
  

 
Abstract—High accuracy in modelling the behavior of human 

hand and fingers is obtained using control devices of high 

biological plausibility. Such devices are typically based on 

neural networks and are able to control in parallel multiple 

artificial muscles. This paper presents the structure of an 
electronic spiking neural network that was implemented to 
control the force of two opposing fingers of an anthropomorphic 
hand. In order to increase the level of bio-inspiration, the 

artificial muscles are implemented using shape memory alloy 
wires which actuates by contraction as the natural muscles. 

Moreover, the contraction force of the SMA actuators is directly 

related to the spiking frequency that is generated by the 

artificial neurons. The results show that using few excitatory 

and inhibitory neurons the neural network is able to set and 

regulate the contraction force of the SMA actuators.  

 
Index Terms—Force control, shape memory alloy, spiking 

neural networks, antropomorfic hand. 

 

I. INTRODUCTION 

 Modelling the motor abilities of the human hand and 

fingers represents a challenging task for robotics due to 

smoothness and diversity of the natural motions. The design 

of the control devices for such robotic hands should model 

the behaviour of the motor neural areas (MNA) and their 

bidirectional communication with the muscles. The natural 

MNA stimulates the muscles through efferent neural 

pathways that includes the motor cortex and the central 

pattern generators. In the opposite direction, through afferent 

pathways, the MNA receives information from spindles about 

the muscle stretch during relaxation [1], and from Golgi 

tendon organs during contraction [2]. Considering that the 

frequency generated by the spindles increases with the 

muscle stretch by an external force [3], the spindles output 

can be used to determine the rotation angle of the articulation. 
However, this function cannot be applied when the muscle 

contracts because spindles response to acceleration dominate 

their response during the passive stretch [4]. When the 
muscles contract the Golgi organs respond to the force 

applied on the tendons providing information about the 

muscle activity [5].  

 Starting from this idea, in the sequel we will evaluate 

experimentally the ability of a biologically plausible structure 

of spiking neurons to control the contraction of artificial 

muscles. The neural network uses the output of a force sensor 

that provides information about muscle contraction as the 

Golgi organs.   

 The spiking neurons represents the most accurate model 

of the natural neurons [6] and their implementation in 
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analogue hardware benefits from very fast response due to 

parallel operation of neurons, low power consumption and 

ability to process high complexity functions. The spiking 

neurons used in this work have these advantages and, being 

implemented on PCB hardware, makes the prototyping of the 

synaptic configuration easier.  

 In order to achieve the smoothness and accuracy of the 

natural motions the artificial muscles should mimic the 

behaviour of the muscular fibres. Thus, in this work the 

artificial muscles are implemented with shape memory alloy 

(SMA) which actuates by contraction as the biological 

muscles [7]-[9]. Moreover, the contraction strength can be 

determined directly by the frequency of the electronic spiking 

neurons. The research done in this field, shows that the SMA 

actuators are suitable for actuation of bioinspired systems [9] 

starting from artificial fingers [10], insect legs [11] and wings 

[12] to an artificial jellyfish [13] and an anthropomorphic arm 

[14].   

 In SMA based applications the control of the contraction 

force of these actuators plays a critical role [15]–[17]. The 

precise control of SMA actuators force was performed using 

algorithms programmed on a microcontroller in a clamping 

vice [15]. Another method suitable for SMA control is 

represented by the neural networks (NNs) that were used to 

implement actuators for lightweight applications [16] 

including a SMA based endoscope [17]. The NNs are suitable, 

also, in robotics for the force control of different types of 

servomotor-based manipulators [18], [19].  

 In this work we used the newest class of NNs which 

represents the spiking neural networks (SNN) to control the 

contraction force of SMA wires that actuate two opposing 

fingers of an anthropomorphic hand. The earliest research 

that approached SNN to control the SMA actuators was 

performed by our group [20]. In this direction, we evaluated 

experimentally the ability of SNN to control the contraction 

of SMA in positioning of a robotic junction [21] and in laser 

spot tracking [22]. 

