
  

  

Abstract—The conventional approach is not the best choice 

for optimizing the manufacturing process, because of its specific 

structure, and of the specific definition of the optimization 

problem in its case. During last years, the authors of this paper 

have developed the concept of holistic optimization and a 

method for its application in manufacturing process 

optimization. The method works on the base of two procedures, 

aiming the causal identification and the comparative assessment 

of the manufacturing jobs. This paper presents a validation of 

these procedures by applying them in the case of estimating the 

manufacturing cost of roller bearings. The case study used a 

database extracted from the industrial environment. Clusters of 

condition-variables being the most appropriate for evaluating 

the cost are determined, at first. Then, neighborhoods of the 

interrogated cases are extracted from the database and the 

proximity function is identified. The estimated ranking (hence 

the manufacturing cost) of the interrogated case is found on this 

base, eventually. 

 
Index Terms—Manufacturing cost estimation, comparative 

assessment, causal identification, roller bearings.  

 

I. INTRODUCTION 

In the last years one of the most important problems in 

industries was cost saving. In engineering terms a bearing is 

defined “Any two surfaces rubbing against each other be it a 

bush or sleeve around a shaft or a flat surface moving over 

another flat surface”. 

The bearings can be produced in large quantities in the 

required quality and accuracy. They are used nearly 

everywhere, in industries such as automotive, aerospace, 

machine tools, mining, medical, agriculture.  

A standard bearing is composed by four basic components 

an outer and inner ring, a number of Z rolling elements (ball 

and roll) and a plastic or metal sheet cage (see Fig. 1).  

Bearings can be classified according to: 

1) The type of motion, as for plain bearings, where the 

gliding motion takes place between the bearing and the 

supported part, and as for rolling bearings, where the 

rolling bodies describe a rolling motion; 

2) The direction of bearing force for radial and thrust 

bearings; 

3) The function in fixed bearings which can take up 

shearing forces and axial forces in both directions and in 

non-locating bearings which allows displacement in a 

longitudinal direction.  

In the era of the mass customization, rapid and accurate 
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estimation of the manufacturing cost improve the 

competitiveness of a product.  

 
Fig. 1. Types of bearings. 

 
The costs have become a major driver of business in 

many industries. The strong economic motivation for cost 

estimation and modeling comes from the requirement to 

know future manufacturing costs required in the quotation 

process.  

There have been a number of researchers who studies on 

accurate cost estimation for manufacturing product. 

In traditional system, the cost and price of product is 

calculated as follow: 

1) Tracing: allocating direct material and direct payment to 

products and services. 

2) Allocating overhead costs to products or services based 

on a definite attraction rate. 

3) Calculating the cost and price of products, [1]. 

In [2] is described the development of a cost estimating 

methodology for predicting the cost of engineering design 

during the conceptual stages of product development. Cost 

estimated and cost engineering are separate disciplines yet 

inextricably linked. The cost estimating refers to a 

commercial business process that provides the customer with 

an estimate of product or service. The cost engineering is 

more involved and concerned with design trade studies 

ratherthan that of providing estimates for commercial 

proposals.  

Shehab et al. develop in [3] an intelligent 

knowledge-based system that accomplishes an environment 

to assist inexperienced users to estimate the manufacturing 

cost modelling of a product at the conceptual design stage of 

the production cycle. The main function of the system, 

besides estimating the product cost, is to generate initial 

process planning includes generation and selection of 

machining processes, their sequence and their machining 

parameters.  

The paper [4] presents a cost estimation methodology as 

well as a cost estimation model, which estimate the cost of 

products by relative comparison of the attributes of new 

product variants with the attributes of standard product 

variants.  

In [5] the author investigate experimentally the 

applicability of neural networks for cost estimation in early 
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phases of product design. Experiments are based on pilot cost 

data from a manufacturing company.  

