

Abstract—Identifying the “health state” of the equipment is

the domain of condition monitoring. The paper proposes a study

of two models: DNN (Deep Neural Network) and CNN

(Convolutional Neural Network) over an existent dataset

provided by Case Western Reserve University for analyzing

vibrations in fault diagnosis. After the model is trained on the

windowed dataset using an optimal learning rate, minimizing

the cost function, and is tested by computing the loss, accuracy

and precision across the results, the weights are saved, and the

models can be tested on other real data. The trained model

recognizes raw time series data collected by micro electro-

mechanical accelerometer sensors and detects anomalies based

on former times series entries.

Index Terms—DNN, CNN, anomaly detection, fault diagnosis,

vibration analyses condition monitoring, industry 4.0.

I. INTRODUCTION

Any machine, whether it is a rotating machine (steam

turbine, pump, compressor, etc.) or a non-rotating machine

(heat exchanger, valve, etc.) will eventually touch a point of

poor health. The point might not be that of an actual failure,

but one at which the equipment signals that it is no longer in

its optimal state. This indicates that maintenance is required.

The most used way to perform condition monitoring is to

verify each sensor measurement from the machine and to

impose a minimum and a maximum value limit on it. If the

acquired value is in the interval, then the machine is healthy,

otherwise an alarm is triggered, and the machine is considered

to be in a poor condition. This procedure is known to send a

large number of false alarms or misses alarms when situation

calls for it, wasting time and availability of the equipment, or

leading to failures [1]. In this paper authors propose another

diagnosis method that uses the same measurements type

differently to better evaluate the real state of the machine. The

proposed solutions reside in machine learning sphere based on

statistical analysis for anomaly detection. There are several

approaches: using multivariate statistics, performing a

principal component analysis and then calculating the

Mahalanobis distance to identify normal and anomalous data,

some classifications algorithms including Support Vector

Machine (SVM), using artificial neural network approach,

like autoencoder networks, which compress the sensor reading

to a lower dimensional representation, as PCA model, and

captures the correlations and interactions between the various

Manuscript received February 20, 2020; revised June 23, 2020.

The authors are with the University “Politehnica” of Bucharest, Romania

(e-mail: george.deac@impromedia.ro, crina.deac@impromedia.ro,
radu.parpala@gmail.com, laur.popa79@gmail.com,

costelemilcotet@gmail.com).

variables [2].

The present paper uses deep learning approach for the fault

diagnosis. The method doesn’t need a feature selection or

decrease noise and depends only on the temporal coherence of

the raw times series data supplied by the accelerometer. It is

known that Deep Learning is able to reduce the dimensionality

and learn characteristics from nonlinear data in the speech

recognition, image classification and sentiment classification

[3]. The proposed models are supervised learning models that

recognizes the normal and fault data having a good accuracy

in classification, learning directly from the raw time series and

making use of the temporal coherence.

II. DATA COLLECTION

In order to validate this methodology based on deep

learning neural network for fault diagnosis, we have used data

provided by Case Western Reserve University [8] (CWR)

where motor bearing experiments were initiated in order to

characterize the performance of a motor bearing condition

assessment system. The CWR datasets were over the time the

case of study also for other papers [11], [12].

The test stand used to acquire the bearing dataset consists

of a 2hp motor, a torque transducer, dynamometer and control

electronics. The test bearings support the motor shaft. Single

point faults were introduced using electro-discharge

machining to the test bearing (B1) having fault diameters of

0.007” and 0.021” at two different rotations: 1797 rpm, motor

load (HP) 0 and 1772 rpm, motor load (HP) 1.

Outer raceway faults are stationary faults as the outer race is

fixed, as a result the placement of the fault relative to the load

zone of the bearing has a direct implication on the vibration

response of the system [8]. The drive end bearing have the

outer raceway faults located in the load zone (6 o’clock), at 3

o’clock (orthogonal to the load zone) and at 12 o’clock.

All data sets were collected using accelerometers attached

to the motor housing with magnetic bases and placed at the

12 o’clock position at both the drive end (bearing B1) and

fan end (bearing B2) for each rotational speed. Data was

collected at 12,000 samples /second for drive end bearing

experiments (B1) and fan end bearing experiments (B2).

The drive end and fan end were both considered for our

training. Datasets where separately considered for two fault

diameters 0.007” and 0.021” in two different load cases:

motor Load 0 hp and motor Load 1 hp, with 5 types of faults:

Vibration Anomaly Detection using Deep Neural Network

and Convolutional Neural Network

Crina Deac, Gicu Călin Deac, Radu Constantin Parpală, Cicerone Laurentiu Popa, and Costel Emil

Cotet

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

19DOI: 10.7763/IJMO.2021.V11.772

mailto:george.deac@impromedia.ro
mailto:crina.deac@impromedia.ro
mailto:costelemilcotet@gmail.com

inner race fault, ball fault and 3 outer race faults (centered –

orthogonal – opposite) disponible in the dataset provided by

Case Western Reserve.

