
  

  

Abstract—This paper describes authors’ research in 

developing collaborative virtual reality applications as an 

interface for monitoring big data by creating a digital twin of 

the factory and sync the movement of virtual machines with the 

real ones. The platform allows an interactive reading of the 

sensor telemetry and processes data, maintenance information 

and access to a large technical library. For data acquisition and 

reports, a novel image data method was used. The data values 

that are encoded as pixel colors of images, using different 

encoding methods for each data type (text, integer, float, 

Boolean) are also encrypted using an image as a symmetric 

encryption key and are stored in the cloud in a time base folder 

structure, assuring a better data compression, security and 

speed, compared with the existing solutions based on JSON and 

NoSQL databases. The platform allows the remote access from 

the VR environment to the machines consoles and allows 

parametrization and remote commands. 

 
Index Terms—Virtual reality, smart factory, digital twin, big 

data, Industry 4.0 . 

 

I. INTRODUCTION 

Advancement in information technology has given rise to 

explosion of data in every field of operations and we are 

seeing an ascending trend of digitalization in all activities. 

Emerging technologies like Internet of Things (IoT) [1]–3], 

big data [4], cloud computing [7]–[9], artificial intelligence, 

wireless sensor networks [5, 6], embedded system [10], and 

mobile Internet [11]) are being introduced into the 

manufacturing environment. A strategic initiative called 

“Industrie 4.0” was proposed and was adopted by the German 

government [12], as part of the “High-Tech Strategy 2020 

Action Plan”. The similar strategies were also proposed 

worldwide, for example, “Industrial Internet” [13] from USA 

and “Internet PLUS” [14] from China. The Industry 4.0 

describes a production oriented Cyber-Physical Systems 

(CPS) [15]–[17] that integrate production facilities, 

warehousing systems, logistics, and even social requirements 

to establish the global value creation networks [18], which 

means that industrial machines have sophisticated 

communication and smart capabilities. 

Industrial Internet-of-Things (IIoT) is a term used to refer 

to IoT applications in the industrial context and involves the 

use of sensors and actuators, control systems, M2M (from 

machine to machine communications), cloud storage of Big 

Data, data analysis and security mechanisms [20].  

The main features of Industry 4.0 include horizontal 

integration through value networks to facilitate 

inter-corporation collaboration, a vertical integration of 

hierarchical subsystems inside a factory to create flexible and 

 
Manuscript received February 20, 2020; revised May 23, 2020. 

The authors are with University “Politehnica” of Bucharest, Romania 

(e-mail: george.deac@impromedia.ro, crina.deac@impromedia.ro, 
costelemilcotet@gmail.com, laur.popa79@gmail.com). 

 

reconfigurable manufacturing system, and end-to-end 

engineering integration across the entire value chain to 

support product customization. 

The smart factory is an implementation of Cyber-Physical 

Systems that is based on the extensive integration of 

information technologies to manufacturing. 

A smart factory framework consists in four tangible layers, 

namely, physical resource layer, industrial network layer, 

cloud layer, and supervision and control terminal layer. The 

physical resources are implemented as smart things which 

can communicate with each other through the industrial 

network. Various information systems like Enterprise 

Resource Planning ERP, Client Relationship Management 

(CRM), Business Intelligence (BI), Predictive Maintenance 

(PM) exist in the cloud which can collect massive data from 

the physical resource layer and interact with people through 

the web or through the applications terminals. Thus, the 

tangible framework enables a networked world for intangible 

information to flow freely. This forms a CPS where physical 

artifacts and informational entities are deeply integrated. 

[19]. 

In the implementation of a control system, according to I. 

Gonzales et al. the key factor is the interconnection between 

sensors, controllers, tools, and cloud services, through a 

secure communications network. 

