
  

  

Abstract—Multi-agent based simulation (MABS) is an 

important approach for studying complex systems. The Agent-

based model often contains many parameters, these parameters 

are usually not independent, with differences in their range, and 

may be subjected to constraints. How to use MABS investigating 

complex systems effectively is still a challenge. The common 

tasks of MABS include: summarizing the macroscopic patterns 

of the system, identifying key factors, establishing a meta-model, 

and optimization. We proposed a framework of experimental 

design and data mining for MABS. In the framework, method 

of experimental design is used to generate experiment points in 

the parameter space, then generate simulation data, and finally 

using data mining techniques to analyze data. With this 

framework, we could explore and analyze complex system 

iteratively. Using central composite discrepancy (CCD) as 

measure of uniformity, we designed an algorithm of 

experimental design in which parameters could meet any 

constraints. We discussed the relationship between tasks of 

complex system simulation and data mining, such as using 

cluster analysis to classify the macro patterns of the system, and 

using CART, PCA, ICA and other dimensionality reduction 

methods to identify key factors, using linear regression, stepwise 

regression, SVM, neural network, etc. to build the meta-model 

of the system. This framework integrates MABS with 

experimental design and data mining to provide a reference for 

complex system exploration and analysis. 

 
Index Terms—Agent, complex systems, data mining, 

simulation, uniform design. 

 

I. INTRODUCTION 

There are many complex systems in the real world [1]. 

Complex system is composed of many elements or 

components and there are nonlinear interactions among them. 

The evolution of a complex system is difficult to predict. 

Typical complex systems include ant colony, human brain, 

multinational corporation, financial market, and the Internet. 

The research of complex systems has been a hot topic in the 

scientific community in recent decades [2], though there has 

not a consensus on what a complex system is and how to 

measure complexity [3].  
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The basic requirement for a complex system generally 

accepted by the scientific community is only "beyond 

reductionism", which is said in a methodological sense. 

Complex systems have some properties such as emergence, 

stability, adaptability, and criticality [4]. The understanding 

of complex system cannot be obtained only by understanding 

its parts. Therefore, it is necessary to invent method which is 

"beyond reductionism". Multi-Agent based simulation 

(MABS, or ABM, MABS, IBM, etc.) is just a method 

satisfied with "beyond reductionism". MABS uses a 

microscopic perspective to build model, decompose the 

system into a number of agents (individuals), describe the 

properties and behaviors of the agents, and the agents interact 

with each other. Using simulation, the macro state of the 

system emerges from the bottom up. MABS communicates 

the microscopic and the macroscopic level of the system, can 

be used to explore the mechanism of complex systems, and 

could help to deepen the understanding of the system [5]. 

Since the 1980s, MABS has developed rapidly and has been 

applied in many fields such as physics, chemistry, biology, 

and social science, and has become an important method in 

complex system research [6]. 

In general, agent-based model contains many 

heterogeneous agents with autonomous capabilities. Each 

type of agent has its properties and behavior rules, and agents 

interact in a specific way. In initial stage of simulation, a 

number of agents are distributed in environment (physical 

space or logical space), and the environment also has its 

parameters. When simulation is running, the agents runs 

concurrently and interacts with each other according to the 

interaction rules to form the dynamic of the system. There are 

usually large number of variables in MABS, which are set up 

at the initial stage and keep constant during a simulation run, 

these variables are called parameters (or factors in 

experimental design). The parameters of MABS may have 

characteristics as follow: 

A. There Are Many Parameters in MABS 

MABS generally contains many parameters, the common 

types include: 

⚫ Individual parameters, parameters describing the 

attributes or behavior of the agent, such as the age 

threshold of the agent, the behavior excitation 

threshold in decision rules, etc. 

⚫ Population parameters, such as the initial number of 

agents, the timing of agent injection, etc. 

⚫ Environmental parameters, such as the range of 

physical space, type of network topology, grid 

division scale, etc. 

⚫ Simulation parameters, such as parallel/serial of the 
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simulation engine, clock advance mode, time step, etc. 

B. Parameters are Often Difficult to be Calibrated 

The parameters of multi-agent models are often derived 

from assumptions. Many of the parameters are conceptual 

and cannot find a direct relationship with real physical/social 

processes. These parameters cannot be observed and can only 

be given a rough range. 

