
  

  

Abstract—Finding relationships in the data is essential for 

object modeling. However, existing methods generally focus on 

pre-defined static relationships using semantics and ontology, 

which is inappropriate when we are interested in dynamic 

relationships between objects that appear in data sources (e.g. 

log files). In this paper, we propose two novel methods to 

dynamically extract contextual relationships that appear in 

heterogeneous data sources. Our method detects contexts (e.g. 

time and location) in a given data source and quantifies the 

similarities between objects based on the detected contexts. 

Specifically, our methods consist of (i) a fast and accurate 

context detection method with carefully engineered 

discriminative features and (ii) a similarity measure that takes 

into account contexts. We evaluated our context detection 

method with an open dataset to show its detection accuracy and 

speed. 

 
Index Terms—Context-aware approach, dynamic modeling, 

object relationship modeling, similarity measure.  

 

I. INTRODUCTION 

Object modeling is a powerful tool to describe the 

relationships between objects (e.g., [1], [2]). Ontology has 

been widely used to semantically model the relationships 

among objects (e.g., [3], [4]). For instance, the relationships 

between machines and sensors in the manufacturing factories 

can be described with languages for ontologies (e.g., Web 

Ontology Language (OWL) [5] and Semantic Web Rule 

Language (SWRL) [6]). Relationships may change over time 

even if the objects themselves are not changed. Although 

such languages can handle pre-defined, static relationships 

very well, they cannot model dynamic object relationships 

such as the following: 

Example 1. In the supply chain, when two parcels, parcel 

A and parcel B, are delivered together in the same vehicle, 

we can say that they have strong temporal relationships. 

However, once they are delivered to different locations later, 

their relationships become weaker. 

In this example, it is obvious that we cannot use 

ontology-based modeling as it does not incorporate contexts 

that dynamically change. To capture such dynamic 

relationships, we believe that it can be defined as similarities 

between given objects that take into account their contexts. 

When doing so, two challenges must be solved. First, we 

must often handle multiple heterogeneous data sources. For 
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instance, we may have two different event logs of a purchase 

order (PO) and a work order (WO), where they have different 

data formats. Hence, it is necessary to extract the common 

contexts (e.g., time and location) to streamline data sources. 

Second, as contexts are often a mixture of characters (e.g., 

address, datetime, description) and numbers, it would be 

better to treat them as quantitative values as much as possible, 

and the similarity measure must handle both numbers and 

characters well. 

In this paper, we propose two methods to tackle the above 

issues: i) a context detection method with a supervised 

machine learning classifier and ii) a context-aware similarity 

measure for heterogeneous data types. The former is to detect 

latent contexts in given data as they are often implicit. The 

latter is to convert contextual information into numbers so 

that we can make use of it in calculating similarities. 

Specifically, if a detected context is (date)time or location, 

then we convert its value (e.g. “2021-12-01 01:02:03” or “2 

Fusionopolis Way, Singapore 138634”) into a numeric value 

of Unix epoch or a pair of latitude and longitude (e.g. 

“1638291723” or “1.298446, 103.78857”). However, we still 

have to deal with both numeric and character values. Hence, 

we use a decision-tree-based similarity measure (e.g., [7]) 

which can incorporate them well and be successful in many 

domains (e.g., [8], [9]). 

We evaluated our methods with a publicly available 

dataset. Our context detection method outperforms the 

state-of-the-art semantic type detection method [10] in terms 

of detection accuracy (6-12% improvement in F1 score) and 

speed (×500 improvement of computation time). 

The rest of this paper is organized as follows: Section II 

summarizes related work. Section III states objectives of this 

research. Section IV describes the proposed method, while 

Section V presents performance evaluation. Finally, Section 

VI concludes this paper. 

 

II. RELATED WORK 

Our work is closely related with three topics, namely (i) 

ontology-based object modeling, (ii) dynamic graph, and (iii) 

process mining. In this section, we summarize key research 

work for each topic. 

A. Ontology-Based Object Modeling 

An ontology is a way of representation of rich and complex 

knowledge about groups of objects and their relationships. 

