
  

  

Abstract— Multi objectives optimization in Robotics is one of 

the most difficult problem to be solved. In the paper will be 

shown the matrix form of the resistive and active forces and the 

proper algorithm to establish the best case between all studied 

cases. The mathematical matrix form of the active forces 

equations was transposed to the virtual LabVIEW 

instrumentation with the goals to obtain some characteristics of 

the active forces in each joints of the robot variation vs. time in 

the case when were changed some functional or constructive 

parameters. By using proper algorithm was choose the best 

solution between the studied cases for down movements of the 

robot’s arm. The applied method, the algorithm and the proper 

virtual instrumentation solve one small part of the complex 

problems of the optimisation in robotics.  

 
Index Terms—Assisted research, multi objective optimization, 

virtual instrumentation, robot’s joints forces.  

 

I. INTRODUCTION 

The optimizing of the force variation vs. time in Robotics 

is one of the most important problem to be solved. Without 

the assisted research isn't possible to study the dynamic 

behavior because will be necessary to show the variation of 

the forces and moments vs. time to identify and establishing 

the better solution of the movements, or dimensions of the 

bodies and the relative velocities. In the paper authors [1]-[17] 

by using the special software RoboAnalyzer, Robotech, V-

Rep, RoKiSim, Ros,show some characteristics and solve 

direct and inverse kinematics problem and also the direct and 

inverse dynamic problem, but without show the mathematical 

matrix model and how could be influenced the force variation 

by different velocity characteristics or to obtain the minimum 

variation of the forces. Robotect [5] and V-REP [6] are 

robotics learning and simulation software. A user could 

simulate robot manipulators and mobile robots in various 

environments by introducing virtual sensors and actuators. 

RoKiSim [7] and RoboDK, Webots [8] are a development 

environment which focuses on modeling, programming, and 

simulation of robots. In the papers [18]-[37] are shown some 
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applications, simulation, and visualization based on the 

Gazebo [15] simulator. The proper assisted research was 

made by using the proper virtual LabVIEW instrumentation. 

In the literature about the research of the robot’s forces don’t 

show the mathematical matrix model, don’t show how will be 

the variation of these forces when will be changed the 

successive or simultaneously movements of the robot’s 

bodies. In the last research [38]-[47] we solved some problem 

from the dynamic behavior of the robots. 

 

II. THE FORCES MATHEMATICAL MATRIX MODEL  

The mathematical model of the robot’s forces analyze 

contents the following matrix equations, see Fig.1: 
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Fig. 1. Arm type studied robot. 
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where: (𝑃)0- is the active force matrix reduced to the base; 

[𝑧𝑢] - unitary joints-bodies matrix; (𝐹0) - resistive force 

matrix reduced to the base;  (𝐹𝑖
𝑖)- resistive force matrix 

reduced to the proper cartesian system; [𝐷𝑖
𝑗
]- transfer matrix 

from the i cartesian  system to j cartesian system; [𝑚𝑢]- mass 

matrix, or where mi was multiply by unitary matrix for the 

space. 

 

 
Fig. 2. The front panel of the LabVIEW VI  to determine the active forces.  

 

Fig. 3. The block schema of the active forces VI-s. 

 

III. THE VIRTUAL USED LABVIEW INSTRUMENTATION 

The VI-s to determine the active forces of one arm type 

robot contents the followings, Figs. 2-9: joint’s velocity for 

the trapezoidal velocity characteristics; the time from the 

origin time, acceleration time, time of a cycle, time after 

begin the deceleration, joint’s mass, table with position 

vectors of each robot’s joints and weight centre of mass. The 

module of output data contents the characteristics of forces 

in all joints by ox, oy and oz axes and also the force module 

of vector in the space with the angle variation to the base 

plane. All these characteristics are versus time. Virtual 

LabVIEW instrument for the active force was constructed by 

using the mathematical matrix model of the forces, relation 

(1). We can see inside of the block diagram of the virtual 

instrument some other subVI-s (subroutine) to calculate the 

absolute velocities and accelerations, the matrix of the 

resistive forces (fig.), the matrices of mass, the matrix of 

incidences bodies-joints (G) and joints- bodies (Z), relation 

(2), the matrix to transfer all vectors between Cartesian 

systems to the base, relations (3),(4), the 6x6 matrix with 

three dimensions to generate all needed transfer.  
  

 
Fig. 4. The front panel of the subVI-s to determine the resistive force. 

  

 
Fig. 5. The block schema of the subVI-s to determine the resistive force. 

 

 
Fig. 6. The block schema of the subVI-s to determine the accelerations of the 

center of mass. 
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Fig. 7. The front panel of the subVI-s to determine the dual vectors of the 

linear and angular absolute velocities in all robot’s joints. 

 

 
Fig. 8. Part of the block schema of the subVI-s to determine the dual vectors 

of the linear and angular absolute velocities in all robot’s joints. 

 

 
Fig. 9. The front panel of the subVI-s to determine the dual vectors of the 

linear and angular absolute accelerations in all robot’s joints.  

IV. ALGORITHM FOR OPTIMIZATION OF THE ROBOT’S 

FORCES BY USING THE ASSISTED RESULTS 

One way to optimize the active robot joint’s forces were 

determined by using one multi objective optimization 

function. The used algorithm contents the following steps: (i) 

establish the constructive and functional parameters of the 

robot that could be studied; (ii) determine some force 

characteristics by changed some of the constructive or 

functional parameters, or type of movements; (iii) construct 

the table with the maximal variation of all these forces; (iv) 

impose for each type of force one maximal pounder (if all 

forces are the same impact to the global dynamic behavior of 

the robot- the values of all pounders will be the same); (v) 

calculate for each force and cases the pounder values by using 

the proportion between the minimum value of each force 

variation and the current variation from minimum to 

maximum forces and multiply with the maximum pounder 

values (using the neutrosophic theory) [16], [17]; (vi) 

calculate separately for up and down movements of the 

robot’s arm and determine the case what  the sum of these 

total pounders have maximal value.  