C. Parameters are Often Heterogeneous 

The parameters often come from different sources, with 

obvious differences in their data types, value ranges, and 

granularity. For example, the variable may be continuous or 

discrete, and the data type may be 0-1, integer, real, or 

characters. Their range and resolution are often quite different. 

D. Sometimes the Parameters ARE not Independent and 

Need to Meet Some Constraints 

The parameters may have internal connections and do not 

satisfy the independence assumption. Some parameters need 

to meet complex constraints. 

Therefore, the parameter space of complex systems is a 

high-dimensional, mixed, and constrained space. Exploring 

the parameter space is an important task of complex system 

research, and it is the basis for discovering the system's 

macroscopic pattern, screening key factors, and finding 

micro-macro relationship. How to effectively explore the 

parameter space of MABS is an important problem faced by 

complex system simulation. 

Since the 1970s, a few scholars have combined 

experimental design with simulation and developed 

simulation experimental design theory [7], which provides a 

theoretical basis for reducing the number of simulation 

experiments and analyzing simulation results. In recent years, 

big data and machine learning have developed rapidly, and 

data analysis capabilities have been greatly enhanced. Some 

scholars have realized the value of data mining to simulation. 

Remondino and Correndo tried to apply data mining to agent-

based simulation [8]. Saoud and Boubetra analyzed the data 

processing problems in simulation and designed a data 

collection agent [9] . Patel, Abbasi, etc. combined exploratory 

analysis and data mining for the analysis of agent-based 

simulation results [10]. Sitova and Peceskar proposed a data 

farming and knowledge discovery framework for simulation 

results [11]. Shao, Ye, etc. developed a machine learning 

based simulation data mining approach to realize global 

performance evaluation [12]. These studies are very valuable 

and provide basic ideas for the combination of data mining 

and simulation. However, in the process of simulation 

research, experimental design and data analysis cannot be 

separated and need to be considered as a whole. From this 

perspective, we proposed an iterative simulation research 

framework that integrates experimental design and data 

mining to improve the efficiency of MABS. 

 

II. COMMON TASKS OF MABS 

Using simulation to study the system has different 

purposes and forms different types of simulation tasks. 

Common tasks of simulation include V&V, what-if analysis, 

optimization, and risk analysis, etc. As a subtype of 

simulation, MABS has roughly the same research goals and 

tasks, but has some characteristics of its own. In reality, 

MABS has two common way of uses. One is to explore the 

mechanism of complex systems and deepen the 

understanding of complex systems. The other is to build 

model of a real system, evaluate and predict the system, or 

find the optimal solution that meet specific measures. 

Common tasks of MABS are listed as follows: 

A. Summarize the Macro Pattern of the Complex Systems 

The evolution of complex systems is diverse, dynamic, and 

uncertain. MABS can help to explore the parameter space of 

the system comprehensively, discover the macro pattern of 

the system, and master the characteristics of the system. 

According to whether it involves time, the macro pattern of 

the system is divided into static and dynamic. 

Static pattern: Use measures 𝒚  (scalar or vector) to 

describe it, which can be continuous or discrete. For example, 

in the simulation of infectious diseases, macro patterns such 

as extinction, epidemic, and pandemic can be discovered 

according to the infection rate. 

Dynamic patten: summarized according to the dynamic 

characteristics of time series data 𝒚(𝑡). Such as exponential 

growth (decay), periodic oscillation, chaos and others. 

B. Identify the Key Factors Affecting the System 

In MABS, the macroscopic characteristics of the system 

depend on the microscopic characteristics and interaction 

rules of the system. There are many factors at the micro level, 

and it is necessary to screen and identify the key factors that 

affect the macro mode of the system, and judge whether there 

is an interactive effect between the factors. 

C. Build the Meta-Model of the Simulation System 

The simulation model is essentially a mathematical 

transformation 𝒚 = 𝑓(𝒙) + 𝜀, but the function 𝑓 is implicit. 

Given 𝒙 , the measure 𝒚  can only be obtained through 

simulation run. In order to simplify the description of the 

relationship between 𝒙 and 𝒚, a meta-model 𝒚 = 𝑓′(𝒙) can 

be established, which is an approximation of the simulation 

model. The meta-model can compute 𝒚 more quickly, or it 

can be embedded into a more complex simulation system as 

a build block. 