Monitoring, tracking and automation of technological 

processes for both industrial and non-industrial settings 

requires efficient transmission of information through 

communications networks [20] Wired or wireless channels 

are used to communicate data. Due to mobility and flexibility, 

wireless communication has great advantages and will be 

widely used in Internet-of-Things (IoT). Various wireless 

protocols such as Wi-Fi, Bluetooth, ZigBee, 3G / 4G / 5G, 

RFID, Z-Wave, IPV6 over personal area networks with low 

power (6LoWPAN) and Near Field Communication (NFC) 

are available [20]. 

Devices are linked over the network to detect, monitor, 

and act on physical components in the real world. To simplify 

and optimize this large-scale integration, proprietary 

protocols and new evolving communication protocols must 

converge on a prevalent protocol platform [21]. One of the 

present existing protocols for industrial communication is 

OPC-UA, a protocol that has been standardized in the IEC 

62541 series. OPC UA is an open and secure platform that 

allows vendor-neutral programmable logic controllers (PLCs) 

to communicate with each other and up to the manufacturing 

level and into the production planning or ERP system [22]. 

Material handling and transportation plays a fundamental 

role in logistics success and these workflows are needed to be 

turbo-charged with Autonomous Mobile Robots (AMRs). 

There are already few AMR solutions developed by 

companies like Kiva (which was acquired by the Amazon in 

2012), Seegrid, Swisslog, Grenzebach and few startups like: 

Iam Robotics, Locus Robotics, 6River Systems, Fetch 

Robotics, Magazino, Grey Orange and InVia Robotics. Most 
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of this AMR are using laser scanning or 3d cameras to 

navigate and assist the workers and barcode scanning or radio 

frequency identification (RFID) tags to read the packages 

content or to identify the shelves. The AMR have also 

integrated GPS and accelerometers to send in real time their 

position, speed, and accelerations. Some of the producers, 

like Seegrid are providing complete fleet management 

software to maximize the operational efficiency of the fleet. 

This tremendous amount of data generated from sensors, 

actuators, camera enabled devices, machines, processes, 

RFID’s, AMR’s, industrial robots, and humans, need to be 

accumulated in order to be processed, and this led to the 

concept of Big Data.  

Chan (2013) identifies the nature, characteristics and 

potential applications of Big Data and proposed an 

architecture for Big Data analytics, based on a client-server 

protocol. In the client side, Chan proposes an architecture that 

consists of NoSQL databases, distributed file systems and a 

distributed processing framework. The NoSQL database is a 

non-relational data base, but it stores records in key-value 

pairs and work very efficiently with unrelated data. NoSQL 

databases are highly scalable that makes these databases ideal 

for Big Data applications. The server architecture consists of 

multiple parallel computing platforms that can handle large 

volume of data to be processed at an extremely fast rate. 

Hadoop architecture includes client machines and a cluster of 

loosely coupled servers that serve as HDFS and MapReduce 

data processing core. The client machines load input data into 

the cluster, submit MapReduce processing jobs, and retrieve 

the processed output from the server cluster when the 

processing is complete.  

Another challenge is made by the Big Data visualization. 

There are few cloud-based platforms that allows historical 

and real time data visualization, but using tabular data or 

graphs is not all the time the best way of seeing how a digital 

twin is performing.  

In their research: “The Factory of the Future Production” 

Milan Gregor and all, have imagined a virtual platform called 

ZIMS (Zilina Intelligent Manufacturing System) where the 

processes and simulations can be visualized using Virtual 

Reality. 

 

II. THE 8 AGORA PLATFORM 

The present paper proposes a Virtual Reality platform for 

collaborative working which is able to collect, process and 

display in real time how a Smart Factory perform, by creating 

a Digital Twin of it and synchronize all the machines, AMR’s,  

robots, production lines and warehouses created in 3D with 

the real ones. Using this approach become possible by using 

HMD’s (head mounted displays) to be immersed with other 

remote users in a virtual factory and see all the processes, 

how the machines are performing, to see real time telemetry 

data, information about maintenance, access a large library of 

technical documentation and even be able to remotely access 

the machines, configure the parameters and start / stop the 

processes. 