The OWL and SWRL are well-known modeling languages 

designed to describe such an object relationship [5], [6]. For 

instance, using their syntax, a rule asserting that the 

composition of parent and brother properties implies the 

uncle property would be written: 

parent(x, y) ˄ brother(y, z) ⇒ uncle(x, z). 
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By interpreting such a syntax, we can visualize the 

relationship between objects with graphs. OWL and SWRL 

are well utilized in many domains such as industry, logistics, 

and web to name a few. For example, Giustozzi et al. 

proposed the context ontology, as shown in Fig. 1, which 

models the relationships between industrial objects and 

contexts (e.g., machines, sensors, manufacturing process, 

location, time, etc.) [4]. Another example in industrial 

domain is a product information modeling for product 

lifecycle management [11].  

 
Fig. 1. Context ontology (Cited from Fig. 1 in [4]). 

 
Fig. 2. Overview of the proposed dynamic object relationship modeling. 

 

B. Dynamic Graph 

Modeling relationships with graph theory is another 

related approach (e.g., [12]-[16]). Harary and Gupta extended 

the approaches designed for static graph theory to dynamic 

graphs, i.e., graphs that change over time [12]. Casteigts et al. 

proposed a unified dynamic graph framework called 

time-varying graphs for dynamic networks, ranging from 

biology to transportation networks [13]. Latapy et al. defined 

the set of concepts for temporal and structural nature of 

interactions, e.g., density, clusters, cliques, degrees, and 

clustering coefficients [14]. Rossetti and Cazabet 

summarized community discovery approaches for dynamic 

networks [15].  

C. Process Mining 

Another related work includes process mining (e.g., [17], 

[18]), which discovers and analyzes a process flow from 

event logs output by systems such as ERP (Enterprise 

Resource Planning) and machines. Process mining is related 

to our method in the sense that it also tries to capture the 

relationships of “processes” from a given event log, whereas 

our objective is to capture the relationships of “objects.” The 

mainstream of this research is process discovery algorithms 

that output a structured process flow that well explains given 

event logs and any possible unseen events (e.g., [19]-[21]). 

Once a process flow is obtained, it can be further analyzed for 

many objectives such as to check if there exists anomaly 

process flows in a given log, to execute a bottleneck analysis, 

and to analyze resources assigned to discovered processes 

[17]. For example, Lorenz et al. applied a process mining 

technique to the processes of sanitary products at a leading 

manufacturing company and identified some bottlenecks that 

can improve productivity [22]. 

 

III. PROBLEM STATEMENT 

As we have seen in the previous section, none of the 

existing work focused on dynamic object relationships that 

appear in the data captured by underlying systems. Ontology 

is a great modeling toolset; however, it is dedicated to static 

relationships, and the knowledge of relationships must be 

given by experts. We are interested in a method that can 

capture the relationships between objects that dynamically 

change by their contexts. Likewise, process mining is more 

focused on processes rather than objects. In this work, we are 

more interested in the relationships between objects that 

appear in data sources such as an event log. Our method can 

be seen as pre-processing for dynamic graph modeling. It 
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works as a bridge between captured row data and graphs 

which are ready to be analyzed with the dynamic graph 

theory. 

 
Fig. 3. Example of context extraction and conversion. Middle: The third column should be identified as location as it is zip-code. Bottom: The address 

column is converted into latitude and longitude and the datetime column is in the Unix time format. The zip-code column is ignored as it is the second location 

column. 

 

 
Fig. 4. Example of similarity measure with decision trees. 

 

IV. PROPOSED METHOD 

We propose a method to handle dynamic relationships 

extracted from heterogeneous data sources. Fig. 2 illustrates 

the proposed dynamic object relationship modeling. The idea 

is to quantify the dynamic similarities between objects with 

contextual information and to construct a weighted graph by 

using similarities as weights to visualize the relationships 

between objects. Our method consists of the following 

procedures. 

1) Obtain data sources (e.g. machine logs, documents, 

transactional data) that contain contextual information 

2) Detect contexts from data sources 

3) Streamline the data sources based on the extracted 

contexts 

4) Calculate the similarities of objects 

5) Analyze the relationships with clustering or graph 

mining approaches 

Although we basically handle table data in this paper, we 

will also handle unstructured data (e.g., documents) in future. 

In the following, we describe steps 2 and 4 in detail. 

A. Context Detection with Supervised Machine Learning 

Context is an important aspect of object modeling [23]. 

