
  

  
Abstract—Limits in the real-time computation of micro-

processors on the one hand and high-level controllers that need 

precise computation in addition to implementation and 

compiling issues, on the other hand, have caused a great gap 

between control science and experiments. In this work, an 

adaptive RBF neural network controller is proposed to control 

the position and attitude of an autonomous multirotor. The 

controller is combined with an EKF observer and simulated in 

real-time flight conditions. In order to check the capabilities of 

the system, the proposed structure has been successfully applied 

to a quadrotor and a hexarotor using three data types for getting 

similar real-time flight results. Based on the results, the 

proposed structure has accomplished two separate missions 

with different scenarios, though there exists some error, 

especially in position estimations which are caused by step-wise 

characteristics of the desired path. 

 
Index Terms—Radial basis function (RBF), neural network 

(NN), adaptive control, extended kalman filter (EKF), 

multirotor.   

 

I. INTRODUCTION 

Unmanned Aerial Vehicle (UAV) has provided a useful 

and economic platform for many applications in a wide range 

of usage (e.g. military, disaster, rescue operations, civil 

operations, photography, remote sensing, etc.). 
In the class of UAV, multirotor has been concentrated 

much due to its specific features such as Vertical Take-off 

Landing (VTOL), and high maneuverability. Although they 

are applicable in many areas, they have a great potential to 

extend their abilities and become more autonomous. 

According to [1] which provides a concept of autonomous 

control level for UAVs, they have to pass several areas, 

including Perception, Situational Awareness, Analysis, 

Coordination, Decision Making, and Capability to become 

fully autonomous. 
By considering these changes in UAVs, their missions and 

application can be changed completely so that the situation 

would not be predictable. These changes can be any 

anomalies in the plan, the structure of the UAV, or the 

environment. For mission accomplishment, the UAV has to 

be adapted to such changes. According to [2], using 

conventional controllers known as linear controllers will not 

lead to the elimination of the inherent instability of time-

varying nonlinear systems such as UAVs with time-varying 

characteristics or in-flight dynamic changes. To adapt the 

system to such changes, an intelligent controller is required 

in the first step. There have been studies in the case of 

 Manuscript received March 29, 2021; revised July 20, 2021.

 A. Samadzadeh

 

and A. Banazadeh are with the Department of Aerospace 
Engineering, Sharif University of Technology, Tehran, Iran (e-mail: 

Banazadeh@sharif.edu).

 

purposing intelligent controllers for multirotor UAVs. 

Since the feedback of a multirotor UAV is strict feedback 

of states it is appropriate for designing backstepping control 

[3], [4]. In such cases, steady state errors can be eliminated 

by using the integral of error [5]. Using adaptive methods also, 

are becoming more popular which let users to implement 

simple controller which its parameters can be updated 

through classical methods or the heuristic ones such as 

combining those techniques with neural networks [6]-[8]. 

Furthermore, fuzzy logic system (FLS) and neural 

networks (NN) based controllers have recently caught the 

attention of researchers [6], [9]-[12]. 

One step ahead in making a UAV intelligent is to apply 

vision based controllers using image features to feed high 

level controllers such as sliding mode and backstepping [13],  

[14]. 

As has been mentioned earlier, neural networks have 

gained attention in the subject of control and this is because 

of their outstanding ability to approximating nonlinear 

functions. There are many concepts of neural networks that 

each have a specific feature that distinguishes them from 

other types. Among those paradigms exist, Radial Basis 

Functions Neural Networks (RBFNN) have been 

demonstrated to be more capable in nonlinear control. They 

use the Euclidean distance between the input vector and the 

center of a Gaussian function. 

The distinctive feature of the RBFNN is a local 

approximation to nonlinear input-output mapping. Their 

main advantages are a short training phase and a reduced 

sensitivity to the order of presentation of training data. For 

this, they have been widely used to control a class of 

nonlinear systems and their stability has been proved [15]. In 

some cases, they have been combined with other controllers 

to update their gain or training those [16], [17] and 

implemented to directly control the system [18]. 