Mathematic we can write this multi objective function 

(MOF) like in relation (7): 

 
 

𝑀𝑂𝐹(𝑡𝑖 , 𝑡𝑡𝑖 , 𝑡𝑎𝑖 , 𝑡𝑑𝑖 , 𝑙𝑖 , 𝜑𝑖) =        (7) 

min (𝑟𝑎𝑛𝑔𝑒𝑃1𝑥,𝑦,𝑧) ∩ min (𝑟𝑎𝑛𝑔𝑒|𝑃|1
∩ min (𝑟𝑎𝑛𝑔𝑒 < 𝑃1)
∩ min (𝑟𝑎𝑛𝑔𝑒𝑃2𝑥,𝑦,𝑧 ∩ min (𝑟𝑎𝑛𝑔𝑒|𝑃|2)

∩ min (𝑟𝑎𝑛𝑔𝑒 < 𝑃2)
∩ min (𝑟𝑎𝑛𝑔𝑒𝑃3𝑥,𝑦,𝑧 ∩ min (𝑟𝑎𝑛𝑔𝑒|𝑃|3)

∩ min (𝑟𝑎𝑛𝑔𝑒 < 𝑃3)
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where: ti is the time to origin of time [s]; tti- the cycle time [s]; 

tai- the acceleration time [s]; tdi- the time when begin the 

deceleration [s]; li- the length of each body [m]; φi- angle 

position of each body [rad]; Pi,x,y,z- active forces in each joints 

[N]; |𝑃𝑖|- module of the active force in each joints, [N]; < 𝑃𝑖  

- angle in a space of each active force vector, [N]. 

This MOF function have 20 conditions to be 

simultaneously touch that will be possible by using 

neutrosophic theory [16], [17], all these conditions will be 

touch between T (true) and F (false)= pi(T)∪pj(F) where pi,j 

are the ponders for each criteria and for each cases, otherwise 

the MOF result will be null, because it is impossible that all 

20 forces components for each of studied cases to be in the 

same time minimum. 
 

𝑀𝑂𝐹 = max (∑ 𝑝𝑖

𝑃𝑖,𝑥,𝑦,𝑧,<,𝑚𝑖𝑛

𝑃𝑖,𝑥,𝑦,𝑧,<,𝑐𝑟𝑡
)20

1 cases      (8) 

 

where: pi is the maximal pounder; 𝑃𝑖,𝑥,𝑦,𝑧,<,𝑚𝑖𝑛- the minimum 

value of each of these forces and angles; 𝑃𝑖,𝑥,𝑦,𝑧,<,𝑐𝑟𝑡 - the 

current value of the forces for each of the studied cases. 

The cases that were studied are: 0-0-0-0 all movements are 

simultaneously; 0-4-4-0 the first and four movements are 

simultaneously and the second and third will simultaneously, 

but successive after 4s after the first and fourth; 0-4-8-12 all 

movements are successive; 0-0.1-0.2-0.3 the movements are 

successive after the acceleration time of each of them; 0-3.9-
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7.9-11.9 the movements are successive after the constant 

velocity time from the velocity characteristics; 0-0-0-0 li=0.8, 

φ1=1.4 -all movements are simultaneously, but were changed 

the length of the first body and the angular position of the first 

body. 
 

 TABLE I: THE MAXIMAL VARIATION OF THE FORCES 

 

 

 

TABLE II: THE POUNDERS CALCULATED USING THE TABLE 1  

 

 
 

V. ANALYZE OF THE MULTI OBJECTIVE FUNCTION 

This paper tries to develop one general assisted 

methodology of the dynamic behavior in the real domain of 

the articulated didactical arm type robot by analyze the active 

forces in each robot’s joints, Figs. 10(a)-(k).  

 
(a) 

 
(b) 

 
(c) 
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(d) 

 
(e) 

 

 
(f) 

 
(g) 

 

 
(h) 

 

 
(i) 
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(j) 

 

 
(k) 

Fig. 10(a)-(k). The variation of the robot’s joints forces vs. time and also 

the variation of the space angle vs. time in different cases of the 

movements: simultaneously, successive, or combination of them.  

 

The best solution to be assured the minimum variation of 

the forces and also the position of vector in the space was the 

case 4-0-0-4 that mince the successive movements of first and 

fourth robot’s body, 4s after the movements of the second and 

third bodies. 

In the paper were solved the following problems: the 

theoretical and the experimental assisted research of the 

active forces in robot’s joints by using the matrix form of the 

mathematical model; the research was made by using the 

proper theoretical LabVIEW VI-s; the optimization of the 

dynamic behavior with the virtual proper VI-s was made by 

applying the proper algorithm and the neutrosophic theory; 

the choice of the optimal case between the studied cases open 

the way to choose the optimal movements of the robot’s arm, 

simultaneously, successive or combine between them.   

The actual research in the world does not approach the 

assisted virtual instrumentation for the optimization of the 

dynamic behavior parameters that were studied in this 

research. 

VI. CONCLUSION 

The results shown in the paper, the researched active forces 

in some different cases of the robot’s joints movements, the 

applied method, algorithm, multi objective function (MOF) 

and the proper LabVIEW VI-s can be used in many other 

research in the robotics field and will be used in the next 

research to optimize the moments.  
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