
  

  

Abstract—The novel coronavirus (covid-19) was initially 

identified at the end of 2019 and caused a global health care 

crisis. The increased transmissibility of the virus, that led to 

high mortality, raises the interest of scientists worldwide. Thus, 

various methods and models have been extensively discussed, so 

to study and control covid-19 transmission. Mathematical 

modeling constitutes an important tool to estimate key 

parameters of the transmission and predict the dynamic of the 

virus. More precisely, in the relevant literature, epidemiology is 

considered as a classical application area of branching 

processes, which are stochastic individual-based processes. In 

this paper, we develop a classical Galton-Watson branching 

process approach for the covid-19 spread in Greece at the early 

stage. This approach is structured in two parts, initial and latter 

transmission stages, so to provide a comprehensive view of the 

virus spread through basic and effective reproduction numbers 

respectively, along with the probability of an outbreak. 

Additionally, the effectiveness of control measures is discussed, 

based on a simple exponential smoothing model, which is used 

to build a non-mitigation scenario. Finally, our primary aim is 

to model all transmission stages through branching processes in 

order to analyze the first semiannual spread of the ongoing 

coronavirus pandemic in the region of Greece. 

 
Index Terms—Branching processes, Covid-19, forecasting, 

mathematical modeling, pandemic.  

 

I. INTRODUCTION 

Coronavirus disease 2019 (covid-19) is an infectious 

disease caused by severe acute respiratory syndrome (SARS). 

It was initially detected in December 2019 and has been 

rapidly spread globally inducing the ongoing pandemic [1]. 

This novel coronavirus pandemic is deliberated as the biggest 

worldwide threat and on January 30th, 2020 World Health 

Organization (WHO) advocated that this new situation is a 

Public Health Emergency of International Concern, because 

of the thousands infected cases that were reported and deaths 

around the globe [1], [2]. In particular, by April 1st, 2020, 

872,481 confirmed cases and 43,275 deaths were reported [2]. 

The first case in Greece was confirmed on February 26th 

(2020) and by April 21st, 2,401 cases and 121 deaths were 

reported, even though health and state authorities had applied 

small-scale control measures, such as the suspension of 

educational institutions and the closing of cafes, bars, 

restaurants sports facilities etc. [3]. On March 22nd, the Greek 

government announced a general lockdown with movement 
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restrictions and after 42 days of quarantine, when the number 

of daily reported cases decreased to 10, state authorities 

gradually repealed the restrictions [3]. These control 

measures, that were among the strictest in Europe, were 

initially considered as highly effective and whereas the 

pandemic was internationally ongoing, the case of Greece 

was treated as a success story [4]. However, at the time of this 

revision the numbers have been increased to 82,034 total 

cases and 1,288 deaths. These fluctuations on numbers attract 

the interest of researchers to model the transmission of the 

virus to evaluate and quantify the dynamic of the pandemic 

[1]. 

 Mathematical models of infectious disease transmission 

effectively describe and simply depict the evolution of 

diseases by providing quantitative data in epidemiology [2], 

[5], [6]. Moreover, using mathematical and statistical tools 

enables to conduct long or short-term forecasts about the 

spread in population so to support decisions of intervention 

strategies, outbreak and healthcare management and policy 

development [2], [5]-[7]. There exist several mathematical 

models in epidemiology, starting from the simple S-I-R 

models (Susceptible-Infected-Recovered models), to S-E-I-R 

models (Susceptible-Exposed-Infected-Recovered models), 

to more complex proposals [1], [5], [8]. A classical approach 

of data analytics of virus transmission is described by 

Galton-Watson branching process and a promising approach 

that uses advanced mathematical modelling to connect 

models with machine learning was introduced by Yang et al. 

[5], [9], [10]. However, the majority of analyses focus on 

human-to-human transmission and this implies two 

important limitations [5], [9], [11]:  

1) Contact tracing data are required and data availability in 

such emerging cases is limited. 

2) The assumption that transmission rates are considered as 

fixed for mathematical analysis simplicity seems 

unrealistic. 