Ma et al proposed in [6] a generic semantic model for the 

purpose of automatic cost estimation, and a new concept 

named cost feature is suggested. In this paper, they 

investigate a new manufacturing cost calculation model 

coherently throught the lifecycle of a product series, 

especially emphasizing at the conceptual design stage, which 

integrates three funtional sub-models: feature-based costing, 

data mining and semantic reasoning.  

In paper [7] is presented a mathematically advanced 

method for improving fidelity of cost estimation for an 

engineering system. The authors used a new methodology for 

analyzing a set of cost data available in the literature, and 

compared the new cost model to results from a neural 

network based analysis and to a cost regression model.  

The paper [8] concerns a new approach of the finding 

optimal decisions at all stages of the manufacturing process. 

This approach involves estimating the results (for example 

the cost of a product) based on the values of a descriptive 

parameters by comparative assessment. The proposed 

method works in three successive stages, namely two 

preparatory stages, dedicated to the analysis of the past 

activity performed by the manufacturing system and to the 

identification of potential assessment tooling, and one 

operational stage for actually optimizing the decisions 

process, by comparative assessment.  

In [9], the authors suggest a different approach in 

performing the comparative assessment, based on 

alternatives rankings. The rankings are assigned to potential 

alternatives, by reffering them to tha cases of already 

performed manufacturing activities, recorded as past 

instances database, after ranking criteria such as cost, 

timespan, consumed energy etc. The selection decision 

results by comparing potential alternativesrankings. They 

propose an expression for the distance-function together with 

an algorithm for actually finding the ranking of the analyzed 

alternative.  

This paper presents a validation of two procedures, aiming 

the causal identification and the comparative assessment of 

the manufacturing jobs, by applying them in the case of 

estimating the manufacturing cost of roller bearings.  

The case study used a database extracted from the 

industrial environment. Clusters of cause-variables being 

the most appropriate for evaluating the cost are determined, 

at first. Then, neighborhoods of the interrogated cases are 

extracted from the database and the proximity function is 

identified. The estimated ranking (hence the manufacturing 

cost) of the interrogated case is found on this base, 

eventually. 

The paper is organized as follows: the second section 

presents a conventional cost modeling within a company 

producing bearings and bearing assemblies. Next section 

describes the two procedures, aiming the causal identification 

problem and the comparative assessment problem. The 

fourth section is dedicated to the validation of these 

procedures by applying them in the case of estimating the 

manufacturing cost of roller bearings. The last section 

presents the paper conclusion. 

II. CONVENTIONAL COST MODELING 

In order to adapt their strategies to the current economic 

situation, the companies developed their own algorithms for 

cost and price calculation. 

Cost break down becomes a tool which helps sales people 

to understand the main cost components and also designer to 

observe the main influence of the technologies in the final 

cost of the product.  

One important component in price calculation it is 

represented by the internal costs. These costs are determined 

taking into account the raw material consumption and related 

purchasing price and other auxiliary materials price including: 

tools, devices, measurement instructions and technological 

liquids. Supplementary to the mentioned components in the 

cost calculation other factors are: salaries costs, general 

expenses of the company (including taxes and other financial 

expenses).  

In the actual economic environment, companies define 

their investment programs based on prediction of the sales, 

taking into account the estimated profits versus expenses. In 

the investment programs are included objectives mainly for 

technology up-grade or renew which become more and more 

sophisticated and consider also the impact of the process 

developed through the designed technology both on the 

environment and workers on one side and on the other side 

the impact of that technology on the cost and price of the 

product. 

The price of the product influence finally the internal 

decision to manufacture one or another product, to accept one 

or another customer order and finally the main impact is on 

the customer to decide. Before to take a strategic decision 

regarding manufacturing and also the placing of orders it 

becomes very important to know and consider all the cost 

components and their values.  

Some companies use in their marketing strategies the cost 

break down in order to explain to the potential customer how 

the product it is made and how the value is added through the 

main manufacturing process steps, starting with raw material 

receiving tell delivery of the product to end customer.  

Also in some cases it is very important to consider the 

distribution costs which could influence the decision of the 

buyer/customer. 