 

II. GENERAL CONCEPT 

The results reported previously [21] show that networks 

with few spiking neurons are able to control the rotation angle 

of a robotic joint when the mobile lever moves towards target 

positions. In that case the spiking neural network behaves as 

a regulator for the rotation angle even when the mobile lever 

is slightly loaded.  

A. Artificial Fingers  

Based on these observations we implemented and tested 

experimentally for this work a neural structure that behaves 
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as a regulator for the force of two anthropomorphic fingers 

that opposes each other as presented in Fig. 1. These fingers 

can be flexed using SMA actuators that are connected with 

one end on the fingers apex. 

 

 
Fig. 1. The implementation of the anthropomorphic hand with two opposing 

fingers connected to the SMA actuators (points A and B); The force sensor 

is placed on the thumb to measure the push force �⃗�𝑃 of the index finger. 

 

The spiking neural network controls the contraction of only 

the index finger that presses with �⃗�𝑃 on the force sensor (FS) 

connected to the opposing thumb. 

B. Bioinspired System Structure 

The general structure of the fully analogue bioinspired 

system that is used for force control is presented in Fig. 2. 

This system includes the SNN that controls the SMA driver 

to power the actuators and receives input from the force 

sensor through the potential controller. 

 

 
Fig. 2. The bioinspired system structure including the SNN, the SMA driver 

and the potential controller. 
 

The synaptic configuration of the SNN is bioinspired and 
was tested experimentally in our previous work for arm 
positioning [21]. Also, we evaluated previously by simulation 
the feasibility of a system based on SNN for force control 
when the pair force sensor - SMA actuator was approximated 
by a current controlled voltage generator [23]. The SNN 
includes an excitatory neural area ENA that determines the 
contraction of the SMA actuator through the motor neural 
area MNA (see Fig. 2). The activity of the MNA is reduced 
by an inhibitory neural area INA that is activated by the force 
sensor. The force is converted into the potential 𝑉𝐹𝑆 that is 
adjusted to the activation threshold of the artificial neurons 
using the adjustable resistor 𝑅𝐴𝐷𝐽  included in the potential 

controller. The resistor 𝑅𝐴𝐷𝐽 determines the value 𝑉𝐹𝑆 where 

the inhibitory neurons start to fire and consequently, the 
maximum force level of the finger. 

Thus, the SMA actuator pulls the finger until the 
inhibitory activity reaches the spiking frequency generated by 
the area ENA. The power that determines the SMA actuator 
contraction is generated by the SMA driver which integrates 
the output of the excitatory neurons in the motor area MNA. 
The switch ST starts the activity of the excitatory neurons in 
ENA which fire at a constant frequency that depends on the 
potential VEXC.  

 

III. SPIKING NEURAL NETWORK STRUCTURE 

 The synaptic configuration of the SNN is detailed in Fig. 3.  

The excitatory neurons 𝐸𝑁1−4  activate the motor output 

neurons 𝑀𝑁1,2  which actuate the SMA wires until the 

inhibitory neurons 𝐼𝑁1−8  compensates for the activity 

generated by 𝐸𝑁1−4 . Thus, the neurons 𝐼𝑁1−8  reduces the 

frequency of 𝑀𝑁1,2 and, consequently, the contraction of the 

SMA actuators.  

 

 
Fig. 3. The spiking neural network structure including the motor neurons 

𝑀𝑁1  and 𝑀𝑁2  which activation is controlled by the neurons 𝐸𝑁1,4̅̅ ̅̅  

(excitatory) and 𝐼𝑁1,8̅̅ ̅̅  (inhibitory); The potential controller and SMA driver 

interfaces the SNN with the force sensor and respectively with the actuator.  
 

Note that the neurons 𝐸𝑁1−4, 𝐼𝑁1−8 and 𝑀𝑁1,2 shown in 

red, green, and respectively blue build the neural areas ENA, 
INA and respectively MNA highlighted in Fig. 2 by the same 
color. 

 

IV. THE ARTIFICIAL NEURON MODEL 

The spiking neural network that is used for force control 
is based on an artificial neuron model which schematic is 
presented in Fig. 4 (a) [24]. This neuron implements two main 
classes of bioinspired properties that are related to the 
coincidence detection of the input stimuli and to the synaptic 
plasticity. The electronic circuit that implements this neuron 
includes one artificial soma (SOMA) and one or more 
artificial synapses (SYN).    

