
  

  

Abstract—Identifying the “health state” of the equipment is 

the domain of condition monitoring. The paper proposes a study 

of two models: DNN (Deep Neural Network) and CNN 

(Convolutional Neural Network) over an existent dataset 

provided by Case Western Reserve University for analyzing 

vibrations in fault diagnosis. After the model is trained on the 

windowed dataset using an optimal learning rate, minimizing 

the cost function, and is tested by computing the loss, accuracy 

and precision across the results, the weights are saved, and the 

models can be tested on other real data. The trained model 

recognizes raw time series data collected by micro electro-

mechanical accelerometer sensors and detects anomalies based 

on former times series entries. 

 
Index Terms—DNN, CNN, anomaly detection, fault diagnosis, 

vibration analyses condition monitoring, industry 4.0.  

 

I. INTRODUCTION 

Any machine, whether it is a rotating machine (steam 

turbine, pump, compressor, etc.) or a non-rotating machine 

(heat exchanger, valve, etc.) will eventually touch a point of 

poor health. The point might not be that of an actual failure, 

but one at which the equipment signals that it is no longer in 

its optimal state. This indicates that maintenance is required. 

The most used way to perform condition monitoring is to 

verify each sensor measurement from the machine and to 

impose a minimum and a maximum value limit on it. If the 

acquired value is in the interval, then the machine is healthy, 

otherwise an alarm is triggered, and the machine is considered 

to be in a poor condition. This procedure is known to send a 

large number of false alarms or misses alarms when situation 

calls for it, wasting time and availability of the equipment, or 

leading to failures [1]. In this paper authors propose another 

diagnosis method that uses the same measurements type 

differently  to better evaluate the real state of the machine. The 

proposed solutions reside in machine learning sphere based on 

statistical analysis for anomaly detection. There are several 

approaches: using multivariate statistics, performing a 

principal component analysis and then calculating the 

Mahalanobis distance to identify normal and anomalous data, 

some classifications algorithms including Support Vector 

Machine (SVM), using artificial neural network approach, 

like autoencoder networks, which compress the sensor reading 

to a lower dimensional representation, as PCA model, and 

captures the correlations and interactions between the various 
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variables [2]. 

The present paper uses deep learning approach for the fault 

diagnosis. The method doesn’t need a feature selection or 

decrease noise and depends only on the temporal coherence of 

the raw times series data supplied by the accelerometer. It is 

known that Deep Learning is able to reduce the dimensionality 

and learn characteristics from nonlinear data in the speech 

recognition, image classification and sentiment classification 

[3]. The proposed models are supervised learning models that 

recognizes the normal and fault data having a good accuracy 

in classification, learning directly from the raw time series and 

making use of the temporal coherence. 

 

II. DATA COLLECTION  

In order to validate this methodology based on deep 

learning neural network for fault diagnosis, we have used data 

provided by Case Western Reserve University [8] (CWR) 

where motor bearing experiments were initiated in order to 

characterize the performance of a motor bearing condition 

assessment system. The CWR datasets were over the time the 

case of study also for other papers [11], [12].  

The test stand used to acquire the bearing dataset consists 

of a 2hp motor, a torque transducer, dynamometer and control 

electronics. The test bearings support the motor shaft. Single 

point faults were introduced using electro-discharge 

machining to the test bearing (B1) having fault diameters of 

0.007” and 0.021” at two different rotations: 1797 rpm, motor 

load (HP) 0 and 1772 rpm, motor load (HP) 1.  

Outer raceway faults are stationary faults as the outer race is 

fixed, as a result the placement of the fault relative to the load 

zone of the bearing has a direct implication on the vibration 

response of the system [8]. The drive end bearing have the 

outer raceway faults located in the load zone (6 o’clock), at 3 

o’clock (orthogonal to the load zone) and at 12 o’clock. 

All data sets were collected using accelerometers attached 

to the motor housing with magnetic bases and placed at the 

12 o’clock position at both the drive end (bearing B1)  and 

fan end  (bearing B2) for each rotational speed. Data was 

collected at 12,000 samples /second for drive end bearing 

experiments (B1) and fan end bearing experiments (B2).  

The drive end and fan end were both considered for our 

training. Datasets where separately considered for two fault 

diameters 0.007” and 0.021” in two different load cases: 

motor Load 0 hp and motor Load 1 hp, with 5 types of faults: 
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inner race fault, ball fault and 3 outer race faults (centered – 

orthogonal – opposite) disponible in the dataset provided by 

Case Western Reserve.  

For the first case - Load 0, the rotational speed of the 

engine was 1797 rotations per minute (RPM) and as the 

sampling rate was set at 12 000/s, it means 12000 data points 

recorded in a second, 1797 Rot/min equals 30 Rot/s, it implies 

we have 400 data points by one rotation. In the second case – 

Load 1, the rotational speed was 1772 rotations per minute 

(RPM) at the same sampling rate, it means 29.53Rot/s. The 

rotational speed was approximated for both cases at 30 per 

second. 