Was developed a Virtual Reality server-client multi-user 

platform as an immersive interface that allows development 

by exposing a large API through JavaScript and QML (QT 

modelling language). The 3D environment can be created by 

importing 3D models with PBR (physically based rendering) 

materials in FBX open format. The 3D objects can have all 

the textures embedded, or externally linked and could include 

animations which are easily triggered by scripting. The frame 

rate of the animations can be changed accordingly with the 

speed of real machines.  

 
Fig. 1. 8 agora server components. 

 

8agora engine provide live audio communication and 

include a server-side (Fig. 1) audio mixer that compute the 

attenuation based on the distance between user’s avatars and 

spatial surround panning based on angular position of the 

user user avatar, providing a very realistic and immersive 

communication between users. The engine also allows the 

use of customizable 3D avatars and includes a powerful 

physics simulation system for avatar movement and object 

interaction. Based on HTC Vive or Oculus Rift trackers, or 

by using a Leap Motion controller, all the joints motions of 

the user are reflected in real time to the avatar and are also 

broadcasted to the other users, using an avatar mixer 

server-side process. In this way all the user movements are 

shown in real time by all the participants of the simulation. 

To enhance the nonverbal communication and body 

language, the engine includes an advanced automated 

animation system and a gesture interface for the users which 

are using the platform without HMD and hand controllers, in 

desktop mode. By shaking hands, users can exchange contact 

information, all contacts being displayed in a contact list 

application. Using this contact list application, all your 

contacts and friends can be displayed with their status, online 

or offline and by a simple click on their names you can see 

their location and have the option to follow them. 

8agora engine also allows the access of web content inside a 

web entity, which is a chromium-based web browser. Using 

this option, to display web content in 3D environment, can be 

developed a wide array of applications to extend the 

functionality of the platform. 

The implementation of Digital Twin based on this platform 

consists of the following modules: data acquisition, data 

storage, animation driver, remote control, and digital library. 

1) The data acquisition module is based on few OPC UA 

client applications that will read all the values from 

the OPC UA servers, on timed cycles with a 

predefined frequency (each second for example) and 

use a novel method for encoding and encrypting of 

data and automatic uploading in the cloud.  

The method consists in creating full-color images (16 

million colors) whose pixels are generated based on 

numerical or alphanumeric values to be stored. 

The color of each pixel can be defined by the 
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three-component R, G, and B with values between 0 and 255, 

respectively 0 and FF in hexadecimal. The image size can be 

defined according to the number of values to be archived and 

their type. Each variable type has a predefined encoding 

method, being easy to store Booleans, integers, floats, or 

varchars. On the generation process is used a symmetric key 

consisting in a random generated image, and the color pixels 

are augmented based on corresponded pixel in the image key. 

Without the encryption key it is impossible to decode the 

stored values. Also, the LZW nondestructive compression of 

the PNG (portable network graphics) format used to save the 

images ensure a good data storage, the resulted PNG images 

being 10-15 times smaller than the widely used JSON 

(JavaScript open notation) format. This compression of the 

data assures an increased speed on data transmission and a 

small traffic over the network  [29], [30]. The generated files 

are named using this model: 

 deviceUniqueID_timestampInMiliseconds.png 

       example:  a1a5_1495270124340.png 

The Data Storage module is based on the same method 

used for data transmission (PNG images). The images are 

stored on the cloud on an arborescent folder structure, 

generated based on timestamp by exploding the first 7 

characters and store the images inside the last subfolder (t7). 

/deviceUniqueID/t1/t2/t3/t4/t5/t6/t7/deviceUniqueID_tim

estampInMiliseconds.png 

example: 

/a115/1/4/9/4/2/7/0/ k137_1495270124340.png  

The reading speed of data for the historian application is 

not dependent on the volume of stored data. Each time when 

a timestamp snapshot is called, the application will read the 

correspondent PNG image, based on the timestamp value, 

and will decode using the image key the variable values. To 

read a specific variable is not needed to decode the entire 

image, but only the correspondent pixels (x, y) from that 

image. 

