
  

  

Abstract—Parallel robots have many industrial applications 

due to their well-known advantages as high operational speeds, 

stiffness and accelerations. One the other hand, their workspace 

is reduced compared to the size of the elements of the robot. 

Frequently, the design of parallel robots implies a large amount 

of variables and nonlinear equations. This is why, a human 

designer generally applies optimisation algorithms in order to 

obtain specific properties of the robot. If the number of 

variables involved in the optimisation is too high, the required 

computational times may be extremely increased, aspect that 

for some applications is unacceptable. This is why, the aim of 

this paper is to analyse the performance comparison in terms of 

efficiency and computational times of an optimisation problem 

with several numbers of variables included in the optimisation. 

The variable define the geometrical characteristics of a parallel 

robot used for a solid waste selection system. Also, the 

optimisation problem is implemented using a heuristic 

algorithm, namely the Particle Swarm Optimization.   

  
Index Terms—Robots, optimisation, particle swarm 

optimisation, workspace. 

 

I. INTRODUCTION 

Parallel robots have become more and more common in 

many industrial applications mostly due to their well-known 

advantages they provide as high stiffness, accelerations and 

operational speeds.  

On the other hand, parallel robots have disadvantages, an 

example being the workspace which is reduced compared to 

the size of the robot. Moreover, the design of the parallel 

robots implies a lot amount of experience and, in many cases, 

optimisation algorithms are used in the process. 

 Since a parallel robot is defined by a high number of 

variables (the geometrical characteristics) that define the 

structure, the optimisation of such a robot may lead to very 

high computational times (of the order of days), aspects that 

is, usually, unacceptable. 

This is why, the aim of this paper is to analyze the 

performance comparison in terms of efficiency and 

computational times of an optimisation problem of a parallel 

robot for different numbers of variables included in the 

optimisation. The optimisation problem in implemented 

using the Particle Swarm Optimisation algorithm and the 

objective function evaluates the correlation between the 

workspace of the robot with an imposed one.   

The application of the parallel robot analyzed in this paper 
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is in a Solid Waste Selection System. The robot disposes the 

solid waste from a moving conveyor, this is why, it is desired 

that the workspace of the robot to be suitable for this 

application. 

The paper is organized as follows: The Section II present 

recent advances regarding the optimisation of robots using 

heuristic approaches, namely the Particle Swarm 

Optimisation, the Section III illustrate the robot to be 

optimized, the Section IV presents the optimisation setup and 

results and the Section V exemplifies the conclusions.  

 

II. LITERATURE REVIEW 

The implementation of the optimisation of the parallel 

robot and the performance comparison is carried out using 

the Particle Swarm Optimisation, an evolutionary 

population-based search algorithm.  

The Particle Swarm Optimization Algorithm is inspired 

also from nature. It is a stochastic optimization technique and 

it simulates the behavior of birds flocking and fish schooling. 

This algorithm is an evolutionary algorithm that searches the 

best solution by updating the current population. The 

members of the swarm “communicate”, each member being 

aware of the best position among them. 

There are few references that use the Particle Swarm 

Algorithms to optimize a parallel robot. One example is [1] 

that proposes the use of this algorithm in a single object 

optimization: minimization of the stiffness over a cubic 

usable workspace of the structure of a parallel kinematic. 

Also, the paper carries out a comparison between the Particle 

Swarm Optimization and Genetic Algorithms. The results 

indicate the fact that this algorithm presents an improved 

overall behavior than Genetic Algorithms. Despite this fact, 

only a limited number of generations has been taken into 

consideration. Also, the comparison does not mention 

anything regarding the computational times of these two 

algorithms. The reference [2] illustrates another example of 

kinematic optimization using Particle Swarm Algorithm. A 

multi object optimization is carried out, taking into 

consideration both the global compliance and global 

conditioning index of a parallel structure.  Particle Swarm 

Optimization has been used to optimize a parallel structure 

also in [3]. The maximization of the Global Condition Index 

along the workspace has been considered the performance 

criteria. There are no mentions of the reasons of using 

Particle Swarm Optimization. Also, a finite number of 

generations have been considered when the optimization has 

been carried out. The paper [4] proposes a design 

optimization of a planar parallel robot considering the energy 

consumption as the cost function 

The optimisation of a parallel robot is a stochastic problem 

Performance Comparison in the Optimisation of a Parallel 

Robot Using Particle Swarm Optimisation 

Catalin Boanta and Cornel Brisan 

International Journal of Modeling and Optimization, Vol. 10, No. 3, June 2020

92DOI: 10.7763/IJMO.2020.V10.753



  

due to the fact that several numerical values have to be 

considered into the optimization, values that are not known at 

this time of formulating the optimization problem of this 

parallel robot. Such examples of numerical values may be the 

Jacobian of the parallel robot and its determinant that are 

dependent of the configuration of the robot.  