In order to validate the model, in the experiment models 

were trained on one load and one diameter fault case, 

including both bearings B1 and B2, 6 files have been used for 

each bearing containing fault data and also the normal case, 

so that we had for each one:   

1 file for normal behavior containing 483903 datapoints  

for diameter fault case of 0.021”: 

1 file for inner race fault containing 121991 datapoints,  

1 file for outer raceway centered fault (@6:00, position 

relative to load zone, load zone centered at 6:00) containing 

121426 datapoints,  

1 file for outer raceway opposite fault (@12:00) containing 

121991 datapoints,  

1 file for outer raceway orthogonal fault (@3:00) 

containing 121846datapoints, 

1 file for roller defect containing 121410 datapoints 

A total of 1012207 data points included in 6 files were used 

for B1 and the same total for B2, the sum of sets for those two 

bearings, included in 12 files, will make up the buffer size of 

our dataset. Each data point contains only one component (the 

acceleration on one axis). Data obtained from all these 12 

files where used to obtain 12 timeseries that were processed 

in order to train, validate and test several models on both the 

drive end bearing B1 and the fan end bearing B2. 

This means six types of data are collected in the merged 

dataset, sets that were labeled within 6 classes (label 0 for 

normal condition, 1 for inner race fault, 2 for outer race 

centered, 3 for outer race opposite, 4 for outer race orthogonal 

fault, 5 for roller defect).  

 

 
Fig. 1. Drive end bearing B1-normal behavior – Label 0. 

 

Considering that the data size is 1012207 points x 2 (in the 

exemplification case) and that data can’t be served as an input 

of a DNN, data should be divided to form samples. The 

rotation period consists of 400 data points. Considering this, 

data was divided by the size of the sampling period (sampling 

period is approx.400 points), so that each sequences of data 

containing 400 data points (window size) will be a features 

vectors for the model. [4].   

 

 

 

 
Fig. 2. Drive end bearing B1, inner raceway fault Label 1. 

(a) 0,007” Load 0, (b)0,007” Load 1, (c) 0,021” Load1. 

 

During experiments better results were obtained when the 

window size was changed from 400 points, that means one 

full rotation, to 100 points representing a quart of rotation. As 

an example, by changing the segmentation [4], the accuracy 

of DNN model was improved from 82.75% to 94.56% for the 

experiments conducted on datasets in Load 0, with a fault 

diameter of 0.007”. Also, better results for DNN model were 

obtained when switching from 4 Dense layers to 5 Dense 

layers and using a smaller batch size of 20 samples. 
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Fig. 3. Outer raceway opposite fault label 3. 

(a) B1, 0.007” Load 1, (b) B2, 0.007” Load1. 

 

 
Fig. 4. Drive end bearing B1 outer raceway orthogonal fault label4. 

(a)0.007” Load0, (b)0.007” Load1, (c)0.021”Load1. 

 

 
Fig. 5. Drive end bearing B1 roller fault Label 5. 

(a) 0.007” Load 1 and (b) 0.021” Load 1. 

 

 

 

 
Fig.6. Outer raceway centered fault label 2. 

(a) B1, 0.021” Load 1, (b) B2, 0.021” Load 1, (c) B1, 0.007” Load1. 

 

A batch size of 20 samples was used to train the model to 

predict the 6 classes (0, 1, 2, 3, 4 or 5). The model will match 

a window of 100 features to a single label. 

Thus, 1012207 data points for all 12 files will be 

fragmented in 10122 total samples for all 6 kind of data, 

which will feed the model in the case study.  

Before this fragmentation, each of the 12 series was split 

once at 70% and once again at 85% in order to obtain 70% of 
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data forming the training set, 15 % of data forming the 

validation dataset and finally, the rest of 15 %,  composing  

the test set. After splitting all sets, the first 70% from each 

time series were concatenate  to compose the training dataset, 

then the next 15% to compose validation dataset, this was 

done in order to prevent the overfitting and to select the best 

trained neural network. The rest of 15 % from each timeseries 

was used to form the test dataset that will be used to compute 

the classification accuracy of the model. The sampling was 

automatically generated by using a windowed dataset 

function that uses flat_map to make sure the order of 

windowed datapoints, which represents tensors of 100 

datapoints, stays the same, also it does a one hot encoding 

inside, for the labels, after that, shuffles the samples. The one 

hot encoding will convert the categorical value of Label 0 into 

a tensor like [1 0 0 0 0 0] and the categorical value of Label 

5 into a sensor like [0 0 0 0 0 1]. 