The animation driver module was created to synchronize 

the motion of all machines, robots, AMR’s, production lines 

products and materials (figure 2). In a factory there are a 

really big number of real time data that need to be captured, 

transmitted, analyzed, and processed in order to create the 

Digital Twin.  

From each machine we can collect from the sensors: 

pressure, temperature, rotation, accelerations, vibrations, 

operating state, statuses, alarms, errors.  

Form the AMR’s accelerometers the acceleration values 

on X,Y,Z, GPS positioning, battery level, current task, from 

automated production lines even more data need to be read. 

This led to the impossibility to create a reliable real time 

animated model for the factory.  

Taking this in consideration, was developed a simplified 

model based on triggers, and the telemetry data were used 

only for selective component status real time visualization. 

For each machine was created an accurate 3D model with 

different animations for each working process. The speed of 

animations can be adjusted to be in sync with the real 

machine movement. 

For machines are collected this status messages:  

NM – need raw material. 

In this case the animation of machine is stopped. 

 

SP.t.n - Starting process type (t), followed by the counted 

process execution time (n) (e.g. SP.16.20 - the machine start 

the process 16 with estimated execution time of 20 seconds); 

In this case we will load animation number 16 and we will 

adjust the animation frame rate so the total animation will 

have 20 seconds in length. 

PR - have processed material and need raw material. 

The animation of the machine is stopped. 

EM – emergency stop 

The machine animation is paused. 

RM – resuming the task 

In this case the animation is un-paused and continue until 

the last frame of that specific task sequence. 

For the AMR’s are collected this status messages: 

AV - Idle and available to task 

The AMR is stopped in the last known position. 

ST.p.m.s – Starting a task to deliver raw material or 

product (p) to the machine (m) with estimated speed of 5 

km/h (s) 

BL – battery level (it is just an augmentation value) 

BS – battery swap 

The AMR will go from the current position to the Battery 

exchange stand. 

ES – emergency stop 

The AMR animation is paused. 

RT – resuming the task 

The animation is un-paused and the animation of 

movement of the AMR continue until it reaches his target. 

For the AMR’s were created animations for each 

individual task (serving a specific machine number), these 

animations and their frame rate being triggered and adjusted 

based on the status messages (Fig. 2). 

 

Fig. 2. View from the virtual factory. 

 

For the warehouse twin was used a connection to the ERP 

database and the current stocks and position of each 

component, product or raw material is read in real time. 

Using an extensible library of 3D models and reading the 

position of each individual inventory piece, we are able to 

populate the shelves in the 3D simulation to be the same as in 

the real factory.  

Were implemented in the ERP few supplemental columns 

for positioning: warehouseID, shelveID, packaging, 

positionXY, sizeX, sizeY and sizeZ for each inventory piece. 

warehouseID – [integer] represent the ID of the warehouse, 

based on this the object are placed in a speciffic warehouse 

shelveID – [integer] each Shelve have his own ID 

packaging – [integer] for the small entities (screws, bolts etc.) 

we have the number of items in a container (e.g. 1000) 
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positionXY- [array] – relative position on the shelve (each 

shelve is sliced in zones on x and y, the relative position 

being defined by the zone number (e.g. positionXY=[3,7], 

means that the object will be placed on the 7 shelf starting 

with the third zone. 

sizeX – size of the entity on x  

sizeY – size of the entity on y  

sizeZ – size of the entity on z  

For small and packaged entities (with packaging >1), the 

sizeX, sizeY and sizeZ represent the container size, not the 

individual size. For example, in the case of a container with 

100 bolts, we will keep the container on the shelf until these 

100 bolts are all consumed (Fig. 3). 

 

 
Fig. 3. Warehouse view. 

 

 
Fig. 4. Outside view of the factory. 