Most of the methods mentioned earlier have been verified 

in simulation and no further action including deploying on 

hardware or real-time flight is done. The level up progress 

in autonomy demands more actuators and sensors besides of 

high-level Guidance Navigation Control (GNC) system. In 

this case, a great amount of data is needed to be processed 

which is out the capability of a normal, onboard and 

commercial micro-controller or micro-processor. 

One of the approaches toward this situation is to use small, 

high speed and parallel processors such as Field 

Programmable Gate Array (FPGA) and Digital Signal 

Processor (DSP).  
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Both FPGA and DSP provide parallel processing (all the 

bit at a time) and having large numbers of gates on a single 
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chip (essential for less volume) which are necessary for small 

UAVs that are constrained to less volume and weight. They 

also provide cost savings platforms. The software of the 

systems would also have a huge impact on the overall design, 

for which code parallelization provides faster speed in 

referred architectures and other hardware components. 

Following this path, there are some researches and programs 

to use these processor architectures as the brain of the 

autopilot which extends the capabilities of the UAV to carry 

a camera and using image processing, linking manipulators, 

or deploying other practical algorithms for the mission along 

with the control system [19]-[25].

 The gap between the

 

results of the simulation and 

implementation of the algorithm into the processor is the 

precision of the calculation and some practical limits which 

exist in the real-time flight such as the time difference 

between the processor, sensors data acquisition,

 

and 

digitalized UAV’s

 

equations of motion. The software 

simulations are usually run using double-precision floating-

point calculation whereas all the small processors including 

DSP use single-precision floating-point or fixed-point data 

with less than 32 bits memory. For an FPGA also, since the 

designer decides the structure of the processor, there is an 

option to apply a more accurate data type. On the other hand, 

by increasing the precision, the more space of the structure is 

dedicated to data precision,

 

the less space would be available 

for the algorithm. In this case, fixed-point data are often 

preferred due to their simple protocol against floating-point 

data type.

 The main question here is, are proposed algorithms 

generated through single floating-point or fixed-point 

precision, valid? Besides, some of these methods such as 

sliding mode need derivation of the data of the states which 

add undesirable noise and need precise calculations.

 Motivated by the above discussion, an RBFNN controller 

has been adopted for controlling multirotor VTOL UAVs and 

investigated to be able of running under single floating-point 

and fixed-point data precision. To reach the results of real-

time flight, some conditions and real-time limits have been 

considered consisting of three-time steps; 1) simulation time 

step, 2) processor time step, and 3) sensor data acquisition 

time step. Saturation

 

for each rotor has also been applied in 

addition to a common Extended Kalman Filter (EKF) which

 represents

 

the filtering part of the system for accurate 

estimation of states.

 

 
II.

 

DYNAMIC MODEL OF A MULTIROTOR UAV

 A multirotor is a nonlinear dynamic system including high 

nonlinear terms. The dynamics of the multirotor UAV is the 

relationships between kinetics and kinematics equations of 

the system. In the following equations [𝑥 𝑦 𝑧]𝑇

 

is the 

position vector of the UAV in the earth frame illustrated in 

Fig. 1. Also [𝜙 𝜃 𝜓]𝑇

 

represents the roll, pitch and yaw 

angles. To the model would be derived through the Newton-

Euler equation and can be represented as follows [26]:

 

�̈� =
𝑢1

𝑚
(C(𝜓)S(𝜃)C(𝜙) + S(𝜓)S(𝜙)) − 

𝑘1�̇�

𝑚
 (1) 

�̈� =
𝑢1

𝑚
(S(𝜓)S(𝜃)C(𝜙) − C(𝜓)S(𝜙)) − 

𝑘2�̇�

𝑚
 (2) 

�̈� =
𝑢1

𝑚
(C(𝜃)C(𝜙)) − g −

𝑘3�̇�

𝑚
 (3) 

�̈� =
1

𝐼𝑥
((𝐼𝑦 − 𝐼𝑧)�̇��̇� + 𝐽𝑟�̇�Ω𝑟 + 𝑙𝑢2 − 𝑘4𝑙�̇�) (4) 