 
TABLE I: LABELED DATASETS 

Data Type No. Samples 

(B1+B2) 

Label 

Normal 4839 × 2 0 

Defect in the Inner race  1219 × 2 1 

Defect in the Outer race  

(centered) 

1214 × 2 2 

Defect in the Outer race 
 (opposite) 

1219 × 2 3 

Defect in the Outer race 

 (orthogonal) 

1218 × 2 4 

Defect in the Roller 1214 × 2 5 

 

III. DNN MODEL (DEEP NEURAL NETWORK) 

A deep neural network structure model is used to learn 

characteristics based on temporal coherence from raw series 

data and make diagnosis. Deep Neural Network can learn 

useful features from data adaptively without expertise in 

specific fields. It has stacked layers of units, connected layer 

by layer, but there is no connection among the units in the 

same layer. The deep learning network has an input layer, an 

output layer and also several hidden layers between the input 

and output layer. The number of input units are set according 

the dimensionality of the input data (the window size) and the 

number of output units are set according the target data (in 

our case to 6, because we have 6 labels). In each layer unit 

there is applied an activation function (z) to a linear 

combination of former activations and added a bias: 

aj
m =  (zj

m), 

where m is the layer number, j the neural unit, 

zj
m = ijai

m-1+bj
m the linear combination of former 

activations in layer m-1 
where:  

σ(z) = max (0, z) is the ReLU activation function and 

σ(z) = 1/ (e-z + 1) is the sigmoid activation function used 

in the final layer.  and b are parameters for the model, first 

they are randomly initialized and then they are optimized 

during the epochs by the model. All units in the next layer are 

connected to every units from the formal layer. 

TensorFlow 2.0 and NumPy libraries were used for 

scientific computing in Python, Matplotlib Pyplot for plotting 

data, Os for parsing the files from the folder, Pandas for 

reading csv files and composing the data set in dataFrame, 

sklearn for metrics and Keras for defining the DNN deep 

learning model.  

The model was defined on a 5 layers neural network: first 

layer having 400 neurons, the input shape being the size of our 

window of 100 points, the next three layers having 100 units,  

all layers with rectified linear activation function ReLU, and 

the  last layer having 6 nodes, one unit for each class type and 

the Sigmoid activation function in order to predict the 

probability for each class.  

The model was defined with the binary cross entropy error 

loss function (log loss). Cross-entropy quantifies the 

difference between two probabilities distribution. The model 

predicts a model distribution of {p,1-p} (binary distribution) 

for each of the classes. Binary cross entropy will be used to 

compare these with the true distributions {y,1-y} for each class 

and sum up their results: 

 

C(yi, yi_predict) = Binary Cross Entropy 

=  -  ∑ ( 𝑦𝑚
𝑖 ilog(yi_ predict)+(1-yi)log(1- yi_predict) ), 

 
where y is the true value and ypredict is the predicted value p(yi), 

the output of the model. 

The scope is to minimize the cost function by using gradient 

descent method. The model was trained using the “SGD” 

Stochastic Gradient Descent optimizer, for the first 100 

epochs  in order to choose the best learning rate, and then for 

400 epochs, to minimize the score, by computing partial 

derivatives of the cost function and updating the parameters 

and learning rate. 
𝜕𝐶

𝜕
,

𝜕𝐶

 𝜕b
. 

A callback function was used to compute the best learning 

rate, the value of the learning rate is afterwards adjusted each 

epoch. The learning rate was plotted versus loss values 

obtained in each epoch and that value “lr_schedule”, which 

minimizes the most the loss, was pick up.   

 

lr_schedule = tf.keras.callbacks.LearningRateScheduler( 

    lambda epoch: 1e-8 * 10**(epoch / 20) 

) 

 
Fig. 7. Loss value function vs. learning rate variation for experiment Load 

0+1, all fault diameters, B1+B2 

 

For the experiment showed in Fig. 7 a learning rate of 5e-4, 

that minimizes the loss, was chosen. 

Then, the iteration process was continued over the number 

of chosen epochs until model fitted. (for different experiments 

a different value was chose 400 or 200 depending on the case). 

model =  tf.keras.models.Sequential([ 
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    tf.keras.layers.Dense(400, input_shape=[window_size], 

activation="relu"),  

    tf.keras.layers.Dense(100, activation="relu"),  

    tf.keras.layers.Dense(100, activation="relu"),  

    tf.keras.layers.Dense(100, activation="relu"), 

    tf.keras.layers.Dense(6, activation="sigmoid") 

]) 

Optimizer=tf.keras.optimizers.SGD( lr=5e-4,  momentum 

= 0.9) 

model.compile (loss = "binary_crossentropy", optimizer =  

optimizer, metrics=['accuracy']) 

history = model.fit (dataset, epochs=400, validation_data = 

(dataset_valid), verbose=1) 

 
Fig. 8. DNN model summary. 

