS DERIVED BY DIFFERENT PERFORMANCE 

INDEXES FOR THE STEP RESPONSE CONTROL 

 
pK  

iK  
dK  Final value 

IAE 142.60 143.70 30.60 0.08698174 

ISE 124.34 259.40 43.52 0.01220084 

ITAE 124.07 122.04 22.83 0.02184555 

ITSE 142.49 189.96 32.75 0.00162059 

ISTE 138.31 154.87 27.07 0.00046836 
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Fig. 4.  Step responses by five different performance indexes. 

 
Fig. 5.  Trajectories of PID control gains by IAE index. 

 

 
Fig. 6.  Trajectories of PID control gains by ISE index. 

 

 
Fig. 7.  Trajectories of PID control gains by ITAE index. 

 

 
Fig. 8.  Trajectories of PID control gains by ITSE index. 

 

 
Fig. 9.  Trajectories of PID control gains by ISTE index. 

 

 Set-point tracking control 

In this case, it is assumed that the desired output dy  has 

different set points with respect to time t which is defined by 







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
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Also, the initial states and system parameter are given by 

3.0)0(1 =x , 3.0)0(2 =x , and 1=B  as same with the above 

case.  Numerical results and trajectory convergences for the 

derived PID control gains are listed in Tab. 3 and shown in 

Figs. 10-15, respectively, when the proposed algorithm is 

performed once.  Tab. 3 provides the final PID control gain 

results derived by different performance indexes for the set-

point tracking control.  The output responses for tracking 

control are then plotted in Fig. 10.  This figure reveals a 

satisfactory outcome from all the index methods by the 

proposed method.  Figs. 11-15 then display the convergences 

of PID control gains with respect to the number of iterations.  

In the case, after nearly 50 iterations all trajectories already 

enter the steady states.   

 
TABLE III: PID CONTROL GAINS DERIVED BY DIFFERENT PERFORMANCE 

INDEXES FOR THE SET-POINT TRACKING CONTROL 

 
pK  

iK  
dK  Final value 

IAE 101.58 95.93 22.86 0.41943302 

ISE 93.84 95.76 26.26 0.08054584 

ITAE 80.55 60.87 25.44 3.04598550 

ITSE 87.71 63.84 28.56 0.38097177 

ISTE 86.87 59.26 31.96 4.53151823 
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Fig. 10.  Set-point tracking controls by five different performance indexes. 

 

 
Fig. 11.  Trajectories of PID control gains by IAE index. 

 

 
Fig. 12.  Trajectories of PID control gains by ISE index. 

 

 
Fig. 13.  Trajectories of PID control gains by ITAE index. 

 
Fig. 14.  Trajectories of PID control gains by ITSE index. 

 

 
Fig. 15.  Trajectories of PID control gains by ISTE index. 

 

Fig. 16.  Control trajectories in the phase portrait from one stable point 

s)886.0,144.0(  to another unstable point 
un)74.2,445.0(  using five 

different index methods. 

 

 Unstable equilibrium point control  

In Section III, we have explained that the open-loop CSTR 

system consists of two stable equilibrium points 

s)886.0,144.0(  and s)705.4,765.0( , and one unstable 

equilibrium point un)74.2,445.0(  when the nominal values 

are given for the system parameters.  It is a fairly challenging 

control problem if the system states can be regulated to the 

unstable equilibrium from one of stable points by means of 

the designed controller.  Thus, the control goal here is to 

force the system states from the stable equilibrium point 

s)886.0,144.0(  to the unstable one un)74.2,445.0(  using the 

proposed design scheme.  In order to achieve that, the desired 

output of the system is simply set to 445.0=dy .  Simulation 

results are shown in Fig. 16 and listed in Tab. 4, respectively.  

Fig. 16 clearly displays control trajectories in the phase 

portrait of 1x  and 2x  by five different design methods.  They 

all reach the unstable equilibrium point.  Finally, the obtained 
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PID controllers are listed in Table IV for references.  

 
TABLE IV. PID CONTROL GAINS DERIVED BY DIFFERENT PERFORMANCE 

INDEXES FOR THE UNSTABLE EQUILIBRIUM POINT CONTROL 

 
pK  

iK  
dK  Final value 

IAE 11.38 0.10 26.37 0.09908286 

ISE 1.84 0.15 31.00 0.02247901 

ITAE 13.51 0.04 16.51 0.08135106 

ITSE 9.00 0.11 27.81 0.00203453 

ISTE 11.68 0.10 26.08 0.00039815 

 

VI.  CONCLUSIONS AND FUTURE WORK 

This paper has successfully presented a new design 

method for the PID controller to control a highly complex 

and nonlinear CSTR chemical process.  In the proposed PSO 

structure, the single initial population is firstly partitioned 

into several individual subpopulations, and these 

subpopulations are fully independent on one another and 

never interchange any information.  Each subpopulation is 

utilized to tackle one control strategy in order to derive a 

corresponding design outcome.  Based on the improved PSO 

with multiple control strategies, several PID controller 

outcomes can be simultaneously derived in accordance with 

several performance indexes for the controlled plant of the 

CSTR when the algorithm is performed only one time.  To 

confirm the applicability of the developed scheme, three 

different kinds of control cases are examined including the 

step response control, set-point tracking control, and unstable 

equilibrium point control.  It can be concluded from all 

simulation results that the proposed method has a satisfactory 

control performance.  For the future work, the proposed 

method may be further extended to solve the PID controller 

design problem for MIMO control systems.  
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