�̈� =
1

𝐼𝑦
((𝐼𝑧 − 𝐼𝑥)�̇��̇� + 𝐽𝑟�̇�Ω𝑟 + 𝑙𝑢3 − 𝑘5𝑙�̇�) (5) 

�̈� =
1

𝐼𝑦
((𝐼𝑥 − 𝐼𝑦)�̇��̇� + 𝐶𝑢4 − 𝑘6�̇�) (6) 

where 𝐶(. )  and 𝑆(. )  are respectively 𝑐𝑜𝑠 ()  and 𝑠𝑖𝑛 ()and 

k𝑖 , (𝑖 ∈ {1, … ,6}) denotes the drag coefficient of each motion. 

Also  𝐼𝑥 ,  𝐼𝑦 , 𝐼𝑧  indicate the diagonal inertial matrix of the 

UAV and 𝐽𝑟 represents inertial moment of the rotors and 

Ω𝑟 = ∑(−1)𝑖𝜔𝑖

𝑛

𝑖=1

 (7) 

which 𝜔𝑖  is the rotational velocity of each rotor and 𝑛 

denotes the number of the rotors. The control inputs of the 

UAV are related to the 𝜔𝑖 through the following equations: 

[

𝑢1

𝑢2

𝑢3

𝑢4

] =

[
 
 
 

𝑏 𝑏 𝑏 𝑏 … 𝑏
𝑐1

1𝑙𝑏 𝑐2
1𝑙𝑏 𝑐3

1𝑙𝑏 𝑐4
1𝑙𝑏 … 𝑐𝑛

1𝑏𝑙

𝑐1
2𝑙𝑏 𝑐2

2𝑙𝑏 𝑐3
2𝑙𝑏 𝑐4

2𝑙𝑏 … 𝑐𝑛
2𝑏𝑙

−𝑑 𝑑 −𝑑 𝑑 … (−1)𝑖𝑑]
 
 
 

4×𝑛

[
 
 
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2

…
𝜔𝑛

2]
 
 
 
 
 
 

𝑛×1

 (8) 

where 𝑙, 𝑏, 𝑑 stand for the length of each arm of the UAV, lift 

and drag coefficient of the rotors. The matrix 𝑐1, 𝑐2 are also 

the geometry coefficient of the related dynamic for the inputs. 

Equation (8) turns into (9) and (10) for quadrotor and 

hexarotor as instances. 

[

𝑢1

𝑢2

𝑢3

𝑢4

] = [

𝑏 𝑏 𝑏 𝑏
𝑙𝑏 0 −𝑙𝑏 0
0 −𝑙𝑏 0 𝑙𝑏

−𝑘 𝑘 −𝑘 𝑘

]

[
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2]
 
 
 
 

 (9) 

[

𝑢1

𝑢2

𝑢3

𝑢4

] =

[
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2
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2
0

𝑏𝑙√3

2

𝑏𝑙√3

2
0

𝑏𝑙√3

2
−𝑘 𝑘 −𝑘 𝑘 −𝑘 𝑘 ]

 
 
 
 
 

[
 
 
 
 
 
 
𝜔1

2

𝜔2
2

𝜔3
2

𝜔4
2

𝜔5
2

𝜔6
2]
 
 
 
 
 
 

 (10) 

Suppose that the studied quadrotor can measure its position, 

velocity, attitude, and angular velocity through corresponding 

sensing units. Then the objective is to calculate control inputs 

u𝑖 , (𝑖 ∈ {1, … ,4}) using feedback states which the UAV can 

follow the desired path. 

 Fig.
 

1.
 

Quadrotor free body diagram.
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III. RBFNN CONTROLLER APPROACH 

RBFs has recently drawn much attention due to their good 

generalization, local decaying feature and a simple network 

structure that prevent extensive calculation compared to the 

multilayer feed-forward networks (MFNs). 

RFB neural network consists of three layers: 1) input layer, 

2) hidden layer, and 3) output layer. Required data enters the 

network through the first layer and active an activation 

function in the second layer. The logic of activation is to use 

Euclidean distance between the input vector and a center 

matrix. This let valuable data be top rated based on their 

distance to the desired points. The rated data forms the output 

by weight matrix based on their rank. 