The main goal of this paper is to develop a simple 

mathematical model using branching processes in order to 

analyze the initial and latter stages of the outbreak of 

covid-19 in Greece and evaluate crucial epidemiological 

indicators such as the reproduction number and the 

probability of extinction of the transmission. Finally, through 

an exponential smoothing model, in a complete absence of 

control measures a scenario is developed in order to 

effectively describe the virus transmission in case of Greece 

and discuss the effectiveness of control measures. 

 

II. EPIDEMIOLOGY MODELS AND BRANCHING PROCESSES  

In the relevant literature of mathematical modeling of 

populations considering epidemics, the deterministic models 
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constitute powerful tools when the examined population is 

large enough. On the contrary, stochastic models can provide 

useful information when the population size is rather small 

[12]. The theory of branching processes is simple: these 

processes are often used to model physical systems in which 

a single-type individual lives for a unit of time and by its 

death produces n identical copies of itself. More complex 

extensions of that simple process are for instance the 

multi-type branching processes [13]. The specific 

construction of the aforementioned process justifies that 

these processes are usually applied in biology, physics and 

epidemiology. So, any individual gives rise to a family size, 

where family sizes are independent and identically 

distributed (i.i.d) random variables [14].  

Considering populations, two major issues are important: 

the expected number of population size and the extinction  

[13], [14]. If 𝑑𝑘 is the probability of extinction at the kth-time 

period, then the smallest positive root of the probability 

generating function ℎ(𝑑) = 𝑑 as 𝑑𝑘 tends to 𝑑, is detected as 

the probability of ultimate extinction 𝑑. In addition, the first 

derivate of the probability generating function, that is usually 

formed as 𝑄(𝑠) = 𝑞𝑘𝑠𝑘 , is used to calculate the expected 

number of population size (𝑚) [13], [14]. According to the 

relevant literature, the expected size of a population (m) 

could be used as a measure to categorize a branching process 

into cases and predict the future condition of the system, as 

follows: If 𝑚 > 1 then 𝑑 < 1: extinction is not guaranteed 

(supercritical case), if 𝑚 < 1 , then 𝑑 = 1 : extinction is 

guaranteed (sub-critical case) and finally if 𝑚 = 1, then 𝑑 =
1 : extinction is not guaranteed unless the family size equals 1 

(critical case) [14], [13].  

S-I-R and S-E-I-R models are two of the basic models for 

infectious diseases and commonly the branching theory is 

attached to these models in order to extract useful 

information about populations such as the probability of 

transmission extinction or the probability of an outbreak [12]. 

More specifically, a simple single-type branching process 

could be applied in a S-I-R model in the infectious stage as a 

birth-death process [12]. In a S-I-R model, initially the entire 

closed population (N) is considered as totally susceptible (S), 

a small number of initially infectious individuals introduced 

into the large susceptible population and cause an outbreak, 

thus some individuals become infected and infectious (I), and 

R means that these individuals are removed from the 

population either by recovery or death [12], [15]. Some of the 

limitations of this approximation is the immunity assumption 

and the uncertainty based on data [12], [16].  

A related to S-I-R model is an S-E-I-R model, in which E 

represents the exposed population and implies the 

assumption of a delay between the exposure and the 

infectiousness [16]. An S-E-I-R epidemic could be modeled 

as a multi-type branching process and through the probability 

generating functions, the probability of an outbreak can be 

estimated [12]. According to [17], where a mathematical 

model for the early dynamics of transmission of covid-19 was 

presented, a major limitation of that kind of approaches is the 

uncertainty based on data. However, S-E-I-R models 

although that are more complex compared to S-I-R models, 

remain simple and provide reliable information about the 

potential spread of a pandemic disease such as the Severe 

Acute Respiratory Syndrome (SARS) [12]. 

The relevant literature of branching processes-based 

epidemiology models consists of variable complexity models, 

however data availability in such emerging situations 

commonly limits the selection power and leads to simple 

approaches. The next section provides a branching process 

epidemiology model. 