D. Simulation Optimization 

In MABS with application background, it is often 

necessary to find a set of parameters that makes the objective 

function optimal (maximum or minimum). For example, in 

the simulation of prevention and control policy of infectious 

disease, in order to minimize the number of infected people, 

it is necessary to find the optimal control parameters. 

 

III.  EXPERIMENTAL DESIGN AND DATA ANALYSIS 

There are many types of simulation. According to the two 

dimensions of random/determined and static/dynamic, 

Kleijnei divides simulation models into four types: 

Deterministic and static, Random and static, Deterministic 

and dynamic, Random and dynamic [7]. When using MABS 

for complex system simulation, it belongs to the “Random 

and dynamic”. Using the black box point of view, the MABS 

simulation model can be viewed as: 
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𝑦 = 𝐹(𝑥, 𝑐, 𝑟0) 

where 𝑦 = (𝑦1, 𝑦2, … , 𝑦𝑚)  is the output variable, 𝑥 =
(𝑥1, 𝑥2, … , 𝑥𝑛) is the controllable input variable (parameter, 

factor), 𝑐  is the uncontrollable parameter (environmental 

variable), the random number seed 𝑟0  used to generate 

random number stream. 

The basic process of using MABS for complex system 

research is: according to the purpose of study, design a 

simulation experiment, run the simulation model to collect 

output data, then analyze the simulation output data, and 

finally make the conclusions about the complex system. The 

process of simulation experimental design and data analysis 

are shown in Fig. 1. In most cases, this process may be 

repeated many times. In addition, simulation research often 

involves V&V, which can be regarded as a simulation task, 

following the same process.
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Fig. 1. The process of using MABS to investigate complex system. 

 

As shown in Fig.1, we determine the specific purpose 

firstly according to the simulation task. No matter what kind 

of research purpose, it will eventually be transformed into an 

exploration of the relationship between simulation input and 

output. Based on the input-output transformation of, we then 

select a set of variables from the controllable input 𝑥 to form 

the experimental factors, denoted as  𝑥𝑆 = {𝑥1, 𝑥2, … , 𝑥𝑠} , 

and select a set of variables from the simulation output 𝑦 to 

form the performance index (response variable), denoted as 

𝑦𝑅 = {𝑦1, 𝑦2, … , 𝑦𝑟}. Also need to define the range of each 

factor, for continuous factor  𝑥𝑖 ∈ [𝑎𝑖 , 𝑏𝑖]. For discrete factors, 

without loss of generality, they are denoted as  𝑥𝑖 ∈
{1,2,3, … , 𝑞𝑖} . According to the condition in reality, 

sometimes the factor 𝑥  is required to satisfy a set of 

constraints, which is denoted as: 

𝑓𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑡  

For continuous factor 𝑥 , the domain of the simulation 

experiment is denoted as: 

𝑆 = {𝑥|𝑥 ∈ [𝑎1, 𝑏1] × [𝑎2, 𝑏2] × ⋯ × [𝑎𝑠, 𝑏𝑠]  

𝑎𝑛𝑑 𝑓𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑡}  

An important step in simulation research is to make a 

simulation experiment plan. The simulation experiment plan 

𝐷(𝑛, 𝑆) is a point set composed of n points which is selected 

from the experimental domain 𝑆. Obviously, the number of 
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possible experimental plan is very large, so experimental 

design theory is often adopted, and the research purpose is 

achieved with as few experiments as possible. There are 

many experimental design methods, such as Monte Carlo, 

Orthogonal Design, Uniform Design, Latin Hypercube 

Sampling, partial Factorial Design, etc. 