 

The Remote-Control module was implemented to facilitate 

the control of machines from the VR environment and to 

allow a real time view of machines, access to the control 

panel of machine to adjust the parameters and trigger 

commands. 

The Remote-Control module contains these components: 

- User Authentication 

- Remote desktop connection to the machine 

- Low latency live streaming  

The user authentication module based on username / 

password allows the user to commute from visualization 

mode to command mode on the Remote panel. Each user can 

have remote commands access only on specific machines or 

processes. 

The remote desktop connection module stream live the 

screen of the machine control panel and capture (in control 

mode state after authentication) the actions of the remote user 

on the remote screen and execute this actions on the machine 

control panel. 

This component is developed in Node.js, using web 

sockets, and allows remote desktop sessions from Linux and 

Windows operating systems. The remote-control window is 

displayed in a web browser entity inside the VR platform. 

This approach, using Remote Desktop connection allows 

an easy implementation of remote sessions for all types of 

machines, having a low latency (40-100 ms) (Fig. 5), much 

better than using web services (800 ms) or CyberOPC (400 

ms) [31]. 

 

 
Fig. 5. Streaming details for the remote desktop. 

 

The Low Latency live streaming component use video 

cameras and based on a WebRTC implementation assure a 

remote view of the machine. This real time view from the 

machine is mandatory for controlling it remotely (Fig. 6). 

 

 
Fig. 6. Control and live view screens. 

 

On the 3D models of machines were implemented some 

hot spots, at machine component level and when an user 

clicks with his controller on one of this spots, he can show the 

telemetry data from sensors, information regarding the 

maintenance (can be implemented also a cloud application 

for predictive maintenance to see the remaining working 

hours for each component) (Fig. 7). 

 

 
Fig. 7. Assembly line on the factory. 

 

 
Fig. 8. CNC machine with robotic arm. 

 

Also, was included a technical library and all the users can 

have access in real time to technical information regarding 

the machines and processes by clicking on machine brand 
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logo.  

 

 
Fig. 9. Training simulation machines. 

 

 
Fig. 10. Training zone with interactive screens. 

 

The platform can be used also for training on machines, 

different scenarios for working conditions, hazard and 

simulations being easy to be implemented using the physics 

engine in combination with the fbx baked animations 

triggered by scripting (Fig. 9).  

In this way the new employees can be trained to proper use 

the machines without stopping the production process and 

affecting expensive machine. After completing the training in 

VR they can easily use the knowledge to operate the real 

machines and processes (Fig. 9, 10, 11). 

 

 
Fig. 11. Hydraulic press. 

 

III. CONCLUSION AND FUTURE WORK 

In this research we have tried to find an easy way to create 

a Digital Twin of a smart factory, which can display in 3D in 

real time the processes, the machine status, the AMR’s 

positions and movement, the Warehouse stock. We didn’t use 

the telemetry data to create the simulations, these values 

being used for visualization only. To create a Digital Twin 

simulation for each machine, for each process and for AMR’s 

based on telemetry data, tremendous hardware resources are 

needed and the results, from the user point of view could be 

worse, because of the lagging in getting the data, the latency 

caused by processing the data and physical simulations. The 

Remote-control using web-based access, created with web 

sockets, seems to be a good solution, the latency being really 

small (under 100 ms) and the controls very responsive.  The 

WebRTC live streaming solution also assure a small latency, 

the remote operator being able to visualize from VR the 

machine tools and the effect of the parameter changing and 

commands triggered remotely from VR. As a result of 

applications implemented in this paper, we can conclude that 

Virtual Reality is an emerging technology that can be used 

with success for visualization of industrial processes. Future 

research will be done in order to optimize the animation 

driver and to include supplemental status messages, in this 

way the representation accuracy being higher. We are trying 

to find partners to implement this platform for multiple 

real-life scenarios, and we are confident that this platform can 

become a valuable support for collaborative work at a 

distance. 
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