The total manufacturing cost (TMC) includes direct 

materials, direct labor, and overhead costs. 
 

TMC = Direct materials cost 

 (+) Direct labor cost 

 (+) Overheads costs 
 

The cost of direct materials is the cost of the materials used 

for the manufacturing of a product during a given period. 

The cost of direct labor that contributes to the 

manufacturing of a product during a given period. 

Overhead costs are the costs that are not directly related to 

the manufacturing of a product.  

For example, we will be considering a company that 

produces bearings, for estimation of a total manufacturing 

cost of a certain type of bearing, namely axial type bearing 

with the dimensions: inner diameter Di = 50 mm, outer 

diameter De = 110 mm and height  L = 64 mm.  
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The cost of direct materials includes direct materials, the 

inventory at the beginning of the period and the inventory at 

the end period.  

 

Cost of direct materials  

• Direct materials 28.32 um 

• Inventory at the beginning of period 14.27 um 

• Inventory at the end of period (10.84 um) 

Cost of direct materials 31.75 um 

 

To calculate, the overhead costs, include the cost of 

indirect labor, the cost of indirect materials, the cost of 

salaries, the maintenance, the technology, the quality, the 

external services and repairs, the packing, taxes and 

depreciation, CGI, the external services.  

 

Overhead costs  

• Indirect labor 2.52 um 

• Indirect materials 2.30 um 

• Salaries 11.35 um 

• Maintenance 2.50 um 

• Technology 0.72 um 

• Quality 1.93 um 

• External services and repairs 1.34 um 

• Packing 1.83 um 

• Taxes 3.21 um 

• Depreciation 9.00 um 

• CGI 29.69 um 

• External services 2.92 um 

Overhead costs 69.31 um 

 

The TMC is calculating by adding the cost of direct 

materials, the cost of direct labor and the overhead costs.  

 

Total manufacturing cost  

• Cost of direct materials 31.75 um 

• Direct labor 14.27 um 

• Overhead costs 69.31 um 

Total manufacturing cost 115.33 um 

 

The traditional cost-estimation techniques known as single 

price estimating models, elemental estimating, operational 

estimating and resource related methods are also replaced by 

advanced cost estimating systems known as casual empirical 

models, regression models, simulation models and expert 

systems that use hardware and software to convert data into 

appropriate information for the ultimate users.  

 

III. PROPOSED METHOD FOR COST ESTIMATION 

The method works on the base of two procedures: 

• The causal identification, 

• The comparative assessment. 

• The causal identification 

The method of identifying causal links in the 

manufacturing process [10] is useful for finding the most 

appropriate pattern structure for a particular manufacturing 

activity/process. The facility of the method aims at 

identifying the groups of variables with potential for 

application in the modeling of the activity/process. The 

primary objective of applying the method is to allow the 

selection of variables, the most influential, easy to measure, 

and as few as possible, such as the resulting least complex 

model, according to the predicted estimate of precision. The 

method utilizes the past case studies relating to the 

manufacturing system, registered as a database, to reveal the 

causal links between the variables that characterize the 

development of the manufacturing processes on the 

considered system.  

Applying the method for case-based identification of 

causal links in the manufacturing process involves several 

successive stages (see Fig. 2). 

 

 
Fig. 2. The algorithm of the proposed method.  

 

A. Process Identification 

The first step of the algorithm involves analyzing the 

variant of target - manufacturing process to choose the 

variables that characterize its achievement. It then defines the 

set of variables (both cause- and effect-variables) with 

potential in process modeling.  

B. Data Concatening 

The purpose of the stage is to generate the database of 

previous cases, regarding the manufacturing process variant 

considered.  Several cases refer to same type of activity if 

they can be characterized by the same cause-variables and 

effect-variables.  

Three actions are necessary in order to do data concatening, 

namely clustering, updating and homogenization. 