In experimental design theory, the level of each factor  is 

often determined in advance, and the mapping relationship 

𝑙𝑖 = 𝑧𝑖(𝑥𝑖) is established between the factor 𝑥𝑖 and its factor 

level 𝑙𝑖 = {1,2, … , 𝑞𝑖} , so the experimental domain is 

expressed as: 

𝑆 = {𝑙|𝑙 ∈ {1,2, … , 𝑞1} × {1,2, … , 𝑞2} × ⋯ × {1,2, … , 𝑞𝑠}  

𝑎𝑛𝑑 𝑓𝑗(𝑧−1(𝑙)) ≤ 0, 𝑗 = 1,2, … , 𝑡} 

Especially, when each factor takes q levels, denote 𝐶 =
{1,2, … , 𝑞}𝑠 . Since the mapping 𝑙𝑖 = 𝑧𝑖(𝑥𝑖)  is relatively 

simple, 𝑥𝑖 is often used to represent the factor level 𝑙𝑖 in the 

following text, and no strict distinction is made anymore. 

The simulation experiment plan 𝐷(𝑛, 𝑆)  contains n 

experimental points, and each experimental point determines 

a combination of all factors, which is called a simulation 

configuration. Because of the randomness in the random 

dynamic model, each simulation configuration needs to be 

repeated many times, and a sample of the response variable is 

collected for each run, and the response variable under the 

configuration is obtained after statistical processing. 

After the execution of the simulation experiment plan is 

finished, the simulation result dataset 𝐷𝑆 = {𝑅𝑖 , 𝑖 =
1,2, … , 𝑛} can be obtained, and the record of the dataset saves 

both the level of factora and the value of the response variable. 

Each data record is 𝑅𝑖 = (𝑥1, 𝑥2, … , 𝑥𝑠, 𝑦1̃, 𝑦2̃, … , 𝑦�̃�) , where 

𝑦�̃� is the statistical result of 𝑦𝑗 in 𝑚𝑖 replications. 

Traditionally, statistical methods are used to analyze 

simulation output data. With the rapid development of big 

data techniques, data mining (including statistical analysis, 

machine learning, deep learning, etc.) can now be used for 

data analysis to gain an understanding of the complex system. 

In the simulation framework, experimental design and data 

analysis are the most important components, and there is a 

close relationship between them. On the one hand, different 

experimental design methods have different assumptions and 

the generated data have different characteristics, which 

restrict the subsequent data analysis methods. On the other 

hand, the data analysis method to be used has specific 

requirements for data, and appropriate experimental design 

methods must be used to generate data. Therefore, it is 

necessary to integrate experimental design and data mining. 

 

IV.  UNIFORM DESIGN UNDER ANY CONSTRAINTS 

Experimental design help to achieve the research purpose 

with fewer experiments. With the widespread of simulation, 

some experimental methods suitable for simulation have 

emerged. Kleijnen pointed out that there are many factors in 

the simulation experiment, there are uncertainties, and the 

calculation load is large, but the simulation experiment is a 

pseudo experiment conducted on the computer, which has 

some advantages compared with the physical experiment. 

Including: simulation experimental factors are easy to change, 

we can explore a larger range of parameters, use pseudo-

random numbers, do not need to consider randomization and 

blocking, and pay more attention to sequential design [7]. 

Therefore, the simulation experimental design should not 

completely copy the classic experimental design, but choose 

and adjust according to the characteristics of the simulation 

experiment. 

In MABS, the number of experimental factors is large, the 

range of factor is wide, factors are not independent, and 

sometimes there are constraints among factors. Among many 

experimental design methods, the uniform design (UD) 

proposed by KaiTai Fang et al. only considers the uniform 

dispersion of experimental points in the experimental domain, 

and the number of experiments required is proportional to the 

number of factors [13]. When the number of factors is large 

and the level of factors is more, the uniform design can meet 

the requirements with more fewer experiments. Therefore, 

UD is suitable for use in MABS, but has the following 

shortcomings: 

A. In MABS, not Only Consider the Uniform Dispersion 

of Experimental Points 

Uniform design selects a small number of experimental 

points in the experimental domain, and these experimental 

points are evenly distributed in the experimental domain. If 

the system model is relatively simple, such as linear or 

quadratic function, this design is reasonable. However, 

complex system are often discontinuous, non-smooth, and the 

landscape may be rugged, and there are multiple 

peaks/valleys and sudden changes in some areas. If only a 

small number of uniformly dispersed experimental points are 

selected, the true characteristics of the model may not be 

presented, which may lead to incorrect inferences. 

B. There are Complex Constraints among Experimental 

Factors 

There may be any constraint among the factors of a 

complex system, and there may be various forms of 

constraints, such as nonlinear functions. The experimental 

domain of uniform design is often a n-dimensional hypercube. 