 

III. MATHEMATICAL MODELING AND FORMULATION 

A branching process approach is considered as classical 

approximation for epidemics [18]. In addition, whereas the 

number of infected people is small, it is believed that people 

behave independently, hence branching processes can 

sufficiently model early stages of an epidemic [18]. If an 

infected individual causes 0, 1, 2, …  new infections with 

probabilities 𝑞0, 𝑞1, 𝑞2, … , then the progeny generating 

function is formed as 𝑄(𝑠) = 𝑞𝑘𝑠𝑘  and represents the 

offspring distribution, where 𝑞𝑘  is the probability that an 

infected individual causes k new infections, in a total 

susceptible population, before s/he dies or recovers from the 

infection [18], [19]. It is proven that a two-parameter 

offspring distribution is more beneficial over one-parameter 

distribution to model large datasets of infectious diseases, 

because in such a case the model depicts better the actual 

transmission of the virus assuming the adaption of the 

parameters [20]. Thus, generally it is considered that the 

offspring distribution is a negative binomial distribution with 

parameters (𝑅0 , k) [21], [22]. To that side, assuming that 

variable 𝑋 refers to a sample of counts of infected cases, the 

pdf of X is formed as shown in (1) and consequently the 

progeny function is formed as shown in (2) ([21], [22]): 

 

𝑃(𝑋 = 𝑥) =
𝛤(𝑥+𝑘)

𝑥!𝛤(𝑘)
(

𝑅0

𝑅0+𝑘
)

𝑥

(
𝑘

𝑅0+𝑘
)

𝑘

    (1) 

 

𝑤𝑖𝑡ℎ 𝛤(𝑧) = ∫ 𝑒−𝑡𝑡𝑧−1𝑑𝑡
∞

0
 

 

𝑄(𝑧) = (1 +
𝑅0

𝑘
(1 − 𝑧))−𝑘       (2) 

 

where, the basic reproduction number, 𝑅0 , is the average 

number of secondary cases infected by one individual in a 

total susceptible population, and k is the dispersion parameter 

which measures the transmission heterogeneity of the virus 

[23]. In fact, the dispersion parameter as a transmission 

heterogeneity measure, quantifies the variability in the 

number of secondary cases and could be described as a 

measure for the impact of the superspreading events (lower 

values of k signifies higher heterogeneity and higher impact 

of superspreading events) [23], [24]. However, according to 

the relevant literature, the offspring distribution is 

additionally formed as a Poisson or a geometric distribution, 

which are nested cases of the negative binomial distribution, 

with 𝑘 → ∞ and 𝑘 → 1 respectively [21], [25]. 

As it is already mentioned, the expected number of 

population size and the probability of extinction are 

considered as crucial information about the evolution of a 

population. Moreover, taking into account that we focus on 

the spread of a disease, the expected number of population 

size stands for 𝑅0 and the probability of extinction refers to 
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the extinction of transmission. Thus, if z is the extinction 

probability, then (1-z) is the probability of an outbreak. 

According to branching processes theory, in order to estimate 

the probability of ultimate extinction z, we need to solve 

Equation (3): 

 

𝑄(𝑧) = 𝑧          (3) 

 

Since we are interested in the probability of extinction, z is 

detected as the smallest positive root of (3) and the derivate of 

the probability generating function is used to calculate the 

expected population size. However, in order to compute the 

probability of extinction, we need to estimate the parameters 

𝑅0  and k firstly, because these parameters are critical 

elements of the probability generating function (1), and 

secondly because 𝑅0  is a typical threshold to detect the 

transmissibility and determines the epidemic potentiality of 

virus in the absence of control measures [26]. More precisely, 

if the basic reproduction number is 𝑅0 > 1 , in a total 

susceptible population, then eventually an epidemic occurs; 

contrariwise, if 𝑅0 < 1, the transmission is self-limited and if 

𝑅0 = 1, the state is characterized as endemic (endemic 

equilibrium) [27], [28].  