C. Instances Comparing 

The method of identifying causal links is based on the idea, 

that if there is a causal link between two or more variables, 

the variance of a cause-variable will be reflected and 

therefore measured by an appropriate metric in a variation of 

another cause- and/or effect-variables.  

D. Variables Assessing 

This step aims to assess the cause-variables in order to find 

the ones having potential for evaluating the given 

effect-variable. 

Variables assessing is performed by applying two 

algorithms, namely: 

• The algorithm for dimensionality reduction,  

• The algorithm for assessing the modeling potential of 

variables.  

E. Causal Models Identifying 

This can be realized by successively and repetitively 

applying a couple of algorithms, namely: 
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• The algorithm for generating smaller clusters,  

• The algorithm for assessing the modeling potential of a 

cluster. 

F. Causal Links Tree 

The selection of the most suitable cluster of 

cause-variables with which can be describing the effect is 

made with the help of intuitive representation called the 

causal links tree (see Fig. 3).  

 

 
Fig. 3. The generic causal links tree [10]. 

 

1) The comparative assessment 

The method of comparative assessment in the 

manufacturing process proposes an innovative approach in the 

analysis of potentially optimal solutions, based on their 

rankings.  

The comparative assessment means to establish rankings 

for two or more alternatives to proceed, after given criterion 

(e.g. cost, time span, consumed energy etc.).  

The comparative assessment of potential alternatives it is 

done by referring them to the cases of manufacturing 

processes already carried out, whose parameters have been 

registered in the past  instances database, [11].  

The algorithm after which the appropriate ranking is 

assigned to a given alternative (further referred as current 

case) by comparing it to the cases recorded in Instances 

database is illustrated in Fig. 4.  

 
 

 
 

Fig. 4. Ranking assignment algorithm [11]. 

 

The algorithm works on the base of two procedures, 

especially conceived in this purpose: 

• Neighborhood delimitation, 

• Nearness modeling. 

The procedure for neighborhood delimitation to find a 

neighborhood profile of a potential case through successive 

comparisons with cases of processes already carried out (with 

known results). The objective is to select from the instances 

database, the set of instances that corresponds to a given 

neighborhood profile.   

The procedure for nearness modeling aims that, after a 

delimiting the current neighborhood Ni of the current case, 

the nearness between included cases is modeled in order to 

find a more expression of the nearness function. The 

modeling is proposed to be performed by nonlinear multiple 

regression.  

Both procedures are successively run until two consecutive 

forms of nearness parameters. 

 

IV. COST ESTIMATION FOR THE ROLLER BEARING - CASE 

STUDY PERFORMED ON INDUSTRIAL DATA 

The roller bearings (Fig. 5) manufacturing cost was 

estimated by using the above proposed method in the case of 

a database extracted from the industrial environment. 
 

   
a) b) c) 

Fig. 5. Profile of the bearing. 

 

A. The Causal Identification 

For the application of the method by this procedure, the 

steps of the algorithm presented in previous section were 

followed. 

B. Process Identification 

The next set of nine cause-variables was considered as 

having potential in modeling the manufacturing process, 

namely: 

- the bearing exterior diameters, De;  

- the bearing interior diameters, Di;  

- the bearing width, L;  

- the bearing weight, m;  

- dynamic capacity, Cd;  

- static capacity, Cs;  

- limit speed under greasing conditions, n1;  

- limit speed under oil conditions n2,  

- the complexity index Ic.  

The cost of the bearing was selected as effect-variable. 

C. Data Concatening 

The collected database has 141 instances, some of them 

being sampled in Tables I-A and I-B, before and after 

homogenization, respectively. 

 
TABLE I-A: REAL INSTANCES DATASET (ACTUAL VALUES, EXCERPT) 

Instance 
crt. no. 