 

 
Fig. 9. Loss variation during 200 epochs over B1+B2,   Load 0 +Load 1, all 

fault diameters. 

 

 
Fig. 10.  Accuracy variation during 200 epochs, over B1+B2,  Load 0 

+Load 1, all fault diameters. 

 

After the first stage, training the model, the process was 

tested for fault recognition process and fault recognition 

using a test dataset unknown to our model. 

The confusion matrix in the test set is showing the 

predicted values on the columns for each label (0,1,2,3,4,5) 

and true positives and true negatives (the normal - Label 0) 

on the first diagonal.  

Labels 4 and 2 are most accurate recognized by the model 

after the normal (Label 0) which are almost 100% recognized, 

in majority of the experiments. On the first diagonal, as it can 

be seen in the figure, they are colored lighter and normal 

examples are almost white colored. 

 
Fig. 11. Confusion matrix on the test dataset B1+B2, Load 0 + Load 1, all 

fault diameters. 

 

IV. CNN MODEL (CONVOLUTIONAL NEURAL NETWORKS) 

An optimized CNN model was after that tested in order to 

get better predictions. The model was defined as a sequential 

Keras model for simplicity [9]. In the first stage convolutions 

with LSTM [10] where combined but that didn’t conduct to 

better results.  

Finally, a second model was defined having: two 

convolutional 1D layers, 12 filters with a kernel size of 5, a 

max-pooling layer, another sequence of two convolutional 

1D layers, a global average pooling layer and finally a Dense 

layer for output. The final layer, activated by sigmoid 

function, containing 6 units because the output must fit the 

number of labels. 

The 1D convolutional layers will try to learn 12  filters, it 

will take a five number window and multiply out the values 

in that window by the filter values, in this way some features 

being highlighted [5]. Then the max pooling layer reduces the 

learned features to 1/3 of their size, choosing from three 

consecutive values the maximum one, consolidating the 

features to only the most essential elements [7]. The next set 

of two convolutional 1D layers give the model a good chance 

of learning features from the input data [10] and then, again, 

global pooling layer aggressively summarize the presence of 

a feature and is used as a transition from feature maps to the 

output prediction [6]. The output of the global average 

pooling layer is a single value that summarizes the presence 

of the feature in the single feature map. 

The model was compiled with the binary cross entropy error 

loss function (log loss), as in the case of DNN model, and 

trained using the “SGD” Stochastic Gradient Descend 

optimizer, first for 100 epochs in order to select the best 

learning rate. Then the model was trained for another 200 

epochs, to minimize the score by computing partial derivatives 

of the cost function and updating the parameters and learning 

rate. 
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Fig. 12. CNN model summary. 

 

V. TESTING DNN AND CNN MODELS ON VARIOUS DATA 

SETS 

First, the two models were trained only for the drive end 

bearing B1 on normal and faulty behavior (fault of 0.007”) at 

a constant load and speed. The trained model was tested for 

the same bearing but under different conditions: 1. different 

load with the same fault diameter, 2. the same load and speed 

but with different fault diameter. This was done in order to 

evaluate model performances. Good results were obtained on 

the dataset where the DNN model was used using the 

following datasets: Load 1, B1 drive end bearing dataset with 

a fault diameter of 0.007”. The accuracy was 100% on the 

train set, 90,05% on the validation set, 91,56% on the test 

dataset.  

Classification report on test dataset (Table II) shows in 

recall column the percent of detection for each label. One can 

see that only the fault in the roller (Label 5) has a poor 

detection accuracy of only 45% (recall 0.45). This could be 

explained by the fact that this fault doesn’t occur on each 

rotation as the fault can be in a position that it won’t affect 

the bearing behavior (between the inner and the outer race). 

In this case the training data set for the ball fault will look 

alike with the one recorded for normal behavior.  

 
TABLE II: CLASSIFICATION REPORT ON TEST DATASET B1, LOAD 1, 

FAULT DIAMETER 0.007”, DNN MODEL 

Label Precision Recall F1 score 

Label 0  1 1 1 

Label 1 0.99 1 1 

Label 2 0.97  0.97 0.97 

Label 3 0.59 0.81 0.68 

Label 4 1 1 1 

Label 5 0.74 0.45 0.55 

 

TABLE III: RESULTS FOR MODEL TRAINED ON B1, LOAD 1, FAULT 

DIAMETER 0.007” 

Model DNN Load  Diameter 

fault 

Accuracy on 

test dataset 

Model was trained 
only on B1- normal 

and 5 faults types data  

Load 1 
 

0.007” 91,56% 

Tested  only on faults 
data (B1) 

Load 1 0.007” 96,73% 

Tested only on faults 

data (B1) 

Load 1 0.021” 33,43% 

Tested only on faults 

data (B1) 

Load 0 0.007” 83,10% 

Tested only on faults 
data (B1) 

Load 0 0.021” 29,87% 

Tested on normal 

examples (B1) 

Load 1 - 100% 

Tested on normal 
examples (B1) 

Load 0 - 100% 

 

When tested on Load 0 the model that was trained on Load 

1 with a fault diameter of 0.007”, a good accuracy of 83.10% 

was also obtained, but the same model recorded a poor 

accuracy, of less than 40%, on datasets having a different 

fault diameter (0.021”) (Table III): 

Good results were obtained for both load cases using the 

normal dataset for B1 unlike tests conducted on datasets with 

a fault diameter of 0.021” (see Table IV). 