Similar to the basic reproduction number 𝑅0, 𝑅𝑒𝑓𝑓 is the 

effective reproduction number,  that represents the average 

number of secondary infected cases under control measures 

[26]. Likewise 𝑅0, 𝑅𝑒𝑓𝑓 determines the epidemic potentiality 

of virus, but under control measures. Consider an epidemic 

scenario where an outbreak of a virus starts. In the initial 

stages there is absence of mitigate interventions and as the 

transmission continues, the government decides to adapt 

control measures (such as quarantine or massive vaccination 

etc.) in order to limit the spread of the disease. In fact, the 

government attempts to reduce an 𝑅0 > 1 to an 𝑅𝑒𝑓𝑓 < 1 to 

bring the outbreak under control. So, we can intuitively 

assume that as long as the basic reproduction number 

categorizes the spread of a virus as an epidemic or not, the 

effective reproduction number evaluates measures’ 

effectiveness [26]. Despite the fact that the reproduction 

number is evaluated differently, the entire process for 

estimating the probability of ultimate extinction remains 

identical. 

A. Estimating the Parameters: 𝑅0, 𝑅𝑒𝑓𝑓, 𝑘 

Considering a population consisting of particles that are 

able to reproduce independently (offspring) and a typical 

predecessor i could produce 𝑁𝑖 ancestors, then 𝑋𝑔 is the size 

of gth generation, where 𝑔 = 0, 1, 2, … , 𝐺  for the first G 

generations and 𝑋𝑔  can be computed as the sum of all 

offspring that each particle produced a generation before 

(𝑋𝑔 = ∑ 𝑁𝑖
𝑋𝑔−1

𝑖=0
). Then, the described process is a discrete 

time branching process and 𝑁𝑖  are independently and 

identically distributed (i.i.d) random variables. In addition, 

the process 𝑋𝑔 , {𝑋𝑔: 𝑔 = 0, 1, 2, … , 𝐺} , has the Markov 

property, that is the value of 𝑋𝑔 depends only on 𝑋𝑔−1 [29]. 

One of the major properties that arises form branching 

process theory is that 𝑅0 = 𝐸[𝑁𝑖]. This property along with 

the Markovian property of the process lead to an efficient 

estimator for 𝑅0, the Harris estimator [20], [29]: 

𝑅0̂ =
∑ 𝑋𝑔

𝐺
𝑔=1

∑ 𝑋𝑔−1
𝐺
𝑔=1

          (4) 

However, in the relevant literature there exist several 

methods to estimate basic reproduction number 𝑅0, such as 

the Maximum Likelihood Estimator (MLE) [30]. Despite the 

fact that the notions of 𝑅𝑒𝑓𝑓 and 𝑅0 are close, their evaluation 

differs. In order to allow the calculation of 𝑅𝑒𝑓𝑓, the referring 

population should be divided into chains or clusters of 

transmission and in some cases contacting data are needed 

[19]. Nevertheless, a common obstacle for researchers that 

conduct studies for diseases and spread of viruses such as the 

corona virus that causes severe respiratory syndrome (SARS), 

is the lack of data [11]. In this approach, due to limited data 

availability, we consider one cluster with a limited number of 

chains. Thus, we assume that the entire cluster has only one 

𝑅𝑒𝑓𝑓 (and 𝑘, which constitute the cluster’s parameters),  is 

evaluated as follows: 

 

𝑅𝑒𝑓𝑓 = 𝑘 (
1

𝑝
− 1)        (5) 

 

where k is the dispersion parameter and p is the scale 

parameter of the negative binomial distribution of 𝑋𝑔. The 

smoothest way to evaluate the parameters of a negative 

binomial distribution is by using the method of moments 

(Method of Moments Estimator-MME), where by equating 

the sample mean 𝑦̅ to the population mean μ, and the sample 

variance 𝑆2 to the population variance 𝜎2, the dispersion and 

scale parameter are estimated through data by solving (6) and 

(7) respectively [31]: 

 

𝑘 =
𝑦̅2

𝑆2−𝑦̅
           (6) 

𝑝 =
𝑆2−𝑦̅

𝑆2            (7) 

 

Despite the fact that this approach simply and effectively 

evaluates dispersion parameter through data, it is proven that 

several limitations appear, such as [31]: 

• If the sample variance is higher than the sample 

mean, then k is very large. 