For the first case - Load 0, the rotational speed of the

engine was 1797 rotations per minute (RPM) and as the

sampling rate was set at 12 000/s, it means 12000 data points

recorded in a second, 1797 Rot/min equals 30 Rot/s, it implies

we have 400 data points by one rotation. In the second case –

Load 1, the rotational speed was 1772 rotations per minute

(RPM) at the same sampling rate, it means 29.53Rot/s. The

rotational speed was approximated for both cases at 30 per

second.

In order to validate the model, in the experiment models

were trained on one load and one diameter fault case,

including both bearings B1 and B2, 6 files have been used for

each bearing containing fault data and also the normal case,

so that we had for each one:

1 file for normal behavior containing 483903 datapoints

for diameter fault case of 0.021”:

1 file for inner race fault containing 121991 datapoints,

1 file for outer raceway centered fault (@6:00, position

relative to load zone, load zone centered at 6:00) containing

121426 datapoints,

1 file for outer raceway opposite fault (@12:00) containing

121991 datapoints,

1 file for outer raceway orthogonal fault (@3:00)

containing 121846datapoints,

1 file for roller defect containing 121410 datapoints

A total of 1012207 data points included in 6 files were used

for B1 and the same total for B2, the sum of sets for those two

bearings, included in 12 files, will make up the buffer size of

our dataset. Each data point contains only one component (the

acceleration on one axis). Data obtained from all these 12

files where used to obtain 12 timeseries that were processed

in order to train, validate and test several models on both the

drive end bearing B1 and the fan end bearing B2.

This means six types of data are collected in the merged

dataset, sets that were labeled within 6 classes (label 0 for

normal condition, 1 for inner race fault, 2 for outer race

centered, 3 for outer race opposite, 4 for outer race orthogonal

fault, 5 for roller defect).

Fig. 1. Drive end bearing B1-normal behavior – Label 0.

Considering that the data size is 1012207 points x 2 (in the

exemplification case) and that data can’t be served as an input

of a DNN, data should be divided to form samples. The

rotation period consists of 400 data points. Considering this,

data was divided by the size of the sampling period (sampling

period is approx.400 points), so that each sequences of data

containing 400 data points (window size) will be a features

vectors for the model. [4].

Fig. 2. Drive end bearing B1, inner raceway fault Label 1.

(a) 0,007” Load 0, (b)0,007” Load 1, (c) 0,021” Load1.

During experiments better results were obtained when the

window size was changed from 400 points, that means one

full rotation, to 100 points representing a quart of rotation. As

an example, by changing the segmentation [4], the accuracy

of DNN model was improved from 82.75% to 94.56% for the

experiments conducted on datasets in Load 0, with a fault

diameter of 0.007”. Also, better results for DNN model were

obtained when switching from 4 Dense layers to 5 Dense

layers and using a smaller batch size of 20 samples.

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

20

Fig. 3. Outer raceway opposite fault label 3.

(a) B1, 0.007” Load 1, (b) B2, 0.007” Load1.

Fig. 4. Drive end bearing B1 outer raceway orthogonal fault label4.

(a)0.007” Load0, (b)0.007” Load1, (c)0.021”Load1.

Fig. 5. Drive end bearing B1 roller fault Label 5.

(a) 0.007” Load 1 and (b) 0.021” Load 1.

Fig.6. Outer raceway centered fault label 2.

(a) B1, 0.021” Load 1, (b) B2, 0.021” Load 1, (c) B1, 0.007” Load1.

A batch size of 20 samples was used to train the model to

predict the 6 classes (0, 1, 2, 3, 4 or 5). The model will match

a window of 100 features to a single label.

Thus, 1012207 data points for all 12 files will be

fragmented in 10122 total samples for all 6 kind of data,

which will feed the model in the case study.

Before this fragmentation, each of the 12 series was split

once at 70% and once again at 85% in order to obtain 70% of

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

21

data forming the training set, 15 % of data forming the

validation dataset and finally, the rest of 15 %, composing

the test set. After splitting all sets, the first 70% from each

time series were concatenate to compose the training dataset,

then the next 15% to compose validation dataset, this was

done in order to prevent the overfitting and to select the best

trained neural network. The rest of 15 % from each timeseries

was used to form the test dataset that will be used to compute

the classification accuracy of the model. The sampling was

automatically generated by using a windowed dataset

function that uses flat_map to make sure the order of

windowed datapoints, which represents tensors of 100

datapoints, stays the same, also it does a one hot encoding

inside, for the labels, after that, shuffles the samples. The one

hot encoding will convert the categorical value of Label 0 into

a tensor like [1 0 0 0 0 0] and the categorical value of Label

5 into a sensor like [0 0 0 0 0 1].