 
Fig. 2. The scheme of the RBFNN 

 

The typical structure of an RBF is illustrated in Fig. 2. In 

the mathematical formulation the output which is would be 

the controller law of the system is calculated as follows: 

𝑢 = w𝑇h (11) 

where w is the weight value of the RBF and h is the output 

of the radial basis activation funcction in the hidden layer and 

is expressed as h = [ℎ𝑗]
𝑇, while ℎ𝑗 is Gaussian function value 

for neuron 𝑗 in the hidden layer, and 

ℎ𝑗 = 𝑒𝑥𝑝(−
||S − 𝑐𝑗||

2𝑏𝑗
2 ) (12) 

where S denotes the input vector and c = [𝑐𝑖𝑗] represents the 

position of the center of the Gaussian function of neuron 𝑗 for 

the 𝑖 th input. For making neural network flexible there is 

matrix 𝒃 = [𝑏1, … , 𝑏𝑚]𝑇  which is the width of Gaussian 

function for neuron 𝑗. 
In a simple passive normal Neural Network, all the 

coefficients are trained before the system execution and 

inputs are bounded, but when the dynamics of the system 

change those coefficients need to be updated. One of the 

approaches to this problem is online learning. In this case, the 

network tries to change the weight, center, and width matrix 

in a way to satisfy a performance index function (13). 

𝐸(𝑡) =
1

2
(𝑦𝑑(𝑡) − 𝑦(𝑡))2 (13) 

where 𝑦 and 𝑦𝑑 stand for the system state and its reference. 

Using the gradient descent method, the parameters can be 

updated as follows: 

Δ𝑤𝑗(𝑡) = −𝜂𝑜

∂𝐸

∂𝑤𝑗

= 𝜂𝑜(𝑦𝑑(𝑡) − 𝑦(𝑡))ℎ𝑗 (14) 

𝑤𝑗(𝑡) = 𝑤𝑗(𝑡 − 1) + Δ𝑤𝑗(𝑡) (15) 

Δ𝑏𝑗(𝑡) = −𝜂𝑜

∂𝐸

∂𝑏𝑗
= 𝜂𝑜(𝑦𝑑(𝑡) − 𝑦(𝑡))𝑤𝑗ℎ𝑗

||S− 𝑐𝑗||

𝑏𝑗
3  (16) 

𝑏𝑗(𝑡) = 𝑏𝑗(𝑡 − 1) + Δ𝑏𝑗(𝑡) (17) 

Δ𝑐𝑗𝑖(𝑡) = −𝜂𝑜

∂𝐸

∂𝑐𝑗𝑖
= 𝜂𝑜(𝑦𝑑(𝑡) − 𝑦(𝑡))𝑤𝑗

𝑆𝑗 − 𝑐𝑗𝑖

𝑏𝑗
2  (18) 

𝑐𝑖𝑗(𝑡) = 𝑐𝑖𝑗(𝑡 − 1) + Δ𝑐𝑖𝑗(𝑡) (19) 

 

where 𝜂𝑜 ∈ [0,1], 𝑜 ∈ [1, … ,4] is the learning rate of the 𝑜th 

input. In RBFNN, the mentioned coefficient must be chosen 

based on the scope of the input value. If they were chosen 

inappropriately, the Gaussian function would not be 

effectively mapped and the output will be invalid. 

After the RBFNN structure is set, the input and 

performance index function should be expressed in a way to 

control the system. 

A. Altitude and Yaw Dynamics 

The dynamic model of multirotor is divided into two sub-

systems of fully actuated and underactuated. The fully 

actuated sub-systems are related to 𝑧  and 𝜓  states. So 

through the corresponding inputs, the UAV can track the 

desired paths of 𝑧𝑑 and 𝜓𝑑.This means that the objective of 

the controller is to minimize the error of tracking and the 

performance index function of referred sub-systems would be 

𝐸𝑧(𝑡) =
1

2
𝑒𝑧

2 (20) 

𝐸𝜓(𝑡) =
1

2
𝑒𝜓

2  (21) 

and the input vector would be chosen subsequently 

S𝑧 = [𝑒𝑧  𝑒�̇�]
𝑇 (22) 

S𝜓 = [𝑒𝜓  𝑒�̇�]𝑇 (23) 

By choosing input vector as (22) and (23) the valuable data 

contains the pattern of satisfying index function is fed to the 

controller. 