De 
[mm] 

Di 
[mm] 

L 
[mm] 

m 
[kg] 

Cd  
[kN] 

Cs  
[kN] 

n1  
[min-1] 

n2  
[min-1] 

Ic 
[-] 

C 
[lei] 

1 110 60 47 1.496 77.4 209 7.76 1900 2800 61.65 

2 140 65 79 4.858 176 424 8.36 1300 1800 184.41 

3 78 58 22 0.421 88 285 9.32 1400 4000 33.66 

4 125 70 40 2.106 153 341 6.36 1400 1900 85.56 

5 35 20 10 0.041 14.9 26.6 4.16 5300 7000 8.53 

. . . . . . . . . . . . . . . . . .  
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TABLE I-B: REAL INSTANCES DATASET (SCALED VALUES, EXCERPT) 

Instance 

crt. no. 
De Di L m Cd Cs n1 n2 Ic C 

1 0.518 0.357 0.413 0.131 0.18 0.137 0.624 0.218 0.205 0.151 

2 0.698 0.392 0.760 0.432 0.445 0.288 0.724 0.120 0.076 0.489 

3 0.325 0.342 0.141 0.035 0.209 0.19 0.885 0.136 0.358 0.074 

4 0.608 0.428 0.336 0.186 0.383 0.23 0.389 0.136 0.089 0.217 

5 0.066 0.071 0.010 0.001 0.013 0.008 0.020 0.771 0.743 0.004 

. . . . . . . . . . . . . . . . . .  

 

D. Instances Comparing 

This time, the beams database generated with the Matlab 

application has 2
141 9870= =N C beams. Several beams are 

sampled in Table II. 

 
TABLE II: BEAMS DATABASE (EXCERPT) 

Fascicul δDe δDi δL δm δCd δCs δn1 δn2 δIc δC 

(1,2) 0.180 0.03 0.347 0.3 0.264 0.151 0.1 0.097 0.128 0.338 

(1,3) 0.481 0.5 0.021 0.263 0.28 0.23 0.302 0.13 0.153 0.106 

(1,4) 0.09 0.071 0.07 0.05 0.202 0.092 0.234 0.081 0.115 0.065 

(1,5) 0.451 0.285 0.402 0.13 0.167 0.128 0.604 0.55 0.538 0.146 

(1,6) 0.030 0.114 0.336 0.056 0.17 0.268 0.34 0.065 0.064 0.015 

. . . . . . . . . . . . . . . . . .  

 

E. Variables Assessing  

1) Dimensionality reduction 

At first, the references threshold has been to 

7 0.2097,refh h= = hence 2 5 0.3276.kh h− = =  According to 

the algorithm, windows having 0H =  and refh h=  were 

considered for the beams components corresponding to eight 

of the nine cause-variables, while for the ninety the image 

dimension i  was measured (i = 1, 2, ... 9, successively). 

The values obtained for ,i by using a dedicated MatLab 

application, are shown in Table III. As it can be noticed, 

min 0.2179, = corresponding to variable Ic, hence one of 

them may be discarded. At Step 2, the action from previous 

step is repeated for the remaining eight cause-variables and 

another one is discarded, namely De, and so on. After Step 3, 

min 50.3209 ,h =  so the six cause-variables remaining 

until here can be considered relative independent and the 

maximal cluster is [Di, L, m, Cd, n1, n2]. 

 
TABLE III: IMAGES DIMENSIONS i AND min  

Condition 

variable 

Successive steps of dimensionality reduction 

Step 1 Step 2 Step 3 Step 4 

De 0.28915662 0.28915662 - - 

Di 0.39285714 0.39285714 0.78571428 0.78571428 

L 0.52173913 0.52173913 0.54347826 0.55434782 

m 0.35587761 0.35587761 0.35587761 0.51171944 

Cd 0.35924932 0.35924932 0.35924932 0.60321715 

Cs 0.32090077 0.32090077 0.32090077 - 

n1 0.92281879 0.92281879 0.92281879 0.92281879 

n2 0.35830618 0.53745928 0.61889250 0.61889250 

Ic 0.21794871 - - - 

F. Assessment of Variables Modeling Potential 

The criteria for assessing the modeling potential have been 

determinates for each cause-variable of the maximal cluster, 

according to the algorithm above presented, by calculating 

the values of a, b, and RMSE, after considering the cost C as 

effect-variable. The results obtained with the help of Curve 

fitting tool from MatLab are presented in Table IV.  