TABLE I: LABELED DATASETS

Data Type No. Samples

(B1+B2)

Label

Normal 4839 × 2 0

Defect in the Inner race 1219 × 2 1

Defect in the Outer race

(centered)

1214 × 2 2

Defect in the Outer race
 (opposite)

1219 × 2 3

Defect in the Outer race

 (orthogonal)

1218 × 2 4

Defect in the Roller 1214 × 2 5

III. DNN MODEL (DEEP NEURAL NETWORK)

A deep neural network structure model is used to learn

characteristics based on temporal coherence from raw series

data and make diagnosis. Deep Neural Network can learn

useful features from data adaptively without expertise in

specific fields. It has stacked layers of units, connected layer

by layer, but there is no connection among the units in the

same layer. The deep learning network has an input layer, an

output layer and also several hidden layers between the input

and output layer. The number of input units are set according

the dimensionality of the input data (the window size) and the

number of output units are set according the target data (in

our case to 6, because we have 6 labels). In each layer unit

there is applied an activation function (z) to a linear

combination of former activations and added a bias:

aj
m = (zj

m),

where m is the layer number, j the neural unit,

zj
m = ijai

m-1+bj
m the linear combination of former

activations in layer m-1
where:

σ(z) = max (0, z) is the ReLU activation function and

σ(z) = 1/ (e-z + 1) is the sigmoid activation function used

in the final layer.  and b are parameters for the model, first

they are randomly initialized and then they are optimized

during the epochs by the model. All units in the next layer are

connected to every units from the formal layer.

TensorFlow 2.0 and NumPy libraries were used for

scientific computing in Python, Matplotlib Pyplot for plotting

data, Os for parsing the files from the folder, Pandas for

reading csv files and composing the data set in dataFrame,

sklearn for metrics and Keras for defining the DNN deep

learning model.

The model was defined on a 5 layers neural network: first

layer having 400 neurons, the input shape being the size of our

window of 100 points, the next three layers having 100 units,

all layers with rectified linear activation function ReLU, and

the last layer having 6 nodes, one unit for each class type and

the Sigmoid activation function in order to predict the

probability for each class.

The model was defined with the binary cross entropy error

loss function (log loss). Cross-entropy quantifies the

difference between two probabilities distribution. The model

predicts a model distribution of {p,1-p} (binary distribution)

for each of the classes. Binary cross entropy will be used to

compare these with the true distributions {y,1-y} for each class

and sum up their results:

C(yi, yi_predict) = Binary Cross Entropy

= - ∑ (𝑦𝑚
𝑖 ilog(yi_ predict)+(1-yi)log(1- yi_predict)),

where y is the true value and ypredict is the predicted value p(yi),

the output of the model.

The scope is to minimize the cost function by using gradient

descent method. The model was trained using the “SGD”

Stochastic Gradient Descent optimizer, for the first 100

epochs in order to choose the best learning rate, and then for

400 epochs, to minimize the score, by computing partial

derivatives of the cost function and updating the parameters

and learning rate.
𝜕𝐶

𝜕
,

𝜕𝐶

 𝜕b
.

A callback function was used to compute the best learning

rate, the value of the learning rate is afterwards adjusted each

epoch. The learning rate was plotted versus loss values

obtained in each epoch and that value “lr_schedule”, which

minimizes the most the loss, was pick up.

lr_schedule = tf.keras.callbacks.LearningRateScheduler(

 lambda epoch: 1e-8 * 10**(epoch / 20)

)

Fig. 7. Loss value function vs. learning rate variation for experiment Load

0+1, all fault diameters, B1+B2

For the experiment showed in Fig. 7 a learning rate of 5e-4,

that minimizes the loss, was chosen.

Then, the iteration process was continued over the number

of chosen epochs until model fitted. (for different experiments

a different value was chose 400 or 200 depending on the case).

model = tf.keras.models.Sequential([

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

22

 tf.keras.layers.Dense(400, input_shape=[window_size],

activation="relu"),

 tf.keras.layers.Dense(100, activation="relu"),

 tf.keras.layers.Dense(100, activation="relu"),

 tf.keras.layers.Dense(100, activation="relu"),

 tf.keras.layers.Dense(6, activation="sigmoid")

])

Optimizer=tf.keras.optimizers.SGD(lr=5e-4, momentum

= 0.9)

model.compile (loss = "binary_crossentropy", optimizer =

optimizer, metrics=['accuracy'])

history = model.fit (dataset, epochs=400, validation_data =

(dataset_valid), verbose=1)

Fig. 8. DNN model summary.

Fig. 9. Loss variation during 200 epochs over B1+B2, Load 0 +Load 1, all

fault diameters.

Fig. 10. Accuracy variation during 200 epochs, over B1+B2, Load 0

+Load 1, all fault diameters.

After the first stage, training the model, the process was

tested for fault recognition process and fault recognition

using a test dataset unknown to our model.

The confusion matrix in the test set is showing the

predicted values on the columns for each label (0,1,2,3,4,5)

and true positives and true negatives (the normal - Label 0)

on the first diagonal.

Labels 4 and 2 are most accurate recognized by the model

after the normal (Label 0) which are almost 100% recognized,

in majority of the experiments. On the first diagonal, as it can

be seen in the figure, they are colored lighter and normal

examples are almost white colored.

Fig. 11. Confusion matrix on the test dataset B1+B2, Load 0 + Load 1, all

fault diameters.

IV. CNN MODEL (CONVOLUTIONAL NEURAL NETWORKS)

An optimized CNN model was after that tested in order to

get better predictions. The model was defined as a sequential

Keras model for simplicity [9]. In the first stage convolutions

with LSTM [10] where combined but that didn’t conduct to

better results.