B. XY Plane Trajectory 

According to the previous subsection, the UAV has two 

under actuated sub-systems which are in pair of [𝑥, 𝜃] and 

[𝑦, 𝜙]  in both sub-systems. The first state is meant to be 

controlled and the system input directly changes the second 

state. 

The solution to overcome this problem is to make a linear 

combination of states error of each sub-system. The index 

function is introduced in (24) and (25) and the input vector 

would be chosen subsequently in (26) and (27). 

𝐸𝑦(𝑡) =  𝛼𝜙(𝑒𝜙) + 𝛼𝑦(𝑒𝑦), (24) 

𝐸𝑥(𝑡) =  𝛼𝜃(𝑒𝜃) − 𝛼𝑥(𝑒𝑥) (25) 

S𝑦(𝑡) = [𝛼𝜙(𝑒𝜙) + 𝛼𝑦(𝑒𝑦), 𝛼�̇�(𝑒�̇�) + 𝛼�̇�(𝑒�̇�)]𝑇 (26) 

S𝑦(𝑡) = [𝛼𝜃(𝑒𝜃) − 𝛼𝑥(𝑒𝑥), 𝛼�̇�(𝑒�̇�) − 𝛼�̇�(𝑒�̇�)]
𝑇 (27) 

 

In (24) to (27), the desired angle is zero so that controller 

is trying to keep the UAV level in most of the time. In these 
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equations,  𝛼 gains are selected in a way to make both errors 

of each sub-system same scale so the importance of both will 

be in the same level. 

The proof of the stability of RBFNN is done in [27]. 

 

IV. EKF OBSERVER 

So far, the objective was to form a simple controller 

structure to be able to control the multirotor and could be 

deployed on proposed processors. Since the simulation 

condition is supposed to be close to real-time flight, the state 

feedback to the system contains both transition and 

measurement noise. This noise should be filtered to achieve 

pure state data and based on them the controller generates 

inputs of the system.  

One of the optimal state estimators is Kalman Filter(KF) 

which was published in 1960 [28]. Simple Kalman Filter uses 

the linearized dynamics equation of the system to predict 

states in the absence of data and filter both transition and 

measurement noise around the equilibrium point of the 

system.  

The problem of simple KF is the linearized characteristics 

of the observer that are efficient only around the equilibrium 

point of the system. For this situation, some extension of KF 

has been proposed during history which includes Extended 

Kalman Filter (EKF). The EKF is the nonlinear version of KF 

which linearizes equations around the estimated point in each 

time step. 

To express the EKF equation, it is supposed that the form 

of the nonlinear system and frequent discrete-time 

measurements are like 

�̇�(𝑡) = 𝑓(x(𝑡),u(𝑡)) + q(𝑡),  q(𝑡) ∼ 𝑁(0,Q(𝑡)) (28) 

z𝑘 = ℎ(x𝑘) + v(𝑡),  v(𝑡) ∼ 𝑁(0,R𝑘) (29) 

where x𝑘 = x(𝑡𝑘)  and ℎ(x𝑘)  is the nonlinear measurement 

dynamics and w(𝑡) and v(𝑡) are process and measurements 

noise with covariance of 𝑄  and 𝑅  respectively. Since the 

initial states are not generally measurable, they would be 

randomly initialized as 

x(0) ∼ (x0, P0) (30) 

The structure of EKF consists of two phases; 1) Prediction 

and 2) Update. In prediction, sensor data are not available and 

the observer predicts state through the nonlinear model of the 

system and covariance error is propagated as follows 

�̇̂�(𝑡) = 𝑓(𝒙(𝑡),u(𝑡)) (31) 

�̇�(𝑡) = F(𝑡)P(𝑡) + P(𝑡)F𝑇(𝑡) + Q(𝑡) (32) 