A. Artificial Soma 

The natural neurons integrates the output of the presynaptic 

neurons and activate when the postsynaptic membrane 

potential reaches their activation threshold. Similarly, the 

artificial soma integrates the incoming spikes and activates 

when the input voltage in the capacitor 𝐶𝐼𝑁 reaches the base-
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emitter voltage of the transistor 𝑇𝑀 . When the artificial 

neuron activates, the soma triggers the activity of all 

connected artificial synapses which generate a pulse at 

𝑂𝑈𝑇𝑆𝑌𝑁. 

For simplicity, in Fig. 4 (a), the SOMA is connected to only 

one SYN that can generate excitatory or inhibitory spikes 

depending on the preset position of the switch SW. During 

the neuron activation, 𝑇𝑀 saturates pulling the voltage in the 

capacitor 𝐶𝐼𝑁  below the equilibrium potential 𝑉𝑀  of the 

artificial neuron modeling the onset of the refractory period. 

After activation, if the input potential is above VBE, the 

neuron is reactivated and a new spike is generated. The 

activation frequency of the artificial neuron can be 

determined by counting the output spikes or the sudden 

decreases of 𝐼𝑁𝑆𝑂𝑀𝐴  in a given period of time. Fig. 4 (b) 

shows an example of the input potential 𝐼𝑁𝑆𝑂𝑀𝐴  when the 

electronic neuron is activated by the continuous voltage 

𝑉𝐸𝑋𝐶 = 3𝑉  through a resistor 𝑅𝑀 = 1𝑀𝛺  connected to the 

neuron input.  

 

a)   
    

 
Fig. 4. (a) The electronic circuit which implements the artificial neuron that 

includes one SOMA and at least one synapse which generates excitatory or 

inhibitory spikes according to the synaptic weight; (b) Sample signal read on 
the SOMA input when the neuron is activated with constant frequency.  

 

The neuron activation frequency is ~166𝐻𝑧 determined 

by the number of falling edges of 𝐼𝑁𝑆𝑂𝑀𝐴 during the interval 

𝑇. 

B. Artificial Synapse 

The synaptic weight is stored by the artificial synapse in 

the capacitor 𝐶𝑊 which charge determine the duration of the 

generated spike. For this neuron model, the voltage 𝑉𝑊 read 

on the lower shield of the capacitor 𝐶𝑊 is proportional with 

the synaptic weight. The electronic synapse is potentiated 

when the potential 𝑉𝑊  decreases. This variation occurs 

during neuron activation when 𝐶𝑊 is discharged through the 

opened transistor 𝑇𝑀 modeling posttetanic potentiation of the 

biological synapses. Also, during the postsynaptic neuron 

activation, 𝑉𝑊 decreases through the transistor 𝑇𝐿  that opens 

conditioned by prior activation of the neuron in a time 

interval. This behavior models the long term potentiation of 

biological synapses [25] which determines adaptability in the 

brain. The activation of the postsynaptic electronic neurons is 

signaled through the 𝐹𝐵𝐾 input that connects the transistor 

𝑇𝐿  to the transistor  𝑇𝑀 of the postsynaptic neuron.  

From the biological point of view if the postsynaptic 

neuron activates before the presynaptic neuron in a time 

interval long term depression occurs (LTD) [26].  This neuron 

model implements only the LTP because during normal 

activity of biological synapses the LTP is stronger than LTD 

[26]. However, for the electronic neuron, the decrease of the 

synaptic weight occurs during neuron inactivity due to the 

leakage current of the diodes (see Fig. 4). This models 

empirically the long term depression of the biological 

synapses without taking into account the relative timings of 

the neurons activations.  

 

V. EXPERIMENTAL SETUP 

 During the experiments we tested the hand ability to 

squeeze and hold an elastic tweezers with different force 

levels. These were set by adjusting empirically 𝑅𝐴𝐷𝐽  to 

several values that match the predefined distances 𝑑 ∈
{0, 1, 2, 3,4}𝑚𝑚 between the tweezers heads.  

 

 

 

Fig. 5. Laboratory prototype of the bioinspired system for the force control. 