Finally, a second model was defined having: two

convolutional 1D layers, 12 filters with a kernel size of 5, a

max-pooling layer, another sequence of two convolutional

1D layers, a global average pooling layer and finally a Dense

layer for output. The final layer, activated by sigmoid

function, containing 6 units because the output must fit the

number of labels.

The 1D convolutional layers will try to learn 12 filters, it

will take a five number window and multiply out the values

in that window by the filter values, in this way some features

being highlighted [5]. Then the max pooling layer reduces the

learned features to 1/3 of their size, choosing from three

consecutive values the maximum one, consolidating the

features to only the most essential elements [7]. The next set

of two convolutional 1D layers give the model a good chance

of learning features from the input data [10] and then, again,

global pooling layer aggressively summarize the presence of

a feature and is used as a transition from feature maps to the

output prediction [6]. The output of the global average

pooling layer is a single value that summarizes the presence

of the feature in the single feature map.

The model was compiled with the binary cross entropy error

loss function (log loss), as in the case of DNN model, and

trained using the “SGD” Stochastic Gradient Descend

optimizer, first for 100 epochs in order to select the best

learning rate. Then the model was trained for another 200

epochs, to minimize the score by computing partial derivatives

of the cost function and updating the parameters and learning

rate.

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

23

Fig. 12. CNN model summary.

V. TESTING DNN AND CNN MODELS ON VARIOUS DATA

SETS

First, the two models were trained only for the drive end

bearing B1 on normal and faulty behavior (fault of 0.007”) at

a constant load and speed. The trained model was tested for

the same bearing but under different conditions: 1. different

load with the same fault diameter, 2. the same load and speed

but with different fault diameter. This was done in order to

evaluate model performances. Good results were obtained on

the dataset where the DNN model was used using the

following datasets: Load 1, B1 drive end bearing dataset with

a fault diameter of 0.007”. The accuracy was 100% on the

train set, 90,05% on the validation set, 91,56% on the test

dataset.

Classification report on test dataset (Table II) shows in

recall column the percent of detection for each label. One can

see that only the fault in the roller (Label 5) has a poor

detection accuracy of only 45% (recall 0.45). This could be

explained by the fact that this fault doesn’t occur on each

rotation as the fault can be in a position that it won’t affect

the bearing behavior (between the inner and the outer race).

In this case the training data set for the ball fault will look

alike with the one recorded for normal behavior.

TABLE II: CLASSIFICATION REPORT ON TEST DATASET B1, LOAD 1,

FAULT DIAMETER 0.007”, DNN MODEL

Label Precision Recall F1 score

Label 0 1 1 1

Label 1 0.99 1 1

Label 2 0.97 0.97 0.97

Label 3 0.59 0.81 0.68

Label 4 1 1 1

Label 5 0.74 0.45 0.55

TABLE III: RESULTS FOR MODEL TRAINED ON B1, LOAD 1, FAULT

DIAMETER 0.007”

Model DNN Load Diameter

fault

Accuracy on

test dataset

Model was trained
only on B1- normal

and 5 faults types data

Load 1

0.007” 91,56%

Tested only on faults
data (B1)

Load 1 0.007” 96,73%

Tested only on faults

data (B1)

Load 1 0.021” 33,43%

Tested only on faults

data (B1)

Load 0 0.007” 83,10%

Tested only on faults
data (B1)

Load 0 0.021” 29,87%

Tested on normal

examples (B1)

Load 1 - 100%

Tested on normal
examples (B1)

Load 0 - 100%

When tested on Load 0 the model that was trained on Load

1 with a fault diameter of 0.007”, a good accuracy of 83.10%

was also obtained, but the same model recorded a poor

accuracy, of less than 40%, on datasets having a different

fault diameter (0.021”) (Table III):

Good results were obtained for both load cases using the

normal dataset for B1 unlike tests conducted on datasets with

a fault diameter of 0.021” (see Table IV).

TABLE IV: ACCURACY ON TEST DATASET HAVING 0.021” FAULT

DIAMETER

Load Label1 Label2 Label3 Label4 Label5

Load 1 20.3% 29,04% 37,90% 3% 76.66%

Load 0 17,8% 27,70% 28,90% 4% 70,30%

TABLE V: RESULTS FOR DNN MODEL TRAINED ON B1+B2, LOAD 1,

FAULT DIAMETER 0.007”

Model DNN,

LR=5e-4, 500

epochs

Load Diam

fault

Accuracy on

test dataset

Precision

Model was

trained on

normal and 5
faults types

(B1 and B2)

Load 1

0.007 90,40% 90,19%

Tested on B1
dataset, only

faults (5)

Load 1 0,007 96,37% 96,30%

Tested on B2

dataset only
faults (5)

Load 1 0.007 98,38% 98,34%

Tested on B1

dataset, only
faults (5)

Load 1 0.021 30,28% 28,66%

Tested on B2

dataset only
faults (5)

Load 1 0.021 29,04% 29,43

Tested on all

normal

(B1 + B2)

Load 0 99,94% 99,96%

In Table IV one can notice that only for the defect in the

roller (Label 5) the model achieved a satisfactory detection

rate and also for the outer race orthogonal fault (Label 4) the

model recorded the weakest detection rate.