TABLE IV:  ACCURACY ON TEST DATASET HAVING 0.021” FAULT 

DIAMETER 

Load Label1 Label2 Label3 Label4 Label5 

Load 1 20.3% 29,04% 37,90% 3% 76.66% 

Load 0 17,8% 27,70% 28,90% 4% 70,30% 

 

TABLE V:  RESULTS FOR DNN MODEL TRAINED ON B1+B2, LOAD 1, 

FAULT DIAMETER 0.007” 

Model DNN, 

LR=5e-4, 500 

epochs 

Load  Diam 

fault 

Accuracy on 

test dataset 

Precision 

Model was 

trained on 

normal and 5 
faults types  

(B1 and B2) 

Load 1 

 

0.007 90,40% 90,19% 

Tested on B1 
dataset,  only 

faults (5) 

Load 1 0,007 96,37% 96,30% 

Tested on B2 

dataset only 
faults (5) 

Load 1 0.007 98,38% 98,34% 

Tested on B1 

dataset,  only 
faults (5) 

Load 1 0.021 30,28% 28,66% 

Tested on B2 

dataset only 
faults (5)  

Load 1 0.021 29,04% 29,43 

Tested on all 

normal  

(B1 + B2) 

Load 0  99,94% 99,96% 

 

In Table IV one can notice that only for the defect in the 

roller (Label 5) the model achieved a satisfactory detection 

rate and also for the outer race orthogonal fault (Label 4) the 

model recorded the weakest detection rate. 

For the CNN model, the overall accuracy obtained on test 

dataset was 89,79%, which is less than the one from the DNN 

model. The main reason for this poor result was that for Load 

1 and a fault diameter of 0.007” the Label 3 wasn’t at all 

detected.  

The next experiment was to train the models using both 

data, from B1 and B2, for one Load type (Load 1 or Load 0) 

and to see if the model can find a pattern that match both 

bearings behaviors and if the predicted results are improved. 

The unidimensional data sets, provided by accelerometers 

installed on B1 and B2 were concatenate, obtaining a 

unidimensional series. The results show that the model was 

able to predict very well on both B1 and B2, for the same 

faults diameters and for the same load (Table 5 and Table 19). 

For data provided by B1 and B2, in Load 1 case, 0.007” 
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diameter fault, the following results were obtained: 100% 

accuracy on training dataset, 95% on validation dataset and 

90,4% on test dataset accuracy (Table V): 

As one can see from Table V training the model on a set 

including normal and faulty behavior for one load and one 

diameter and testing on another set (another load) with 

normal behavior yield good results over 99% accuracy. One 

problem arises when testing on faulty data this model 

predicted faulty behavior with a good accuracy but was 

unable to accurately identify the fault type, results indicated 

an accuracy of less than 50% for fault identifications.  

For condition monitoring it is important to predict failures 

as early as possible in order to prevent machines failure and 

this model is able to report a failure in its early stage. In order 

to improve further fault identification a better approach will 

be to group similar defects under one single label, as an 

example for the actual dataset there are 3 labels for the outer 

race faults (centered, orthogonal and opposite) those faults 

generating a similar acceleration profile.   

Classification report generated on test dataset (B1+B2), Load 

1, 0.007” diameter fault, shows that Label 5 (defect in the 

roller) was again predicted with a precision of less than 50% 

(recall 0.41): 

 

TABLE VI: CLASSIFICATION REPORT ON TEST DATASET, B1+B2, LOAD 

1, FAULT DIAMETER 0.007”, DNN MODEL 

Label Precision Recall F1 score 

Label 0  0.98 1 0.99 

Label 1 1 0.99 0.99 

Label 2 0.96 0.97 0.97 

Label 3 0.55 0.70 0.62 

Label 4 0.99 0.98 0.99 

Label 5 0.62 0.41 0.50 

 

When DNN model was trained on data having 0.007” 

diameter fault, Load1, tests on datasets having fault diameters 

of 0.021”, at Load 1, didn’t obtain more than 30.28% overall 

accuracy on all faults types (Table VI). 