  The Particle Swarm Optimisation has been investigated 

[5] regarding the effectiveness (i.e. the ability to find an 

optimal solution) and computational efficiency behaving 

better in solving non-linear unconstrained problems in 

comparison with the Genetics Algorithms 

Considering all these aspects it may be concluded that 

Particle Swarm Optimisation is a suitable algorithm for 

optimisation problems of robots. Also, due to the high 

computational times of the algorithms, the Section IV 

illustrates a tradeoff between the number of variables 

involved in the optimisation, the computational times and the 

effectiveness and accuracy of the results. 

 

III. ROBOT TO BE OPTIMIZED 

The parallel robot analyzed in this paper is a subsystem of 

a Solid Waste Selection System. Solid waste produced by the 

inhabitants of cities from emerging economies has become 

one of the most relevant problem in the past years. The 

quantity of plastic, metal, paper or other type of solid waste is   

growing, aspect that may produce environmental issues [6] - 

[7]. 

This is why, an Automated Solid Waste Selection System 

would overcome the drawbacks of not recycling the solid 

waste. The concept of the system has been presented in the 

papers [8]-[10]. The system is composed by a Transportation 

System, Image Recognition and Sensorial System and a 

Robot Disposal System.  

The Robot Disposal System is presented in the Fig. 1. The 

Robot 1 up to N places the Waste 1 up to N to the 

corresponding container.    

 

 
Fig. 1. Parallel robot to select unsorted waste from a conveyor [9]. 

 

In order to design the conveyor and the robotic system as 

optimal as possible, it has been considered that the required 

workspace of the robots has to be as wide as the conveyor the 

other dimensions (length, and height) are user imposed (as 

presented in the Fig. 2).   

 
Fig. 2. Workspace of the robot (gray) and the required workspace(red). 

 

The robot that compose the Robot Disposal System is a 6 

DOF parallel manipulator with rotational actuators. The 

structure is composed by six RUS 

(rotational-universal-spherical) open kinematic loops that 

interconnect the fixed platform (on the top) to the mobile 

platform (on the bottom) with regard to the Fig. 2. The The 

robots that is optimized is a 6 DOF parallel robot with 

rotational actuators, composed by six identical 

rotational-universal-spherical kinematic open loops (RUS – 

from the bottom fixed plate to the top mobile plate). The 

architecture of the robot is presented in the Fig. 3. 

 

 
Fig. 3. Parallel robot to be optimized [9]. 

 

IV. OPTIMIZATION SETUP  

The aim of the paper is to analyze a performance 

comparison regarding the effectiveness and computational 

times between the optimisations of the parallel robot with 

several numbers of variables to be optimized. The robot is 

optimized to achieve a workspace similar to an imposed one, 

as presented in [11] and in the Fig. 2.  

Since a symmetric configuration of a parallel robots leads 

to better kinematic performance, 6 variables have been 

considered to be influencing the design of the robot, namely, 

the radiuses of the fixed and mobile platform (R and r, as seen 

in the Fig.4 ), the length of the mobile elements(l1 and l2, as 

presented in the Fig. 3) and the ratios between two 

consecutive angles of positioning the rotational joint on the 

fixed platform  and on the mobile platform (as presented in 

the Fig. 4 and the equation.  
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Fig. 4. Mobile and fixed platform (top view) [9]. 

 

Therefore, the number of variables that define each 

configuration of the robot is 6. In order to realize a 

comparison between effectiveness and computational times, 

three cases will be considered 

1. Two design variables,  

2. Four design variable 

3. Six design variables.  

A. Two Variables Setup 

The design vector of the optimisation contains, in this case, 

the variables that influence the most the workspace of the 

parallel robot i.e. the length of the first and second 

elements 1l   and 2l  of the open rotational-universal-spherical 

open loops that interconnect the fixed and mobile platform. 

The design vector is given in the eq. (3).  

 

( )2vars 1 2,x l l=           (3) 

 

 

The constraints imposed for the length of the elements are 

presented in the eq. (4). 
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The matrix form of the equations (that is implemented in 

Matlab) is given in the eq. (5), where 
2varsA  and 

2varsb  are the 

matrices from the eq. (6) and (7).  
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A x b           (5) 

 

2vars

1 0

0 1

1 0

0 1

A

− 
 

−
 =
 
 
 

           (6) 

 

2vars

0.1

0.1

0.5

1.5

b

− 
 
−

 =
 
 
 

           (7) 

 

B. Four Variables Setup 

In this case, the design vector of the optimisation contains 

the length of the first and second elements of the RUS open 

loop, 1l   and 2l , and the values dratio  and uratio , from the 

eq. (1) and (2), that define the angles of positioning of the 

rotational and spherical joints on the fixed and mobile 

platform. Therefore, de design vector has the following form:  

 

( )4vars 1 2, , ,u dx l l ratio ratio=        (8) 

 

The constraints imposed in this case are presented in the eq. 