For the CNN model, the overall accuracy obtained on test

dataset was 89,79%, which is less than the one from the DNN

model. The main reason for this poor result was that for Load

1 and a fault diameter of 0.007” the Label 3 wasn’t at all

detected.

The next experiment was to train the models using both

data, from B1 and B2, for one Load type (Load 1 or Load 0)

and to see if the model can find a pattern that match both

bearings behaviors and if the predicted results are improved.

The unidimensional data sets, provided by accelerometers

installed on B1 and B2 were concatenate, obtaining a

unidimensional series. The results show that the model was

able to predict very well on both B1 and B2, for the same

faults diameters and for the same load (Table 5 and Table 19).

For data provided by B1 and B2, in Load 1 case, 0.007”

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

24

diameter fault, the following results were obtained: 100%

accuracy on training dataset, 95% on validation dataset and

90,4% on test dataset accuracy (Table V):

As one can see from Table V training the model on a set

including normal and faulty behavior for one load and one

diameter and testing on another set (another load) with

normal behavior yield good results over 99% accuracy. One

problem arises when testing on faulty data this model

predicted faulty behavior with a good accuracy but was

unable to accurately identify the fault type, results indicated

an accuracy of less than 50% for fault identifications.

For condition monitoring it is important to predict failures

as early as possible in order to prevent machines failure and

this model is able to report a failure in its early stage. In order

to improve further fault identification a better approach will

be to group similar defects under one single label, as an

example for the actual dataset there are 3 labels for the outer

race faults (centered, orthogonal and opposite) those faults

generating a similar acceleration profile.

Classification report generated on test dataset (B1+B2), Load

1, 0.007” diameter fault, shows that Label 5 (defect in the

roller) was again predicted with a precision of less than 50%

(recall 0.41):

TABLE VI: CLASSIFICATION REPORT ON TEST DATASET, B1+B2, LOAD

1, FAULT DIAMETER 0.007”, DNN MODEL

Label Precision Recall F1 score

Label 0 0.98 1 0.99

Label 1 1 0.99 0.99

Label 2 0.96 0.97 0.97

Label 3 0.55 0.70 0.62

Label 4 0.99 0.98 0.99

Label 5 0.62 0.41 0.50

When DNN model was trained on data having 0.007”

diameter fault, Load1, tests on datasets having fault diameters

of 0.021”, at Load 1, didn’t obtain more than 30.28% overall

accuracy on all faults types (Table VI).

When training the DNN model on datasets having the

diameter fault 0.021”, at Load 1 (Table VIX), tests on dataset

having 0.007” fault diameter obtained 36,35% accuracy and

on the entire dataset where the model was trained the

following results were obtained: 100% accuracy on training

dataset, 83,53% on validation dataset, 87,07% on test dataset

and a classification report like in Table VIII. In this case the

detection gets better for Label 5 defect in the roller (87%) and

worse for Label 2 (61%).

TABLE VII: CLASSIFICATION REPORT ON TEST DATASET, B1+B2,

LOAD 1, FAULT DIAMETER 0.021”, DNN MODEL

TABLE VIII: RESULTS FOR MODEL TRAINED ON B1+B2, LOAD 1,

FAULT DIAMETER 0.021”

Model DNN,

LR=1e-3, 500

epochs

Load Diam

fault

Accuracy

on test

dataset

Precision

Model was

trained on

normal and 5
types faults data

(B1 and B2)

Load 1

0.021 87,07% 87,62%

Tested only on
all faults data 5

types (B1)

Load 1 0.021 92,80% 92,90%

Tested only on
all faults data-5

types (B2)

Load 1 0.021 91,89% 92,35%

Tested only on
all faults data- 5

types (B1)

Load 1 0.007 35,63% 36,20%

Tested only on
all faults data- 5

types (B2)

Load 1 0.007 35,20% 35,20%

Tested on all

normal
(B1 + B2)

Load 1 99,90% 99,98%

Tested on all

normal
(B1 + B2)

Load 0 99,82% 99,84%

Tested only on

all faults data 5

types (B1)

Load 0 0.007 31,61% 31,94%

Results from the DNN model have a poor accuracy on

diameter faults where the model wasn’t trained.

Testing the DNN model trained on 0.021” diameter faults

on data having 0,007” diameter fault, at the same Load 1, an

average accuracy of 35,63% was obtained, as one can see in

the Table VIII. In this case, the confusion matrix at evaluation

the model only on data having faults 0.007” diameter shows

in Fig. 13, on the rows, the existent real data from the

evaluation test dataset (only faults: Label 1 to Label 5) and on

the columns shows the predictions (from Label 0 to Label 5).

It can be seen that a small part from the faults were predicted

as normal (see column Label 0): 97 samples actually Label 1,

32 samples actually Label 2, 21 samples actually Label 3, 5

samples actually Label 4 and finally 13 samples actually

being Label 5 were all allocated to normal. On the first

diagonal of the matrix (columns 1-5) one can see the correct

predictions, all other faults are incorrect allocated to other

faults types. Reading from row 1 which comprises only real

faults belonging to Label 1, it can be noticed that 97 were

allocated to normal, 63 correct predicted, 579 allocated to

fault Label 2, 21 predicted as fault Label 3 and 459 allocated

to fault Label 4. Generally, only 2% were predicted as normal

from 100% data having faults, 36% were correct identified

and the rest of 62% were allocated to other faults types.