When training  the DNN model on datasets having the 

diameter fault 0.021”, at Load 1 (Table VIX), tests on dataset 

having 0.007” fault diameter obtained 36,35% accuracy and 

on the entire dataset where the model was trained the           

following results were obtained: 100% accuracy on training 

dataset, 83,53% on validation dataset, 87,07% on test dataset 

and a classification report like in Table VIII. In this case the 

detection gets better for Label 5 defect in the roller (87%) and 

worse for Label 2 (61%). 

 

TABLE VII: CLASSIFICATION REPORT ON TEST DATASET, B1+B2, 

LOAD 1, FAULT DIAMETER 0.021”, DNN MODEL 

 

TABLE VIII: RESULTS FOR MODEL TRAINED ON B1+B2, LOAD 1, 

FAULT DIAMETER 0.021” 

Model DNN, 

LR=1e-3, 500 

epochs 

Load  Diam 

fault 

Accuracy 

on test 

dataset 

Precision 

Model was 

trained on 

normal and 5 
types faults data  

(B1 and B2) 

Load 1 

 

0.021 87,07% 87,62% 

Tested  only on 
all faults data 5 

types (B1) 

Load 1 0.021 92,80% 92,90% 

Tested only  on 
all faults data-5 

types (B2) 

Load 1 0.021 91,89% 92,35% 

Tested  only on 
all faults data- 5 

types (B1) 

Load 1 0.007 35,63% 36,20% 

Tested only  on 
all faults data- 5 

types (B2) 

Load 1 0.007 35,20% 35,20% 

Tested on all 

normal  
(B1 + B2) 

Load 1  99,90% 99,98% 

Tested on all 

normal  
(B1 + B2) 

Load 0  99,82% 99,84% 

Tested only on 

all faults data 5 

types (B1) 

Load 0 0.007 31,61% 31,94% 

 

Results from the DNN model have a poor accuracy on 

diameter faults where the model wasn’t trained. 

Testing the DNN model trained on 0.021” diameter faults 

on data having 0,007” diameter fault, at the same Load 1, an 

average accuracy of 35,63% was obtained, as one can see in 

the Table VIII. In this case, the confusion matrix at evaluation 

the model only on data having faults 0.007” diameter shows  

in Fig. 13, on the rows, the existent real data from the 

evaluation test dataset (only faults: Label 1 to Label 5) and on 

the columns shows the predictions (from Label 0 to Label 5). 

It can be seen that a small part from the faults were predicted 

as normal (see column Label 0): 97 samples actually Label 1, 

32 samples actually Label 2, 21  samples actually Label 3, 5 

samples actually Label 4 and finally 13 samples actually 

being Label 5 were all allocated to normal. On the first 

diagonal of the matrix (columns 1-5) one can see the correct 

predictions, all other faults are incorrect allocated to other 

faults types. Reading from row 1 which comprises only real 

faults belonging to Label 1, it can be noticed that 97 were 

allocated to normal, 63 correct predicted, 579 allocated to 

fault Label 2, 21 predicted as fault Label 3 and 459 allocated 

to fault Label 4. Generally, only 2% were predicted as normal 

from 100% data having faults, 36% were correct identified 

and the rest of 62% were allocated to other faults types. 

 
Fig. 13. Confusion matrix on test dataset having 0.007” diameter fault at 

Load1, only faults data, DNN model. 

 

Label Precision Recall F1 score 

Label 0  0.96 1 0.98 

Label 1 0.96 0.76 0.85 

Label 2 0.61 0.67 0.64 

Label 3 0.64 0.63 0.63 

Label 4 0.91 0.87 0.89 

Label 5 0.86 0.87 0.86 
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Testing the DNN model trained on data at Load 1 (Table 

VIII) over normal samples but other load (Load 0), has been 

again obtain a very good accuracy of 99,82%, normal 

examples being very well detected, even when changing the 

Load.  

Thus, in the next experiment datasets were unified from 

both diameters’ faults: 0.007” and 0.021”, from both bearings 

B1 and B2 and train the two models for a specific Load type. 

In this case both DNN and CNN models were improved by 

modifying the sequential layers, by tuning the learning rate 

and by adjusting the window size of the sampling. DNN 

model gave an accuracy of 100% on the training dataset, 

89,26% on validation data set and 92,20% on test dataset 

while CNN model obtained an accuracy of 99,42% on 

training dataset, a better accuracy of 97,82% on validation 

dataset and 96,17% on test dataset in Load 1 case, having both 

diameters faults inside data collection. 