Context-aware approaches have been studied more than two 

decades in the domain of context-aware computing [24]. 

Implicit situational information, or context, is intractable yet 

important for computers to understand what humans need. 

We borrow the definition of the contexts used in this paper as 

follows: 

Definition 1. Context (Dey and Abowd [24]): Context is 

any information that can be used to characterize the situation 

of an entity. An entity is a person, place, or object that is 

considered relevant to the interaction between a user and an 

application, including the user and applications themselves. 

In [24], four context types, namely location, identity, 

activity, and time, are defined. We use these four contexts but 

reword “activity” as “description” since it is more natural in 

our context. Some data sources may not involve complete 

column headers or even do not include a header at all. Hence, 

we must detect an entity and contexts in the given data 

sources. The idea of our context detection is to capture the 
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characteristics of contexts from the given data sources. For 

example, datetime has a unique characteristic in its data 

format (i.e., the number of digits, hyphens, and colons). 

Hence, our idea is to extract statistical features (e.g., the 

count of alphabet, digits, and symbols) and to learn its 

characteristics with a supervised machine learning classifier. 

Fig. 3 illustrates an example of context detection against a 

data source. We assume that five elements in this figure are 

given as a data source, and the objective is to identify the 

contexts of each element. We calculate the following two 

basic features, namely number of characters and number of 

words. We also calculate the frequency of the following 

characters as features: 

• uppercase letters ([A-Z]) (one feature); 

• lowercase letters ([a-z]) (one feature); 

• digits ([0-9]) (one feature); and 

• symbols (␣, ., “,”, -, _, =, +, |, %, @, #, ^, *, (, ), &, ‘, “, 

$, :, ;, /, [, ], {, }, <, >, !, ?, ~, `) (32 features) 

 In total, we extract 37 features. For instance, the features of 

“2020-12-01 06:07:08” in the above example are (19, 6, 0, 0,  

0.737, 0.053, 0, 0, 0.105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0.105, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0). We use a supervised 

machine learning algorithm to train a classifier with these 

features and output labels (i.e., four contexts + “others”). The 

output labels are (i) entity, (ii) datetime, (iii) location, (iv) 

description, and (v) others. 

 

 
Fig. 5. Concept of dynamic relationships based on contexts. 

 
TABLE I: PRE-PROCESSED DATASET 

B. Context-Aware Similarity Measure 

After applying our context detection method to multiple 

data sources, we can streamline them by the contexts. If more 

than one same context is found in the data, then we only use 

the leftmost one. Fig. 4 illustrates the concept of dynamic 

relationships based on the contexts. As shown in this figure, 

we can map objects onto a time-location space, visualizing 

relationships among objects. For this, we transform time and 

locational contexts into numbers. Specifically, when an 

element is detected as address or zip-code, then we use a web 

API (e.g., Google's Geocoding API1) to convert them into 

geographic coordinates (i.e., a pair of latitude and longitude), 

enabling them to be treated as numbers. Similarly, when an 

element is detected as datetime, then we convert it into Unix 

epoch, which is the number of seconds that have elapsed 

since January 1, 1970.  

The remaining task is to quantify the strength of the 

relationships. For this, we calculate similarity scores with 

contexts. However, as each object is represented as a vector 

of numeric, categorical, and character values, classical 

similarity measures such as Euclidean distance and cosine 

similarity cannot handle such heterogeneous data well. 

Hence, we leverage unsupervised decision trees for a 

similarity measure to handle such cases [7], [9]. Fig. 5 

illustrates how similarities between objects (i.e., 0001, 0002, 

and 0003) which are represented as four features, c1, c2, c3, 

and c4, are calculated with three decision trees. We first 

generate decision trees by randomly generating splitting 

criteria by considering each feature’s value range. The depth 

of each tree and the number of trees are configurable. After 

 
1 https://developers.google.com/maps/documentation/geocoding 

generating decision trees, each entity is fed into the trees and 

records which terminal nodes they reach. If the entities fell 

into the same terminal node, then their similarity count is 

incremented by one. Finally, a similarity between objects i 

and j are calculated as  

simi, j = Ni, j / NT, 

where Ni, j and NT denote the number of trees where objects i 

and j fall in the same terminal node and number of trees, 

respectively. In our example, objects 0002 and 0003 reach the 

same terminal nodes of the tree #1 and #3, and thus their 

similarity is 2/3 = 0.67. Similarly, the similarities between 

0001 and 0002 and between 0003 and 0001 are 1 / 3 = 0.33 

and 0 / 3 = 0, respectively. 