Fig. 13. Confusion matrix on test dataset having 0.007” diameter fault at

Load1, only faults data, DNN model.

Label Precision Recall F1 score

Label 0 0.96 1 0.98

Label 1 0.96 0.76 0.85

Label 2 0.61 0.67 0.64

Label 3 0.64 0.63 0.63

Label 4 0.91 0.87 0.89

Label 5 0.86 0.87 0.86

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

25

Testing the DNN model trained on data at Load 1 (Table

VIII) over normal samples but other load (Load 0), has been

again obtain a very good accuracy of 99,82%, normal

examples being very well detected, even when changing the

Load.

Thus, in the next experiment datasets were unified from

both diameters’ faults: 0.007” and 0.021”, from both bearings

B1 and B2 and train the two models for a specific Load type.

In this case both DNN and CNN models were improved by

modifying the sequential layers, by tuning the learning rate

and by adjusting the window size of the sampling. DNN

model gave an accuracy of 100% on the training dataset,

89,26% on validation data set and 92,20% on test dataset

while CNN model obtained an accuracy of 99,42% on

training dataset, a better accuracy of 97,82% on validation

dataset and 96,17% on test dataset in Load 1 case, having both

diameters faults inside data collection.

TABLE IX: RESULTS FOR MODEL DNN TRAINED ON B1+B2, LOAD 1,

FAULT DIAMETERS 0.021” + 0.007”

Model DNN,

LR=1e-3, 500

epochs

Load Diam.

fault

Accuracy

on test

dataset

Precision

Model was

trained on 70%
from normal

and 5 faults
types data,

(B1 and B2)

Load 1

0.021”
+

0.007”

92,20% 92,28%

Tested on all

B1 + B2,
normal data

Load1 99,98% 99,98%

Tested on all

B1 + B2, on all
fault data

Load 1 0.021”

+
0.007”

65,09% 65,02%

Tested on all

B1 + B2, Label

1

Load1 0.007” 99,79% 99,71%

Tested on all

B1 + B2, Label

2

Load1 0.007” 98,61% 98,61%

Tested on all
B1 + B2, Label

3

Load1 0.007” 95,24% 95,37%

Tested on all
B1 + B2, Label

4

Load1 0.007” 99,75% 99,67%

Tested on all

B1 + B2, Label
5

Load1 0.007” 95,14% 95,45%

Tested on all

B1 + B2, Label
1

Load1 0.021”

0,4% 0,3%

Tested on all

B1 + B2, Label
2

Load1 0.021”

8% 7%

Tested on all

B1 + B2, Label

3

Load1 0.021”

48,20% 49,11%

Tested on all

B1 + B2, Label

4

Load1 0.021”

24,82% 21,78%

Tested on all
B1 + B2, Label

5

Load1 0.021”

80,73% 81,59%

Tested on all
B1 + B2 normal

data

Load 0 99,90% 99,94%

Tested on all

B1 + B2, Label
1

Load 0 0.007” 93,85% 94,63

Tested on all

B1 + B2, Label
2

Load 0 0.007” 91,55% 93,30%

Tested on all

B1 + B2, Label

3

Load 0 0.007” 88,09% 88%

Tested on all

B1 + B2, Label

4

Load 0 0.007” 91,73% 91,97%

Tested on all
B1 + B2, Label

5

Load 0 0.007” 17,76% 17,82%

Tested on all
B1 + B2, Label

1

Load 0 0.021” 1% 0.8%

Tested on all
B1 + B2, Label

2

Load 0 0.021” 6% 6%

Tested on all

B1 + B2, Label
3

Load 0 0.021” 40,76% 40,28%

Tested on all

B1 + B2, Label
4

Load 0 0.021” 28,10% 25,52%

Tested on all

B1 + B2, Label

5

Load 0 0.021” 40,94% 41,04%

TABLE X: RESULTS FOR MODEL CNN TRAINED ON B1+B2, LOAD 1,

FAULT DIAMETERS 0.021” + 0.007”

Model CNN

LR=6e-4, 500

epochs

Load Diam.

fault

Accuracy on

test dataset

Precision

Model was
trained on 70%

from normal and

5 faults types
data,

(B1 and B2)

Load 1

0.021”

+

0.005”

96,17% 96,19%

Tested on all B1

+ B2, normal data

Load 1 99,99% 99,98%

Tested on all B1

+ B2, on all fault

data

Load 1 0.021”

+

0.005”

61,98% 67,65

Tested on all B1

+ B2, Label 1

Load1 0.007” 99,47% 99,02%

Tested on all B1

+ B2, Label 2

Load1 0.007” 99,22% 97,86%

Tested on all B1

+ B2, Label 3

Load1 0.007” 87,20% 87,90%

Tested on all B1

+ B2, Label 4

Load1 0.007” 99,88% 99,14%

Tested on all B1

+ B2, Label 5

Load1 0.007” 99,92% 99,84%

Tested on all B1

+ B2, Label 1

Load1 0.021”