• If the sample variance is less than the sample mean, 

then k is negative. 

• If the sample variance equals the sample mean, then 

k is not defined. 

 

IV. THE CASE OF GREECE 

The first imported case of COVID-19 in Greece was 

confirmed on February 26th, when an individual came back 

from a visit to Northern Italy. Most of the subsequent cases in 

February and early March were related to people that had 

been to Italy, Israel and Egypt or their contacts. Until the 22nd 

of March, when Greek government announced a general 

lockdown, 624 cases and 2 deaths were reported. The basic 

reproduction number in March 22nd was estimated to 𝑅0 =
1.18  according to (3). Table I and Fig. 1 present all 

reproduction number from the 27th of February to the 22nd of 

March. 
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Fig. 1. Reproduction numbers from 27th February to March 22. 

 

TABLE I: REPRODUCTION NUMBERS FROM 27TH FEBRUARY TO MARCH 23 

Date R0 95% CI k 

27/2/20 3  

0.74 

28/2/20 1.33 (-1.06 , 3.72) 

29/2/20 1.75 (0.6 , 2.9) 

1/3/20 1 (-0.42 , 2.42) 

2/3/20 1 (0.01 - 2.01) 

3/3/20 1 (0.1 , 1.9) 

4/3/20 1.29 (-0.59 , 1.98) 

5/3/20 3.44 (-0.02 , 6.9) 

6/3/20 1.45 (-0.03 , 2.93) 

7/3/20 1.47 (0.14 , 2.79) 

8/3/20 1.1 (-0.38 , 2.58) 

9/3/20 1.15 (-0.15 , 2.45) 

10/3/20 1.06 (-0.23 , 2.35) 

11/3/20 1.11 (-0.04 , 2.26) 

12/3/20 1.18 (0.15 , 2.21) 

13/3/20 1.6 (0.14 , 3.06) 

14/3/20 1.2 (0.15 , 2.25) 

15/3/20 1.45 (0.33 , 2.57) 

16/3/20 1.06 (-0.21 , 2.33) 

17/3/20 1.1 (-0.02 , 2.22) 

18/3/20 1.08 (-0.03 , 2.19) 

19/3/20 1.11 (0.1 , 2.12) 

20/3/20 1.07 (0.04 , 2.1) 

21/3/20 1.07 (0.08 , 2.06) 

22/3/20 1.18 (0.99 , 1.37) 

 

 
Fig. 2. Geographical distribution of total cases per region during quarantine 

period. 

As it can be obtained in Table I, the basic reproduction 

number is firmly greater than 1 for the entire period before 

quarantine. More precisely, the day of the announcement of 

the quarantine, 𝑅0  was estimated to 1.18 (95% CI: (0.99, 

1.37)) according to (4), the dispersion parameter k was 0.74 

according to (6) and based on these, the probability of spread 

extinction was estimated to 0 according to (3). To this side, 

the probability of an outbreak was 1, a fact that according to 

the relevant branching processes literature, advocates the 

adoption of mitigation measures such as a general lockdown 

and quarantine. Greek government, through these measures, 

attempted to reduce the basic reproduction number to 𝑅𝑒𝑓𝑓 <

1, so to bring the outbreak under control.  

In order to use branching processes for the estimation of 

𝑅𝑒𝑓𝑓 , the population was divided into clusters/chains of 

transmission. We assume that Greece is considered as one 

cluster and each region as one transmission chain. In fact, due 

to limited data availability, we presume that the entire Greece 

composes one cluster consisting of 13 transmission chains, 

one for each region. Fig. 2 depicts the percentage 

geographical distribution of total cases per region through 

quarantine period. 