In the mixture design of UD,  ∑ 𝑥𝑖𝑖 = 1, 𝑥𝑖 ≥ 0, and linear or 

idempotent constraints are allowed. In MABS, this 

assumption is not satisfied. If a number of experimental 

points are first generated with a uniform design, and then the 

experimental points that do not meet the constraints are 

deleted, it may lead to too few experimental points and 

insufficient data for analysis. 

Unlike physical experiments, simulation experiments can 

accept more experimental points. With the rapid 

improvement of computing power, more attention is paid to 

the comprehensive and fine filling of the experimental 

domain, and the primary goal is to reveal the true 

characteristics of the model. In scenarios there are arbitrary 

constraints among factors, we proposed a method that 

combine uniform experimental design and random selection, 

which could make better space filling and generate 

controllable experimental points, and facilitate the use of data 

mining for data analysis. 

Suppose the simulation model has s factors, 𝒙 =
(𝑥1, 𝑥2, … , 𝑥𝑠) , and each factor can be mapped to the interval 

[0, 1] through a group of linear transformations, then suppose 

0 ≤ 𝑥𝑖 ≤ 1, 𝑖 = 1,2, … , 𝑠 . 𝐶 = [0,1]𝑆  is an s-dimensional 
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unit hypercube. It is required that 𝑥 satisfy some constraints 

𝑔𝑗(𝑥) ≤ 0, 𝑗 = 1,2, … , 𝑡. Then the experimental domain 𝑆 is 

the space which is satisfy the constraint 𝑔𝑗  in the unit 

hypercube 𝐶 = [0,1]𝑆, as follow:  

𝑆 = {𝒙|𝒙 ∈ [0,1]𝑠𝑎𝑛𝑑 𝑔𝑗(𝒙) ≤ 0, 𝑗 = 1,2, … , 𝑡} 

In the field of uniform design, some scholars have studied 

the mixing problem with constraints. In the mixing problem 

∑ 𝑥𝑖𝑖 = 1, the experimental domain is a simplex. For the non-

rectangular experimental domain, Chuang and Hung used the 

switching algorithm to construct an approximately uniform 

design [14]. For complex constraints, Liu and Liu proposed a 

uniform design algorithm that satisfy the complex 

constrained mixture problem [15]. Ning designed a nearly 

uniform design construction [16] for the flexible region, 

{(𝑥1, 𝑥2, … , 𝑥𝑠): |𝑥1|𝑚 + |𝑥2|𝑚 + ⋯ + |𝑥𝑠|𝑚 ≤ 1}. What we 

are facing is the experimental design with any constraints. 

There are no restrictions on the shape of the experimental 

domain. A new algorithm needs to be designed. Furthermore, 

we hope that experimental data meets data mining needs. 

There are many different measures of uniformity. We uses 

the central composite discrepancy (CCD) proposed by 

Chuang and Hung to measure the uniformity of experimental 

points. For the design 𝒫  of n points on the experimental 

domain S, the simplest case is to divide each dimension into 

two, so that S is divided into 2𝑠 small areas, and the CCD is 

approximately expressed as [14]: 

𝐶𝐶𝐷2(𝑛, 𝒫) ≈ {
1

𝑁
∑

1

2𝑠

𝑛

𝑖=1

∑ |
𝑁(𝑆𝑡(𝑥𝑖), 𝒫)

𝑛
−

𝑁(𝑆𝑡(𝑥𝑖))

𝑁
|

2

 

2𝑠

𝑡=1

}

1/2

 

The algorithm for generating n+m experimental points in 

the experimental domain S with any constraints is as follows. 

Here n and m are parameters given in advance. These n 

uniformly distributed experimental points ensure the spatial 

coverage of the experimental domain, and these m randomly 

distributed experimental points help to show the complex 

characteristics of the response surface. 