TABLE IV: THE VALUES OF  a, b  AND RMSE 

 Di L m Cd n1 n2 

a 0.1272 0.2241 0.05765 0.0041 0.02191 0.3234 

b 0.0445 0.03765 0.04864 0.05269 0.04961 0.03479 

RMSE 0.0011 0.00058 0.00176 0.00112 0.00185 0.00171 

 

G. Causal Models Identifying 

The MC (assessed through the values of b) was adopted as 

criterion for selecting the cause-variables to be discarded 

when generating smaller clusters. Three clusters with 5 

cause-variables each has been generated from the maximal 

cluster in the first stage. Then, two clusters with 4 

cause-variables resulted from each of these three, in the 

second stage. Finally, two clusters of 3 cause-variables were 

obtained from each cluster with 5 variables. After assessing 

clusters potential in order to identify causal models, the 

process of generating smaller clusters had to be stopped at the 

level of 3-variables clusters. Variables selection and resulted 

clusters are presented in Tables V-A, B and C. 

 
TABLE V-A: GENERATION OF 5-VARIABLES CLUSTERS 

Variables Di L m Cd n1 n2 

b 0.0352 0.0283 0.0179 0.02651 0.04707 0.0509 

Resulted 

clusters 
[Di, L, m, Cd, n1]           [Di, L, m, Cd, n2] 

 
TABLE V-B: GENERATION OF 4-VARIABLES CLUSTERS 

Variables Di L m Cd n1 

b 0.03625 0.02628 0.01739 0.02499 0.04405 

Resulted 

clusters 
[Di, L, m, Cd]                  [L, m, Cd, n1] 

Variables Di L m Cd n2 

b 0.03552 0.02651 0.01663 0.02167 0.04639 

Resulted 

clusters 
[Di, L, m, Cd]                 [L, m, Cd, n2] 

 
TABLE V-C: GENERATION OF 3-VARIABLES CLUSTERS 

Variables Di L m Cd 

b 0.03384 0.02441 0.01748 0.01816 

Resulted 
clusters 

[Di, m, Cd]                 [L, m, Cd] 

Variables L m Cd n1 

b 0.03452 0.01986 0.02605 0.05446 

Resulted 
clusters 

[m, Cd, n1]                 [L, m, Cd] 

Variables L m Cd n2 

b 0.03896 0.01571 0.01366 0.06395 

Resulted 

clusters 
[m, Cd, n2]                 [L, m, Cd] 

 

Finally, they resulted only 4 (instead of 6) distinct clusters 

with 3 variables and 3 (instead of 6) clusters with 4 variables. 

Hereby, the causal tree will be formed from 1 + 2 + 3 + 4 = 10 

clusters.  

 
TABLE VI: THE VALUES OF  ac, bc  AND RMSE 

Condition-variables from cluster ac bc RMSE 

[Di, L, m, Cd, n1, n2] 0.7988 0.004066 0.007391 

[Di, L, m, Cd, n1] 0.7748 0.002467 0.008119 

[L, m, Cd, n1, n2] 0.8605 -0.001428 0.009931 

[Di, L, m, Cd] 0.8438 -0.00216 0.01061 

[L, m, Cd, n1] 0.7602 0.01108 0.004584 

[L, m, Cd, n2] 0.8323 0.01133 0.009419 

[Di, m, Cd] 0.8858 0.003786 0.006537 

[L, m, Cd] 0.8635 0.005654 0.00775 

[m, Cd, n1] 0.7895 0.01235 0.002351 

[m, Cd, n2] 0.9038 0.01406 0.005238 
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H. Assessment of Clusters Modeling Potential 

After finding the clusters of cause-variables that will 

compose the causal tree, the values of ac, bc and RMSE were 

found with Curve fitting tool from MatLab. These values are 

presented in Table VI. 