By the end of quarantine, the 4th of May that the new cases 

per day were under 10, the effective reproduction number 

𝑅𝑒𝑓𝑓 was estimated to 0.0003 (95% CI: (-6.7 , 6.7)) according 

to (5) which indicates that the number of secondary infections 

caused by one infected individual is noticeably reduced and 

the dispersion parameter (k) was 0.23. According to the new 

estimation of the parameters, the probability of the spread 

extinction was 1, an approximation that forces the probability 

of an outbreak to be 0. These findings prove that the general 

lockdown was a highly effective measure so to control a 

general spread of the virus. 

 

 
Fig. 3. Real data of reported new cases of corona virus transmission without 

mitigation actions. 

 

However, the available data, from National Public Health 

Organization (NPHO) of Greece for the summer period, 

revealed a different evolution of the virus transmission 

despite the fact that Greek government has done smaller 

mitigation interventions such as the closing of bars and 

restaurants at 12p.m. and the extensive usage of masks. More 

precisely, by the end of the summer period almost 300 new 

cases per day were reported. Repealing the general lockdown 

along with the opening of country’s borders and allowing the 

normal operation of stores relieved Greek economy but led to 

an uncontrolled rise of the transmission, brought new 
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imported cases and transmission chains roughly detected. 

Within this widespread of corona virus in Greece during 

summer period, data was noisy and deprived models’ 

accuracy. This scenario could have been seen in the complete 

absence of initial control measures.  

Thus, in order to scheme an assumptive state of the virus 

transmission in which no mitigation actions were adopted, we 

conduct an additional analysis.  

A. The Scenario without Mitigation  

A simple Exponential Smoothing (ETS) model is used to 

forecast the transmission of corona virus in Greece in total 

absence of control measures. This model is actually used in 

order highlight the necessity and the effectiveness of 

quarantine measures. 
 

TABLE II: FORECASTING OF NEW CASES/DAY USING ETS MODEL 

Date 

New 

cases/day 

(fcst) 

Date 
New cases/day 

(fcst) 

24/3/20 67 28/4/20 159 

25/3/20 69 29/4/20 162 

26/3/20 72 30/4/20 164 
27/3/20 75 1/5/20 167 

28/3/20 77 2/5/20 170 

29/3/20 80 3/5/20 172 
30/3/20 82 4/5/20 175 

31/3/20 85 5/5/20 178 

1/4/20 88 6/5/20 180 
2/4/20 90 7/5/20 183 

3/4/20 93 8/5/20 186 

4/4/20 96 9/5/20 188 
5/4/20 98 10/5/20 191 

6/4/20 101 11/5/20 194 

7/4/20 104 12/5/20 196 
8/4/20 106 13/5/20 199 

9/4/20 109 14/5/20 201 

10/4/20 112 15/5/20 204 
11/4/20 114 16/5/20 207 

12/4/20 117 17/5/20 209 

13/4/20 119 18/5/20 212 
14/4/20 122 19/5/20 215 

15/4/20 125 20/5/20 217 

16/4/20 127 21/5/20 220 
17/4/20 130 22/5/20 223 

18/4/20 133 23/5/20 225 
19/4/20 135 24/5/20 228 

20/4/20 138 25/5/20 231 

21/4/20 141 26/5/20 233 
22/4/20 143 27/5/20 236 

23/4/20 146 28/5/20 238 

24/4/20 149 29/5/20 241 
25/4/20 151 30/5/20 244 

26/4/20 154 31/5/20 246 

27/4/20 157 Total cases: 10,800 

 

Real data, from the initial phase of the transmission (Fig. 3) 

in Greece until the 23th of March, was the pillars of the model 

and the output is presented in Table II as new cases per day 

for the period: 24th of March to 31st of May. According to this 

approach, by the end of May there would be 246 new cases 

per day and the total cases are estimated to be close to 10,000. 

The outputs underline that in the total absence of control 

measures, the virus transmission would tend to be 

uncontrollable since the number of new cases per day 

increases importantly. 