4% 0.1%

Tested on all B1

+ B2, Label 2

Load1 0.021”

18% 18%

Tested on all B1

+ B2, Label 3

Load1 0.021”

22,30% 18,71%

Tested on all B1

+ B2, Label 4

Load1 0.021”

12,88% 15,06%

Tested on all B1

+ B2, Label 5

Load1 0.021”

76,17% 77,59%

Tested on all B1

+ B2, Label 1

Load 0 0.007” 98,10% 96,41%

Tested on all B1
+ B2, Label 2

Load 0 0.007” 96,72% 96,10%

Tested on all B1

+ B2, Label 3

Load 0 0.007” 87,36% 88,01%

Tested on all B1
+ B2, Label 4

Load 0 0.007” 99,63% 98,97%

Tested on all B1

+ B2, Label 5

Load 0 0.007” 93,43% 93,29%

Tested on all B1
+ B2, Label 1

Load 0 0.021” 5% 3%

Tested on all B1

+ B2, Label 2

Load 0 0.021” 16,67% 16,54%

Tested on all B1
+ B2, Label 3

Load 0 0.021” 29,02% 29,96%

Tested on all B1

+ B2, Label 4

Load 0 0.021” 8% 10.58%

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

26

Tested on all B1

+ B2, Label 5

Load 0 0.021” 59,43% 60,58%

Each one of the models obtained good accuracy for normal

data, almost 100%. Experimenting in Load 1 case, all faults

were well detected on test dataset (DNN gave an accuracy of

92,20% - Table IX and CNN 96,17% - Table X).

In the case of the CNN model, excepts fault Label 3, where

127 samples were false detected as normal, 19 were wrongly

associated to Label 4 and 105 samples wrongly predicted as

having fault in the roller, all the other labels were correctly

associated and true predictions for each labels are seen on the

main diagonal of the matrix. (Fig. 14)

 Fig. 14. Confusion matrix on test dataset, CNN model, Load 1.

Classification report (Fig. 15) shows that for the Label 3

the recall is of only 61% meaning that only 61% from the

examples in class 3 were correct predicted by CNN model.

All other classes are well detected on test dataset which

equals only 15% from entire dataset.

Label Precision Recall F1 score

Label 0 0.90 1 0.95

Label 1 0.99 0.99 0.99

Label 2 1 0.96 0.98

Label 3 1 0.61 0.76

Label 4 0.96 0.99 0.97

Label 5 0.85 1 0.92

Fig. 15. Classification report on test dataset – CNN model trained on Load
1.

Evaluating the models only on faults on the entire dataset

(for both B1+B2), both models obtained good accuracy in

case of diameter fault of 0.007” but didn’t obtained more than

48% accuracy for Labels 1,2,3 and 4 for diameter size of

0.021”, except Label 5, the fault in the roller, that was better

detected: accuracy 80.73% in case of DNN (Table IX), and

accuracy of 99,92% in case of CNN (Table X).

Evaluations were also done by changing the Load: testing

on Load 0 with data sets unknown to our model, similar

results were obtained with tests on Load 1 for the faults labels

(1,2,3,4) (Table IX and Table X).

For Load 0, it can be seen that CNN model provides the

best fault detection in the roller, having an accuracy of 93,43%

for 0.007” fault diameter and 59,43% for 0.021”.

By combining all datasets from Load 0 and Load 1, with

both B1 and B2 bearing data and both fault diameters: 0.007”

and 0.021”, the models slightly improved the detection for

fault diameter of 0.021”. When evaluating the CNN model

trained on all diameters and all loads, an increased detection

of around 10% for each label was obtained.

VI. CONCLUSION

Using the two models, 5 types of bearings faults and

normal behavior were predicted. All 5 types of faults used

for training the models contained two different diameters size

one of 0.007” and other of 0.021”, this affecting the results,

because the same type of defect was equally labeled both in

the case of the diameter of 0.007 and in the case of the

diameter of 0.021.

The shape of the signal in those two cases is different as

one can see in Fig.4 (case b-0.007” and c-0.021” for Label 4),

in Fig.5(case a-0.007”and b-0.021” for Label 5) or in Fig.6

(case a-0.021” and c-0.007” for Label 2) thus identifying a

common pattern could rise some problems. In Fig.5 one could

notice that the fault is better highlighted as the maximum

amplitude generated by the fault rise over. The next approach

could consist in defining, for the same fault, different labels

based on fault diameter or training on sets recorder for faults

with a more severe impact on overall behavior.

The presented models can diagnose the defects in incipient

phase (for 0.007” fault diameter) with an accuracy of more

than 95% and an accuracy of 100% for the normal behavior.

For the next phase of our research we intend to build a

slightly different testing stand. The models trained on CWR

datasets will be implemented on a monitoring a device for

vibrations detection and diagnose. For convenience and

portability, in the data collection and monitoring phase a

Raspberry Pi 4 (quad-core arm cortex A72 @1.5Ghz) running

Raspbian buster (a custom distro of ubuntu) could be

proposed. The accelerometer communicates with the

controller via an I2C interface configured on the GPIO. The

sensor run at the maximum capable sampling rate of 12kHz

providing acceleration data in the time domain on the three

cartesian axis. The Python script on the device records the

accelerations, writes the row data from the sensor in a csv text

file containing 12000 data recorded in a second that will be

given to the model to predict. Using the models trained on

data provided by Case Western Reserve University we intend

to detect faults in the bearings using the proposed detector.