For each value of 𝑑 the voltage generated by the force 

sensor and the activity of several neurons were monitored. A 

picture of the laboratory prototype of this bioinspired system 

including the anthropomorphic hand, the SNN and the 

auxiliary electronic circuits is shown in Fig. 5. The power 

supply was 𝑉𝐷𝐷 = 1.6𝑉  for the electronic neuron, and 

𝑉𝐶𝐶 = 14𝑉 with the current limited to  𝐼𝑀𝐴𝑋 = 400𝑚𝐴 for 

the SMA actuators. The fingers were actuated by 0.006” 

Flexinol wires that support maximum load of 321g which 

represents 3.15 N. The force sensor was powered by 5V 

which, according to the datasheet, ensures the output 

variation between 𝑉𝑂𝑀𝐼𝑁 = 0.5 V  and 𝑉𝑂𝑀𝐴𝑋 = 4.5 V for the 

push load variation between 0 and 𝑚𝐿𝑀𝐴𝑋 = 0.5𝐾𝑔. 

 

VI. RESULTS 

 The diagrams in Fig. 6 show several signals of interest for 

the SNN operation. The inputs of an inhibitory, excitatory, 

and motor neurons are presented by the yellow, green and 

respectively, magenta signals recoded in the nodes (1), (2) 

and respectively, (3) shown in Fig. 2. The output 𝑉𝐹𝑆 of the 

force sensor is shown by the dark green signal.  

𝑉𝑊 

𝐷𝑆 

𝑉𝑀 

d 
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 Based on the voltage generated by FS and taking into 

account that the linearity error of the FS output is lower than 

±1% we determined the force �⃗�𝑃 on FS that occurs due to 

SMA actuator contraction as: 

�⃗�𝑃 = (𝑉𝐹𝑆 − 𝑉𝑂𝑀𝐼𝑁) ∙
𝑚𝐿𝑀𝐴𝑋

𝑉𝑂𝑀𝐴𝑋−𝑉𝑂𝑀𝐼𝑁
∙ 𝑔    (1) 

where 𝑔 is the gravitational acceleration. Table 1 shows the 

obtained values of �⃗�𝑃 for the distances d (see Fig. 5) that were 

considered in the experiments. 

 

Fig. 6. The SNN activity and FS output for different distances 𝑑 between 

tweezers heads. 

 

TABLE I: FORCE CONTROL SYSTEM OUTPUT 

Parameters 

d(mm) VFS (V) Fd (N) 

0 1.78 1.57 

1 1.64 1.40 

2 1.54 1.28 

3 1.46 1.18 

4 1.36 1.05 

 
The measurements show that despite the fact that the force 

varies with the distance 𝑑 , the frequency of the inhibitory 
neurons (yellow signal in Fig. 6) have similar values, as 
expected [23]. Moreover, the oscillation of the FS output is 
reduced, implying that the SNN represents a good regulator 
for the SMA actuator force in nominal conditions when 𝐹𝑃 is 
significantly lower than the maximum force of 3.15 N.  

 

VII. CONCLUSIONS 

  In this paper we evaluated experimentally the ability of 

the spiking neural networks to control the contraction force 

of artificial muscles implemented with shape memory alloy 

wires. By using a few excitatory neurons which determine the 

contraction of SMA actuators, and several inhibitory neurons 

driven by a force sensor the neural structure is able to control 

the level of quasi constant force applied on an object. One of 

the main advantages of the system is the high biological 

plausibility due to: i) the bioinspired structure of the SNN that 

is based on an bioinspired neuron model, ii) the SMA wires 

that actuates by contraction as the natural muscles, iii) the 

neuromorphic force sensor that generates spikes as the 

biological spindles or Golgi organs. Besides this advantage, 

the implementation in analogue hardware of the SNN, which 

allows the parallel control of multiple SMA actuators, brings 

real-time operation to the system.  

 As a future work we intend to improve the SNN structure 

and to evaluate the linearity of its response to the force level. 

As an application of this research we intend to implement an 

adaptive neural structure that is able to learn to actuate the 

fingers to target positions where it was stopped by an external 

force during the training process. 
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