 

 
Fig. 6. Example of context-aware object relationships. The colors of objects 

are based on the values of description. The weights of edges are similarities 

calculated with unsupervised random forest. 
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Once we obtain a similarity matrix, we can cluster objects 

with clustering algorithms such as k-medoids clustering (e.g., 

[25]) or construct a weighted dynamic graph with similarities 

for further analysis (e.g., [14], [26]). 

 

 
(a) F1 score versus dataset size. 

 
(b) Computation time (feature selection). 

Fig. 7. Comparison of context detection methods. Both methods use random 

forest as a classification algorithm and the number of trees is set to 250. 

 

C. Example of Context-Aware Object Relationships 

For better understanding of our concept, we show an 

example of context-aware dynamic object relationships with 

an openly available dataset. For simplicity's sake, we used a 

single dataset, crime data in Baltimore2 as it contains rich 

contextual information (i.e., datetime, location, description, 

and other attributes) and pre-processed it beforehand as 

shown in Table 1. Fig. 6 shows ten crimes (objects) in the 

dataset and the relationships between a crime (indicated in 

orange) and others. We calculated similarities between 

objects in the table with the values shown in the table, and 

they are used as the weights of edges between objects. A 

similarity measure with unsupervised random forest can 

handle heterogeneous value types as in Table I without 

explicit type conversion. 

 

V. PERFORMANCE EVALUATION 

We compare our context detection method with the 

state-of-the-art semantic detection method called Sherlock 

[10] in terms of detection accuracy and speed. Sherlock was 

chosen as it can be used to detect contexts. It calculates four 

 
2 https://data.world/data-society/city-of-baltimore-crime-data 

categories of features (e.g., character distribution and 

pre-trained word embedding) which add up to 1,587 features. 

The evaluated performance metrics are F1 score, an overall 

accuracy measure calculated with recall r and precision p as 

F1 = 2rp / (r + p), and the computation time of feature 

extraction. We vary the number of samples to clarify the 

relationship between dataset size and accuracy. Each data is 

labeled as one of the five classes, namely (i) entity, (ii) 

datetime, (iii) location, (iv) description, and (v) others. When  

dataset size is 5,000, it means that we uniformly sample 

1,000 cases per class from an entire dataset for training and 

testing. 

For both methods, we used the random forest as a 

supervised machine learning classifier [27] and T2Dv2 Gold 

Standard3 as a labeled dataset, respectively. The number of 

trees in the random forest is set to 250, and a F1 score was 

evaluated with 5-fold cross validation. We repeat the same 

trial 100 times and calculate an average F1 score and 

computation time. We conducted performance evaluation on 

a workstation equipped with 16 CPUs and 128 GiB RAM. 

Fig. 7 shows (a) F1 score versus dataset size and (b) the 

computation time of feature extraction. As can be seen from 

the figures, our method outperforms the state-of-the-art 

method in terms of accuracy and speed. We can see that a F1 

score improves by 6-12% while reducing computation time 

significantly. This is mainly because we calculated only 37 

features in contrast to Sherlock's 1,587 features. In addition, 

we vectorized operations for feature extraction, which might 

contribute to fast calculation. 

 

VI. CONCLUSION 

In this paper, we have proposed a concept of dynamic 

relationship extraction. The heart of this paper consists of 

context detection and a context-aware similarity measure. 

We have shown with an open dataset that our context 

detection method is fast and accurate. 

However, this work is still in a very early stage. The open 

questions include (i) how to better handle the case when a 

given data contains the multiple same contexts which we 

currently only use the firstly appeared one, (ii) how to 

incorporate implicit contexts (e.g. location inside a factory 

which may not be given as explicit representation like 

address), (iii) how to extend our method to deal with 

unstructured data, (iv) how to quantitatively measure the 

goodness of the context-aware similarity measure, and (v) 

how to leverage dynamic relationships for useful analysis.  
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