TABLE IX:  RESULTS FOR MODEL DNN TRAINED ON B1+B2, LOAD 1, 

FAULT DIAMETERS 0.021” + 0.007” 

Model DNN, 

LR=1e-3, 500 

epochs 

Load  Diam. 

fault 

Accuracy 

on test 

dataset 

Precision 

Model was 

trained on 70% 
from normal 

and  5 faults 
types data,  

(B1  and B2) 

 

 
Load 1 

 

 

0.021” 
+ 

0.007” 

92,20% 92,28% 

Tested on all  

B1 + B2, 
normal data  

Load1  99,98% 99,98% 

Tested on all  

B1 + B2, on all 
fault data 

Load 1 0.021” 

+ 
0.007” 

65,09% 65,02% 

Tested on all  

B1 + B2, Label 

1 

Load1 0.007” 99,79% 99,71% 

Tested on all  

B1 + B2, Label 

2 

Load1 0.007” 98,61% 98,61% 

Tested on all  
B1 + B2, Label 

3 

Load1 0.007” 95,24% 95,37% 

Tested on all  
B1 + B2, Label 

4 

Load1 0.007” 99,75% 99,67% 

Tested on all  

B1 + B2, Label 
5 

Load1 0.007” 95,14% 95,45% 

Tested on all  

B1 + B2, Label 
1 

Load1 0.021” 

 

0,4% 0,3% 

Tested on all  

B1 + B2, Label 
2 

Load1 0.021” 

 

8% 7% 

Tested on all  

B1 + B2, Label 

3 

Load1 0.021” 

 

48,20% 49,11% 

Tested on all  

B1 + B2, Label 

4 

Load1 0.021” 

 

24,82% 21,78% 

Tested on all  
B1 + B2, Label 

5 

Load1 0.021” 
 

80,73% 81,59% 

Tested on all  
B1 + B2 normal 

data 

Load 0  99,90% 99,94% 

Tested on all  

B1 + B2, Label 
1 

Load 0 0.007” 93,85% 94,63 

Tested on all  

B1 + B2, Label 
2 

Load 0 0.007” 91,55% 93,30% 

Tested on all  

B1 + B2, Label 

3 

Load 0 0.007” 88,09% 88% 

Tested on all  

B1 + B2, Label 

4 

Load 0 0.007” 91,73% 91,97% 

Tested on all  
B1 + B2, Label 

5 

Load 0 0.007” 17,76% 17,82% 

Tested on all  
B1 + B2, Label 

1 

Load 0 0.021” 1% 0.8% 

Tested on all  
B1 + B2, Label 

2 

Load 0 0.021” 6% 6% 

Tested on all  

B1 + B2, Label 
3 

Load 0 0.021” 40,76% 40,28% 

Tested on all  

B1 + B2, Label 
4 

Load 0 0.021” 28,10% 25,52% 

Tested on all  

B1 + B2, Label 

5 

Load 0 0.021” 40,94% 41,04% 

TABLE X: RESULTS FOR MODEL CNN TRAINED ON B1+B2, LOAD 1, 

FAULT DIAMETERS 0.021” + 0.007” 

Model CNN 

LR=6e-4, 500 

epochs 

Load  Diam. 

fault 

Accuracy on 

test dataset 

Precision 

Model was 
trained on 70% 

from normal and  

5 faults types 
data,  

(B1  and B2) 

 
 

Load 1 

 

 
0.021” 

+ 

0.005” 

96,17% 96,19% 

Tested on all  B1 

+ B2, normal data 

Load 1  99,99% 99,98% 

Tested on all  B1 

+ B2, on all fault 

data 

Load 1 0.021” 

+ 

0.005” 

61,98% 67,65 

Tested on all  B1 

+ B2, Label 1 

Load1 0.007” 99,47% 99,02% 

Tested on all  B1 

+ B2, Label 2 

Load1 0.007” 99,22% 97,86% 

Tested on all  B1 

+ B2, Label 3 

Load1 0.007” 87,20% 87,90% 

Tested on all  B1 

+ B2, Label 4 

Load1 0.007” 99,88% 99,14% 

Tested on all  B1 

+ B2, Label 5 

Load1 0.007” 99,92% 99,84% 

Tested on all  B1 

+ B2, Label 1 

Load1 0.021” 

 

4% 0.1% 

Tested on all  B1 

+ B2, Label 2 

Load1 0.021” 

 

18% 18% 

Tested on all  B1 

+ B2, Label 3 

Load1 0.021” 

 

22,30% 18,71% 

Tested on all  B1 

+ B2, Label 4 

Load1 0.021” 

 

12,88% 15,06% 

Tested on all  B1 

+ B2, Label 5 

Load1 0.021” 

 

76,17% 77,59% 

Tested on all  B1 

+ B2, Label 1 

Load 0 0.007” 98,10% 96,41% 

Tested on all  B1 
+ B2, Label 2 

Load 0 0.007” 96,72% 96,10% 

Tested on all  B1 

+ B2, Label 3 

Load 0 0.007” 87,36% 88,01% 

Tested on all  B1 
+ B2, Label 4 

Load 0 0.007” 99,63% 98,97% 

Tested on all  B1 

+ B2, Label 5 

Load 0 0.007” 93,43% 93,29% 

Tested on all  B1 
+ B2, Label 1 

Load 0 0.021” 5% 3% 

Tested on all  B1 

+ B2, Label 2 

Load 0 0.021” 16,67% 16,54% 

Tested on all  B1 
+ B2, Label 3 

Load 0 0.021” 29,02% 29,96% 

Tested on all  B1 

+ B2, Label 4 

Load 0 0.021” 8% 10.58% 
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Tested on all  B1 

+ B2, Label 5 

Load 0 0.021” 59,43% 60,58% 

 

Each one of the models obtained good accuracy for normal 

data, almost 100%. Experimenting in  Load 1 case, all faults 

were well detected on test dataset (DNN gave an accuracy of 

92,20% - Table IX and CNN 96,17% - Table X).  