In (31), 𝒙 denotes the estimation of the states and F(𝑡) is the 

F(𝑡) =
∂𝑓

∂x
|
x
^
(𝑡𝑘),u𝑡

 (33) 

In case that data sensors are available observer updates the 

parameters and estimated states through the following 

equations: 

𝒙𝑘|𝑘 = 𝒙𝑘|𝑘−1 + K𝑘(z𝑘 − ℎ(𝒙𝑘|𝑘−1)) (34) 

K𝑘 = 𝒙𝑘|𝑘−1H𝑘
𝑇(H𝑘P𝑘|𝑘−1H𝑘

𝑇 + R𝑘)
−1 (35) 

P𝑘|𝑘 = (I − K𝑘H𝑘)P𝑘|𝑘−1 (36) 

In represented equations, K𝑘 is the Kalman gain, 𝒙𝑘|𝑘−1 ≡

𝒙(𝑡𝑘) and  𝒙(𝑡𝑘−1) ≡, 𝒙𝑘−1|𝑘−1 . Also H𝑘  is the linearized 

measurments dynamics. In this paper, since it is supposed that 

all states are available through the sensors, ℎ(𝐱𝑘) = 𝐱𝑘 then 

H𝑘 = 𝐈𝑛×𝑛. 

 

V. SIMULATION RESULTS 

In this section, the controller scheme combined with the 

observer would be evaluated. The simulation test cases 

consist of one quadrotor and one hexarotor with different 

desired paths and the way they are generated. In the first 

scenario, the desired points will be generated as the UAV pass 

the last desired point and in the other case, the desired path 

generate as a time function. 

In both simulations, three different time steps are 

considered shown in Table I. 

 
TABLE I: SIMULATION TIME STEPS 

Time step Value 

Equations of motion 0.001 sec  

Processor output frequency 0.005 sec 

Sensors frequency 0.05 sec 

 

There is also a saturation function for each rotor to not 

exceed half of the weight of the UAV considering that the 

thrust to weight ratio is 2. Besides the equations of motion, 

other signals in the simulations are pass through a Zero-Order 

Hold (ZOH) function which represents the discrete 

characteristics of the processor. 

Since both simulations are executed with the same 

controller, the parameters of the RBFNN are presented in 

Table II. The number of the hidden layer neurons are chosen 

based on the related results explained in [27] and 

consideration of hardware implementation limits. 

 
TABLE II: PARAMETERS OF RBFNN 

Parameters Value 

Hidden layer neurons (altitude) 6  

Hidden layer neurons (attitude) 5 

𝜂𝑖, 𝑖 ∈ [1,3,4] 0.01 

𝜂2 0.0003 

𝛼𝜙,𝜃 0.6 

𝛼�̇�,�̇� 0.4 

𝛼𝑥,𝑦 
0.2

𝑚𝑔
 

𝛼�̇�,�̇� 
2

𝑚𝑔
 

 

The initial value of 𝐰0, 𝐜0 and 𝐛0 where chosen based on 

the neural network convergence in a raw simulation. 

As well, the parameters of the EKF are set as Table III. 

 
TABLE III: PARAMETERS OF EKF 

Parameters Value 

𝑃0 𝑑𝑖𝑎𝑔([1 1 1 0.01 0.01 0.01])2 

𝐻 𝐼6×6 

𝑄 06×6 

𝑅 𝑑𝑖𝑎𝑔([0.32 0.32 0.32 0.045 0.045 0.045])2 

Sensor noise Variance [0.3 0.3 0.3 0.045 0.045 0.045] 
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Each simulation is executed three times and data type 

changes in each. The data types are denoted by double, single 

and fixed. Here fixed-point data uses 13 bits for the integer 

part and 19 bits for fractional. 

A. Quadrotor 

In the first scenario, a quadrotor has been simulated to track 

some points that are generated after passing the last one. In  

Table IV the physical parameters of the quadrotors are shown. 

 
Fig. 3. Position and angle (Estimated and states) of the quadrotor for three data types- first scenario. 