I. Causal Link Tree 

The causal tree drawn after MCc criterion is depicted in Fig. 6. 

 

 
Fig. 6. Causal tree drawn after criterion MCc 

J. The Comparative Assessment 

For application of the method by this procedure in the case 

for the cluster with four cause-variables [L, m, Cd, n2] of a 

database extracted from the industrial environment for 

estimation of roller bearings manufacturing cost.  

The database has five columns (first four for L, m, Cd and 

n2 cause-variables and the last for C effect-variable) and  

n = 141 lines.  

K. Case Ranking Assignment 

We supposed the current case (L1 = 0.4, m1 = 0.2, Cd1 = 0.5, 

n21 = 0.15), needing to be ranked relative to the instances 

database from above. At first, the pivot (L v1 = 0.38043, mv1 = 

0.20987, Cdv1 = 0.46648, n2v1 = 0.12052, Cv1 = 0.27999) has 

been chosen from instances database. Then, the algorithm for 

case ranking assignment has been iteratively run, the results 

being presented in Tables 6 and 7. The modeling by nonlinear 

multiple regression has been performed in MatLab 

(Optimization tools package). 

The values for ε parameter have been selected at each 

iteration such as the current case neighborhood includes the 

same number of cases (here, 12 cases). The quality of 

modeling the cases neighborhood by nonlinear multiple 

regression is revealed by calculating the Root Mean Square 

Error (RMSE) parameter, well-known in Statistics. As one 

can easily notice, the algorithm stabilizes rapidly, after only 

two iterations – the three iterations give same results as the 

previous one.  

As consequence, relation (6) can be used (in the form 

resulted after last modeling by multiple nonlinear regression) 

for calculating 1 1 1.vC C C = − The obtained value is ΔC1 = 

-0.00172, hereby C1 = 0.27827 and considered case ranking 

is R1 = 108. 

L. Actual Comparative Assessment 

Let us consider two different current cases: first is the one 

addressed in previous section, while second is  

(L2 = 0.7, m2 = 0.35, Cd2 = 0.4, n22 = 0.2). The problem to be 

solved is the selection, between the two cases, of the one with 

the smallest value of the effect-variable.  

The algorithm for case ranking assignment is applied once 

again, for second potential case, to which the pivot  

(Lv2 = 0.68478, mv2 = 0.34693, Cdv2 = 0.36997, nv2 = 0.16938, 

Tv2 = 0.31331) is associated from the same instances database. 

This time, the algorithm stabilizes after only one iteration – 

the second iteration gives the same results as the previous one. 

In the same manner as above, we find ΔC2 = -0.00138,  

C2 = 0.31470 and case ranking is R2 = 114.  

In conditions of the addressed problem, we have R2 > R1, 

so the solution to the problem is to selected the first case. 

 

V. CONCLUSION 

At the end of research presented in this paper, the following 

conclusions can be drawn: 

•  Compared to the traditional cost estimation method, 

which requires laborious calculations, estimating the 

cost by the proposed method proves to be simple and 

efficient. 

•  By causal identification, the number of cause-variables 

needed to evaluate the cost of roller bearing 

manufacturing is reduced substantially: instead of the ten 

variables a maximum clusters of six cause-variables has 

been identified [Di, L, m, Cd, n1, n2], that shows very good 

potential for price modeling in the case of bearing 

production (bc = 0.004066). 

•  Also, the clusters of three cause-variables has been 

identified that model the cost well enough [m, Cd, n2],  

a significantly simpler solution for doing the same thing 

with reasonable good results (bc = 0.01406).  

•  As can be seen from Table VI, in two cases the value for bc 

resulted negative. This can be explained by the static 

character of the method, which, for a smaller number of 

cases, can lead to such results. To overcome this 

disadvantage, in the representation of the tree causal link, 

the absolute value of bc was used in both cases.  

• Comparative assessment cost provides plausible results, 

after a very small number of iterations (2).  
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