 

The Algorithm 

Step 1:  

Let  𝑁 ≫ 𝑛 

Find a uniform design 𝒫(𝑁, 𝐶) = {𝒙1, 𝒙2, … , 𝒙𝑁}  

on 𝐶 = [0,1]𝑆 

Step 2： 

       Let 𝒫(𝑁′, 𝑆): = ∅ 

       for i=1 to N 

if 𝒙𝑖 ∈ 𝒫(𝑁, 𝐶) satisfied 𝑔𝑗(𝒙𝑖) ≤ 0, 𝑗 = 1,2, … , 𝑡 : 

                𝒫(𝑁′, 𝑆) ← 𝒫(𝑁′, 𝑆) ∪ {𝒙𝑖} 

           end if 

       end for 

       if 𝑛𝑜𝑡 |𝒫(𝑁′, 𝑆)| ≫ 𝑛  : 

return Step1and increase N 

       end if 

Step 3: 

      Select n points from 𝒫(𝑁′, 𝑆) as initial design 𝐶𝑑𝑒𝑠𝑖𝑔𝑛， 

e.g. 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 = {𝒙1, 𝒙2, … , 𝒙𝑛} 

Step 4: 

      𝑖 ≔ 0 ,   𝑁𝑑𝑒𝑠𝑖𝑔𝑛: = 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 

      while i=0  or 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 ≠ 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 

          𝑖 ≔ 𝑖 + 1, 𝐶𝑑𝑒𝑠𝑖𝑔𝑛: = 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 

          for j =1 to n 
              𝒙∗ = 𝑎𝑟𝑔𝑚𝑖𝑛𝒙∈𝒫(𝑁′,𝑆)−𝑁𝑑𝑒𝑠𝑖𝑔𝑛

𝐶𝐶𝐷(𝑛, 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 − {𝒙𝑗} ∪ {𝒙}) 

                 if 𝐶𝐶𝐷(𝑛, 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 − {𝒙𝑗} ∪ {𝒙∗ }) < 𝐶𝐶𝐷(𝑛, 𝑁𝑑𝑒𝑠𝑖𝑔𝑛): 

 𝑁𝑑𝑒𝑠𝑖𝑔𝑛: = 𝑁𝑑𝑒𝑠𝑖𝑔𝑛 − {𝒙𝑗} ∪ {𝒙∗ } 

             end if 

          end for 

      end while 

  Step 5： 

       Let 𝒫(𝑚, 𝑆): = ∅, i=0 

       while i<m 

             Random select 𝒙 ∈ 𝐶 

if 𝒙  satisfied with 𝑔𝑗(𝒙 ) ≤ 0, 𝑗 = 1,2, … , 𝑡 : 

    𝒫(𝑚, 𝑆) ← 𝒫(𝑚, 𝑆) ∪ {𝒙 } 

             𝑖 ≔ 𝑖 + 1 

           end if 

         end while 

  Step 6： 

        Output 𝐶𝑑𝑒𝑠𝑖𝑔𝑛 ∪ 𝒫(𝑚, 𝑆) 

 

V. DATA MINING FOR SIMULATION 

Traditionally, statistic method is used for simulation output 

data analysis, which usually requires the data to meet the 

independence assumption and some prior knowledge about 

the system is required. With the development of data science, 

the fourth paradigm of scientific research suitable for data-

intensive problems has emerged. Using the fourth paradigm, 

we can regard the simulation model as a data generation 

machine, drive the model to produce input-output datasets, 

and then use machine learning to conduct exploratory 

analysis and mining of the datasets to obtain a comprehensive 

and in-depth understanding of the system. 

The agent-based model is a simulation of a complex system 

at the micro level. It can also be viewed as a data generation 

mechanism. There is a time advance mechanism inside 

simulation model. Agents interact in parallel in the time 

according to the interaction rules to generate the system state. 

As the simulation clock advances, a trajectory of the system 

state is formed. Given a simulation configuration 𝑥 , the 

model can be regarded as a state transition function in discrete 

time: 

𝑆𝑡+∆𝑡 = 𝑆𝑖𝑚𝑥(𝑆𝑡 , ∆𝑡) 

The state trajectory is collected and transformed after data 

collection, and the response variable 𝑦 = {𝑦1, 𝑦2, … , 𝑦𝑟}  is 

obtained. Each simulation configuration and response 

variable form a pair of input-output data (𝑥 , 𝑦 ). 