 

As it can be seen in Figs. (3) and (4), the UAV has tracked 

the desired path and has a considerable offset at the end of the 

trajectory which is caused by the step-wise desired path and 

adds error in each part of the trajectory. Nevertheless, the 

UAV has accomplished its mission in three execution. 

According to the Fig. (4), although there is a time delay 

between collecting data sensors and processor calculations, 

the generated inputs are smooth and there is no chattering like 

the characteristics of a sliding-mode controller. It should be 

mentioned that the 𝜓  angle does not follow the desired 

trajectory and it is for the data noise and error of filtering but 

the scale of changes are very small consequently so it is 

acceptable. 

 

Fig. 4. Applied inputs - first scenario. 

B. Hexarotor 

In the second scenario, a hexarotor with specified 

parameters (Table V) and desired trajectory has been 

simulated. The desired paths after reaching first point 

(coordinates:[0,3,4]), would be function of time. 

TABLE IV: PARAMETERS OF QUADROTOR 

Parameters Value 

𝑚 1.1 (𝑘𝑔) 

𝐼𝑥 0.02839 (𝑘𝑔.𝑚2) 

𝐼𝑦 0.03066 (𝑘𝑔.𝑚2) 

𝐼𝑧 0.0439 (𝑘𝑔.𝑚2) 

𝐽𝑟 8.3 × 10−5 (𝑘𝑔.𝑚2) 

𝑙 0.32 (𝑚) 

𝑏 5 × 10−5(𝑘𝑔.𝑚/𝑟𝑎𝑑2)  

𝑑 2 × 10−5(𝑘𝑔.𝑚/𝑟𝑎𝑑2)  

k𝑖 , 𝑖 = 1,2,3 0.1 

k𝑖 , 𝑖 = 4,5,6 0.12 

 
TABLE V: PARAMETERS OF HEXAROTOR 

Parameters Value 

𝑚 0.65 (𝑘𝑔) 

𝐼𝑥 0.03 (𝑘𝑔.𝑚2) 

𝐼𝑦 0.025 (𝑘𝑔.𝑚2) 

𝐼𝑧 0.045 (𝑘𝑔.𝑚2) 

𝐽𝑟 6 × 10−5 (𝑘𝑔.𝑚2) 

𝑙 0.165 (𝑚) 

𝑏 3.5 × 10−5(𝑘𝑔.𝑚/𝑟𝑎𝑑2)  

𝑑 3 × 10−5(𝑘𝑔.𝑚/𝑟𝑎𝑑2)  

k𝑖 , 𝑖 = 1,2,3 0.1 

k𝑖 , 𝑖 = 4,5,6 0.12 
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The results of the three execution are presented here. The 

hexacopter is stable in simulation and has perfectly tracked 

the trajectory. It can be figured out that at two points 

hexacopter estimation errors increase unpredictably which 

coincides with the sudden changes in generated inputs and 

this means that the observer is sensitive to the sudden changes. 

Nevertheless, again the inputs and the rotational velocity of 

each rotor (Fig. (6)) are smooth and all simulations are 

completed. 

 
Fig. 5. Position and angle (Estimated and states) of the hexarotor for three data types - second scenario. 

VI. CONCLUSION 

 
Fig. 6. Applied inputs - second scenario. 

 

In this paper after presenting the equations of motion for 

multirotor aerial vehicles, an RBFNN controller has been 

proposed and implemented to control the position and attitude 

of a quadrotor and a hexarotor in two different scenarios. To 

achieve real-time flight condition, system states were mixed 

with noise and an EKF was used to filter the noise. In addition, 

saturation for each input has been applied. To check the 

capability of running on the high-level processor such as DSP 

and FPGA where they use single floating-point and fixed-

point data types for calculations, each scenario was executed 

with corresponding data types. As seen in the results, the 

proposed structure can control a conventional multirotor. 

Also, the control-observer system can be implemented on a 

compatible processor and acceptably accomplish its mission. 

The results provided herein establish the structure for the 

adaptive and accurate controller-observer system for a 

conventional multirotor. 

 
Fig. 7. Rotor rotational velocity- second scenario. 
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