(9): 
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In order to be implemented in Matlab, the constraints are 

written in matric form, as in the eq. (10), where 
4varsA  and 

4varsb  are the matrices from the eq. (11) and (12) 
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C. Six Variables Setup 

Beside the dour variable from the previous setup, this 

configuration takes into consideration the radiuses of the 
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mobile and fixed platforms, r  and R . In this case, the 

design vector is given by the eq. (13).  

 

( )Rrratioratiollx du ,,,,, 21=      (13) 

 

The constraints for the 6 variable design vector is given by 

the eq. (14). 
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In order to be implemented in the Matlab environment the 

constraints are written in matric form, as in the eq. (15), 

where 
6varsA  and 

6varsb  are the matrices from the eq. (16) and 

(17). 
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D. Objective Function 

The objective function evaluates the correlation between 

an user imposed desired workspace and the actual workspace 

of the robot. In this case, the workspace of the robot has to 

include an imposed cubical space, as seen in the figure below.   

 
Fig. 5. Imposed Workspace and actual workspace of the robot. 

 

The fitness function evaluates the ratio between the actual 

workspace of the robot and the desired workspace. The value 

of the fitness function is given by the eq. 

 

desired imposed

desired

WS WS
fitness

WS

−
=      (18) 

 

where desiredWS  and imposedWS  are the volumes of the 

desired and imposed workspaces.  

In ideal case, the two workspaces from the Fig. 4 are 

identical and the fitness value is null.  

In the case presented in this paper, the length (L), width (W) 

and height (H) of the desired workspace are: 

 

[ , , ] [0.3,0.3,0.1][ ]L W H m=      (19) 

 

V. RESULTS AND CONCLUSIONS 

The optimisation presented in the previous section has 

been implemented in Matlab using the Particle Swarm 

Optimisation, available at [11]. For all the cases (2,4 and 6 

variables) the swarm size of the Particle Swarm Optimisation 

has been set from 10 up to 250 members (with a step of 10). 

Therefore, for each case, the algorithm has run 25 times.  

This way, the Particle Swarm Optimisation algorithm has 

been evaluated regarding the effectiveness (i.e. the ability to 

reach an optimal solution), computational time and influence 

of the swarm size upon the results. 

The Fig. 6 illustrates the value of the fitness function with 

regard to the number of the population size for all the three 

cases (2, 4, and 6 variables). From the figure, it is clear that a 

higher number of variables leads to a better result of the 

fitness function for all the swarm sizes. Nevertheless, a 

higher number of swarm population does not assure that the 

fitness value is lower (for example, the fitness value for a 

population of 150 for 6 variables is higher than a the fitness 
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corresponding to a population of 10 members. 

 

 
Fig. 6. Fitness function compared to population size for 2,4 and 6 variables 

design vector. 

 

Moreover, there are particular cases (as 30 or 130 members 

in the population, 6 variables) in which the fitness value for a 

higher number of variables in the design vector has a larger 

fitness value than in a lower number (a higher fitness value 

implies an inferior optimisation result). 

The Fig. 6 express graphically the demanded 

computational time with regard with the swarm size and 

number of variables of the design vector. As results from the 

image, a higher swarm size implies a higher computational 

times, for each size of the design vector. Also, for the same 

size of the swarm, the computational times increases 

significantly from 2 up to 6 variables design vector.  

Comparing the Fig. 6 and 7 parallel, one can conclude that 

a higher number of design variables does not implies in all 

the cases a higher computational time (see the 2 and 4 design 

variables, Fig. 7) but it may have an important result upon the 

fitness value.  

 

 
Fig. 7. Computational time compared to the population size for 2,4 and 6 

variables design vector. 
 

Therefore, the paper has realized a performance 

comparison in the optimisation of a parallel robot used for a 

Solid Waste Selection System, using the Particle Swarm 

Optimisation. As expected, a higher number of design 

variables, leads to a better fitness value, but has an important 

increasing effect upon the computational times. On the other 

hand, a higher number for the size of the swarm, does not 

implies a better fitness value.  

As a future outlook, the research presented in this paper 

may be enhanced by comparing the Particle Swarm 

Optimisation with other optimisation algorithms. This way, 

one can identify the best optimisation algorithm for the 

design of robots.  
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