In the complex system simulation, there isn’t sufficient 

prior knowledge of the system, so no model assumptions are 

suitable. According to the algorithm in the previous section, 

the uniform experimental design method is used to produce a 

few experimental points, and a set of data is obtained to meet 

the space filling requirements. Then, a number of simulation 

configurations are randomly generated using the Monte Carlo 

method to meet the comprehensive requirements. Combine 

the two parts of the data to get the dataset 𝐷𝑆 =

{(𝒙, 𝒚)(1), (𝒙, 𝒚)(2), … , (𝒙, 𝒚)(𝑛)} . This kind of dataset has 

sufficient coverage of the experimental space, and the amount 
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of data is not very much, so it is suitable for obtaining an 

understanding of the system through data mining. Different 

simulation tasks may use different data mining methods. The 

following discusses the choice of data mining methods for 

common MABS tasks. 

A. Discover the Macro Pattern of a Complex System 

Based on the purpose, select some attributes from the 

dataset 𝐷𝑆 as feature vectors, and perform cluster analysis on 

the feature vectors. For static macro pattern, cluster analysis 

can be performed directly on the dataset. If the feature vector 

is continuous, distance-based methods such as k-mean and k-

medoids are often used. For discrete feature vectors, 

hierarchical clustering methods are often used, such as 

AGNES, DIANA, Chameleon, etc. Through cluster analysis, 

the macroscopic patterns of complex systems are obtained. 

For the dynamic macro pattern of the system, time series 

analysis or dynamic data mining methods such as data flow 

mining and empirical mode decomposition are used. 

B. Identify the Key Factors Affecting the System 

Screening key factors from a large number of factors is an 

important step of understanding complex systems. From the 

perspective of data mining, identifying the key factor is 

dimensionality reduction. There are many dimensionality 

reduction methods, such as wavelet transformation, Principle 

Component Analysis (PCA), Independent Component 

Analysis (ICA), Self-Organizing map (SOM), etc. There are 

also a large number of feature selection methods in data 

mining, including forward selection, backward elimination, 

and optimize selection. Through dimensionality reduction or 

feature selection, several factors that have great impact on the 

system, i.e. key factors, are discovered. 

C. Build the Meta-Model of the System 

The simulation model is an implicit description of the 

relationship between the input parameter 𝒙 and the output 𝒚. 

Through mining the dataset, the meta-model of the simulator 

can be established. There are many types of meta-models, 

such as linear regression, stepwise regression, Kriging, 

CART, SVM, neural network, etc. Different meta-models 

have differences in simplicity, effectiveness, computational 

efficiency, and interpretability. Choose the appropriate meta-

model according to the requirements and use it as an 

approximation of the simulation model. 

D. Parameter Optimization 

For the optimization task, given the objective function 𝑧 =
𝑓(𝒚) , find 𝒙∗  that can produce a minimal (maximal) 𝑧 . 

Because simulation can only produce 𝒚 from 𝒙, it cannot get 

𝒙 from  𝒚. It is necessary to combine simulation with a certain 

optimization mechanism such as evolutionary algorithm, grid 

search, etc. to realize the optimization of parameters. But 

simulation optimization requires a lot of computing. It is 

possible to use the parameter optimization method in data 

mining to find the optimal parameters based on the simulation 

data set. Some data mining tools provide grid search and 

heuristic search such as genetic algorithm, which can quickly 

obtain approximate optimal solutions. 

 

VI.  CONCLUSIONS 

Research on complex systems is becoming more and more 

popular. As an important method of complex system research, 

MABS has been successfully applied in many fields. How to 

improve the research efficiency of MABS, there are still some 

problems. This paper analyzed the characteristics of MABS 

and point out that MABS has many factors, large difference 

in the range of factors, heterogeneity of factors, and subject 

to complex constraints among factors. In simulation research, 

it is necessary to carry out experimental design based on 

experimental design theory to minimize experimental points. 

At the same time, it is necessary to relaxes the requirements 

for data and uses data mining to analyze simulation data. This 

paper proposes a MABS framework that combines 

experimental design and data mining. It could help to 

improve the efficiency of complex system research and gain 

understanding of complex systems. There are many 

experimental methods and data mining methods. 

Experimental design and data mining are closely related. 

There are still many problems to study, such as improving 

experimental design methods based on data mining 

requirements, or revealing limitation of data mining for 

simulation data processing, etc. 
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