ACKNOWLEDGMENT

This work has been funded by the European Social Fund

from the Sectoral Operational Program Human Capital 2014-

2020, through the Financial Agreement with the

title "Scholarships for entrepreneurial education among

doctoral students and postdoctoral researchers (Be

Antreprenor!)", Contract no. 51680/09.07.2019 - SMIS code:

124539

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

All authors had equal contributions in: the literature

review, analyzing the data, writing the paper and approving

the final version.

REFERENCES

[1] V. Flovik. How to use machine learning for anomaly detection and

condition monitoring. [Online]. Available: http://

towardsdatascience.com.

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

27

[2] V. Flovik. Machine learning for anomaly detection and condition

monitoring. [Online]. Available: http://towardsdatascience.com.
[3] L. Moroney, “Introduction to tensorflow for artificial intelligence,

machine learning and deep learning,” course 1 of 4 in the “TensorFlow

in Practice Specialization,” Deeplearning Ai.
[4] L. Moroney, “Sequences, time series and prediction, course 4 of 4 in

the “tensorflow in practice specialization,” Deeplearning Ai.

[5] L. Moroney, “Convolutional neural networks in tensorflow course 3
of 4 in the “tensorflow in practice specialization,” Deeplearning Ai.

[6] Nils Ackerman, Introduction to 1D Convolutional Neural Networks in

Keras for Time Sequences.
[7] J. Brownlee. A gentle introduction to pooling layers for convolutional

neural networks. [Online]. Available:

https://machinelearningmastery.com/
[8] Bearings Vibration Data, Case Western Reserve University. [Online].

Available: csegroups.case.edu/bearingdatacenter/pages/12k-drive-

end-bearing-fault-data
[9] Dive into deep learning. [Online]. Available: https://www. d2l.ai

[10] J. Brownlee, “Deep learning for time series forecasting,” Predict the

Future with MLPs, CNNs and LSTMs in Python, pp. 124-135, 2020.
[11] S. Zhang, S. Zhang, B. Wang, and T. G. Habetler, “Deep learning

algorithms for bearing fault diagnostics – A comprehensive review,”

Mechanical Systems and Signal Processing, 2020.

[12] R. Zhang. Z. Peng, L. F. Wu, B. B. Yao, and Y. Guan, “Fault diagnosis

from raw sensor data using deep neural networks considering Temporal

coherence,” MDPI Journals, 2017.

Crina-Narcisa Deac (Georgescu)

was born in
Baia Mare

in 1973, She is a PhD student at the

University “Politehnica” of Bucharest, the master’s

degree in training techniques in the virtual
environment

at the University “Politehnica” of

Bucharest in 2016, she is a mathematician

in the

University of North Baia Mare in 1997. She is an
entrepreneur working at Impro-Media SRL (https://impromedia.eu) as

cofounder and CEO. She has published some articles and books in VR,

AR and predictive maintenance topics.

Gicu-Calin Deac was born in Baia Mare in 1970, he

is a PhD student at the University “Politehnica” of
Bucharest. He got the master’s degree in training

techniques in the Virtual Environment at University

“Politehnica” of Bucharest in 2016, He is a dipl.
Engineer, University of North Baia Mare in 1995. He

is an entrepreneur working from at Impro-Media

SRL (https://impromedia.eu) as cofounder and CTO.
He has published some articles and books in VR, AR and IIoT topics.

Constantin Radu Parpala is a lecturer at the

University Politehnica of Bucharest, Faculty of

Industrial Engineering and Robotics, with a PhD in
industrial engineering. He has published over 40 papers

in scientific journals and conference proceedings. He

participated as a researcher in more than 10 research
projects. His main fields of interest include but are not

limited to IoT, IIoT, manufactuing processes, design, FEM, industry 4.0,

databases.

Cicerone Laurentiu Popa is an associate professor at

the University Politehnica of Bucharest, Faculty of

Industrial Engineering and Robotics, with a PhD in

industrial engineering. He has published over 50 papers

in scientific journals and conference proceedings. He
was a project manager in the project Selective Waste

Collection Integrated System for a Smart City –

SMARTCOLLECT (2016-2018) and participated as a researcher in over 12
research projects. His research is industrial engineering, waste management,

material flow management, smart cities, Industry 4.0.

Costel Emil Cotet is a professor at the University

Politehnica of Bucharest, Faculty of Industrial

Engineering and Robotics, with a PhD in industrial
engineering. He has published over 50 papers in

scientific journals and conference proceedings. He was

project manager in three projects and participated as a
researcher in over 40 research projects. His research is

manufacturing architectures, virtual enterprises, industrial engineering,
waste management, material flow management, smart cities, industry 4.0.

International Journal of Modeling and Optimization, Vol. 11, No. 1, February 2021

28

Copyright © 2021 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

https://www/