In the case of the CNN model, excepts fault Label 3, where 

127 samples were false detected as normal, 19 were wrongly 

associated to Label 4 and 105 samples wrongly predicted as 

having fault in the roller, all the other labels were correctly 

associated and true predictions for each labels are seen on the 

main diagonal of the matrix. (Fig. 14) 

 
  Fig. 14. Confusion matrix on test dataset, CNN model, Load 1. 

 

Classification report (Fig. 15) shows that for the Label 3 

the recall is of only 61% meaning that only 61% from the 

examples in class 3 were correct predicted by CNN model. 

All other classes are well detected on test dataset which 

equals only 15% from entire dataset.  
 

Label Precision Recall F1 score 

Label 0  0.90 1 0.95 

Label 1 0.99 0.99 0.99 

Label 2 1 0.96 0.98 

Label 3 1 0.61 0.76 

Label 4 0.96 0.99 0.97 

Label 5 0.85 1 0.92 

Fig. 15. Classification report on test dataset – CNN model trained on Load 
1. 

 

Evaluating the models only on faults on the entire dataset 

(for both B1+B2), both models obtained good accuracy in 

case of diameter fault of 0.007” but didn’t obtained more than 

48% accuracy for Labels 1,2,3 and 4 for diameter size of 

0.021”, except Label 5, the fault in the roller, that was better 

detected: accuracy 80.73% in case of DNN (Table IX), and 

accuracy of 99,92% in case of CNN (Table X).  

Evaluations were also done by changing the Load: testing 

on Load 0 with data sets unknown to our model, similar 

results were obtained with tests on Load 1 for the faults labels 

(1,2,3,4) (Table IX and Table X). 

For Load 0, it can be seen that CNN model provides the 

best fault detection in the roller, having an accuracy of 93,43% 

for 0.007” fault diameter and 59,43% for 0.021”. 

By combining all datasets from Load 0 and Load 1, with 

both B1 and B2 bearing data and both fault diameters: 0.007” 

and 0.021”, the models slightly improved the detection for 

fault diameter of 0.021”. When evaluating the CNN model 

trained on all diameters and all loads, an increased detection 

of around 10% for each label was obtained. 

VI. CONCLUSION 

Using the two models, 5 types of bearings faults and 

normal behavior were predicted.  All 5 types of faults used 

for training the models contained two different diameters size 

one of 0.007” and other of 0.021”, this affecting the results, 

because the same type of defect was equally labeled both in 

the case of the diameter of 0.007 and in the case of the 

diameter of 0.021.  

The shape of the signal in those two cases is different as 

one can see in Fig.4 (case b-0.007” and c-0.021” for Label 4), 

in Fig.5(case a-0.007”and b-0.021” for Label 5) or in Fig.6 

(case a-0.021” and c-0.007” for Label 2) thus identifying a 

common pattern could rise some problems. In Fig.5 one could 

notice that the fault is better highlighted as the maximum 

amplitude generated by the fault rise over. The next approach 

could consist in defining, for the same fault, different labels 

based on fault diameter or training on sets recorder for faults 

with a more severe impact on overall behavior.  

The presented models can diagnose the defects in incipient 

phase (for 0.007” fault diameter) with an accuracy of more 

than 95% and an accuracy of 100% for the normal behavior. 

For the next phase of our research we intend to build a 

slightly different testing stand. The models trained on CWR 

datasets will be implemented on a monitoring a device for 

vibrations detection and diagnose. For convenience and 

portability, in the data collection and monitoring phase a 

Raspberry Pi 4 (quad-core arm cortex A72 @1.5Ghz) running 

Raspbian buster (a custom distro of ubuntu) could be 

proposed. The accelerometer communicates with the 

controller via an I2C interface configured on the GPIO. The 

sensor run at the maximum capable sampling rate of 12kHz 

providing acceleration data in the time domain on the three 

cartesian axis. The Python script on the device records the 

accelerations, writes the row data from the sensor in a csv text 

file containing 12000 data recorded in a second that will be 

given to the model to predict. Using the models trained on 

data provided by Case Western Reserve University we intend 

to detect faults in the bearings using the proposed detector. 
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