Fig. 5 provides a comprehensive view of the scenario in 

which no mitigation action was adopted and complies with 

the aforementioned assumption about the roughly 

controllable spread of the virus. In this graph, the red line 

depicts the forecasted new cases in a complete absence 

control measures according to the aforementioned model and 

the dashed lines refer to the upper/lower confidence bounds 

of the forecasted data, while the gray line shows the actual 

data of new cases for the same period. The positive slope of 

the red line, proves that quarantine was an efficient control 

measure because in the absence of control measures the 

number of new cases per day would be increased, contrarily 

to the mitigation scenario in which this number actually 

decreases. In addition, in order to achieve a smooth and clear 

view of the results, the data for 69 days is formed into 10-day 

time periods. To that side, Table III. presents the alternatively 

formatted outputs and Fig. 4 visualizes the results. 

 
TABLE III: FORECASTING OF NEW CASES/TIME PERIOD 

New cases per time period 

March Period 3 678 

April 

Period 1 1,111 

Period 2 1,288 

Period 3 1,385 

May 

Period 1 1,790 

Period 2 2,054 

Period 3 2,565 

Total Cases: 10,800 

 

 
Fig. 4. Forecasting of new cases/time period. 

 

 
Fig. 5. Graph of real data of new cases/day before and at the quarantine 
period till the end of May and forecasted new cases/day in a complete 

absence of control measures. 

 

However, real data of new cases per day for the summer 

period revealed a different evolution of the virus transmission 

despite quarantine or smaller mitigation interventions. Fig. 6 

shows that some days after repealing quarantine (4th of May) 

the transmission was still under control, but if quarantine was 

extended until the end of May, based on the forecast model 
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(red line), the transmission would have stopped. Repealing 

the general lockdown along with the opening of country’s 

borders and allowing the normal operation of stores led to an 

uncontrolled rise of the transmission, brought new imported 

cases and transmission chains roughly detected.  

 

 
Fig. 6. Graph of real data of new cases/day from quarantine period till the 

end of May and forecasted new cases/day for the prolongation of quarantine 

period scenario. 

 

More precisely, in Fig. 7 the red line refers to new cases 

per day in extended-lockdown scenario and arises as forecast 

based on the simple ETS model. The gray line depicts real 

data of new cases per day for the summer period. As it can be 

obtained, the positive slope of real data (gray line) along with 

the negative slope of the red line prove that the prolongation 

of quarantine would be an efficient choice because the 

number of new cases/day tends fast to zero, so the 

transmission of the virus would have been stopped. In 

addition, we can assume that the aforementioned smaller 

mitigation actions were not efficient enough so to set under 

control the transmission of corona virus, especially 

comparing to a general lockdown which was proven efficient. 

 

 
Fig. 7. Graph of real data of new cases/day and forecasted new cases/day for 

the prolongation of quarantine period scenario (May-August). 

 

V. CONCLUSIONS 

This paper considers the development of a simple 

mathematical model using branching processes to analyze the 

initial and latter transmission stages of the covid-19 

pandemic outbreak in Greece. The results depict a reasonably 

increased 𝑅0 that implies an aggressive spread of the virus. 

However, the adopted control measures issued by health 

authorities and adopted by Greek government were proven 

efficient because the 𝑅0 =1.18 was reduced to an 𝑅𝑒𝑓𝑓  = 

0.0003. To that side, the additional approach of 

non-mitigation scenario based on a simple Exponential 

Smoothing (ETS) approach complies with the 

aforementioned admission. Repealing the movement 

restrictions and restarting business activity along with 

opening of Greek borders to tourists, so to support Greek 

economy, significantly raised the number of reported cases 

and led to new transmission chains roughly detected. 

The lack of available data induced to consider the entire 

Greece as one cluster which is a slightly unrealistic 

assumption and the major limitation of the proposed model. 

However, despite the limitations and the fact this 

approximation is simple, we conclude that the proposed 

approach is proven beneficial and meets the initial aims.  
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