
  

  

Abstract—The purposes of this study are to formulate a 

mathematical model of tumor based on age structure and to 

simulate the model. We propose four classes: tumor cell, CTL 

cell, helper T-cell, and chemotherapy drug. For the initial 

research, we focused for tumor cell class which formed as age 

structure. Simulation of the model can be interpreted as 

behavior of solutions. 

 
Index Terms—Model, tumor, age structure. 

 

I. INTRODUCTION 

Cells in the body naturally consist of normal cells and 

immune cells. Immune cells will be activated if there are 

foreign objects into the body. One of them is tumor cells. 

They can be attacked by immune cells. However, if the 

immune cells are not enough to defeat the tumor cells, the 

tumor cells can develop into cancer cells because they 

continue to divide indefinitely. WHO [1] has a long-term 

strategy to prevent cancer, i.e avoid tobacco use, always 

maintain the height of our body by healthy diet, regularly 

exercises, reduce alcohol, having safe sex, get vaccinated to 

avoid human papilloma virus (HPV) and hepatitis B, get 

regular medical check-up, reduce exposure to ultraviolet 

radiation. Mathematical model in medical problem was 

carried out by Kendrick [2]. This model was in system of 

ordinary differential equations in the form of S-I-R. It then 

modified becomes S-I-S, S-E-I-R, S-V-I-R, and so on. In the 

other hand, mathematical model of age structured with 

individual transmission has discussed by [3] in the form 

system of partial differential equations. 

Cancer is one of the diseases the drugs of which are still 

being developed. Nowadays, to inhibit the growth of cancer 

cells, several therapies are carried out, such as surgery, 

biochemotherapy, gene therapy, radiation, hormone therapy, 

and chemotherapy [4]. Chemotherapy is performed by 

administering drugs. This action can kill cancer cells, but it 

can also kill normal cells as the side effect. Moreover, the 

most visible effects of a chemotherapy patient are hair loss, 

nausea, and thrush. 

Research on the mathematical model of tumor cell growth 

has been carried out, starting from the ordinary differential 

equations system without any treatment which is then 

developed in therapy [5].  Furthermore, the model by Sari et 

al [6] which discussing the ordinary differential equations 

model without discussing cell age. Model of dynamic of 
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tumor also has been discussed by Lestari et al. [7]. In contrast 

to existing research, this article discusses the mathematical 

model of tumor cell growth in the form of partial differential 

equations because it discusses the independent variables of 

time and age. Cell cycle is commonly represented as four 

stages: the S (synthesis) phase, the M (mitotic) phase, while 

the M and S phases are separated by two gap stages, the G1 

phase and G2 phase [8]. Age cell is defined as the time 

elapsed from its last division (in M phase) and deal with this 

measurable quantity instead of the cell cycle phase [9]. 

Tumor cell division is important to analyze because when a 

tumor cell divides uncontrollably, it results in more 

malignant cancer.  

The following Fig. 1 is a flow chart of this research. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Fig. 1. State of the art of this article 

 

Section II discusses basic theory used. Section III 

discussed the formulation of the model. Section IV discusses 

numerical simulations of models. Finally, Section V 

discusses conclusions and future work. 

 

II. BASIC THEORY 

A system of differential equations is a combination of two 

or more differential equations. Given vector x n where 
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If in Equation (1) explicitly contains the t variable then the 

system is called a non-autonomous system, and if it does not 

explicitly contain the variable t, then it is called the 

autonomous system [10]. An autonomous system can be 

expressed in terms of  

x ( ),   .nf x x=    

 System of ordinary differential equation linear orde 1  

where 1 2 3, , ,..., nx x x x as dependent variable and t as 

independent variable is denoted by 
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    (2) 

If H in (2) is equal with zero, then it is called homogeny 

system of differential equation. If H in (2) is not zero, then it 

is called non-homogeny. 

 Furthermore, if System (2) is expressed in matrix, then 

we have 

( )x Ax H t= +    

where A is a matrix n x n which is a coefficient matrix of 

independent variables ,nx ,ija   

1,2,3,..., ,i n= and  1,2,3,...,j n= . We also have 

( )H t is a matrix n x n as a function of t. It can be written as 

follow 
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From this theory then developed into partial differential 

equation. 

 

III. MATHEMATICAL MODEL 

This research is a continuation of previous research. In 

previous studies the model was still a system of ordinary 

differential equations because the independent variable was 

only time (t). Besides, the model discussed was a 

development of the one by Sharma [11]. In this study, what is 

discussed is that the independent variable depends not only 

on time (t) but also age (a). Thus, the model takes the form of 

a system of partial differential equations. Fig. 2 below is 

diagram transfer of our model. 

 

 
Fig. 2. Diagram transfer of tumor growth based on age structure. 

 

Naturally, cells in the body produce T helper cells that 

activate CTL cells if there are tumor cells. However, there is a 

condition where tumor cells duplicate in such a way that they 

cannot be resisted by the body's immune system. Therefore 

we need medicine. There are several therapies to control this 

tumor cell, including biochemotherapy, immunotherapy, 

gene therapy [12] or chemotherapy. This study used 

chemotherapy to control the population of tumor cells. 

On the other hand, the cell will be in a certain gap until it 

finally divides. This is called cell age [13]. As initial research, 

in this study we developed an independent variable age in 

tumor cells only to see in more detail how the tumor cell 

population at a certain age and a certain time continues to 

divide. 

The population was divided into four classes, i.e. tumor 

cells, CTL cells, T helper cells, and chemotherapy drugs. The 

population of tumor cell (T) at time t and age a was denoted 

by ( ),T a t . The population of CTL cell at time t was denoted 

by ( )C t . The population of helper T cell was denoted 

by ( )R t ,  and the population of chemotherapy drug was 

denoted by M. Drug is only dependent by time t. 

Mathematical model of this research can be described as 

follows 

Mathematical model of this research can be described as 

follows 

( )1 1 1 11
T T

x T y T z MT T
a t


 

+ = − − −
 

  (3a) 

2 2

dC
CR C z MC C

dt
  = − − −     (3b) 

( )2 2 31
dR

x R y R CR z MR
dt

= − − −    (3c) 

.
dM

a M
dt

= −         (3d) 

Equation (3a) shows the rate of change in tumor cell 

population with time t and age a. The first term shows logistic 

growth for tumor cells [11]. The second term is the 

interaction between tumor cells and chemotherapy drugs as 

much as
 1z . The parameter

 1  in the third term in (3a) is the 

rate of interaction between the tumor cell and CTL cell.  In 
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this case the tumor cell has decreased indicated by a negative 

sign.  

For (3b), the first term represents the rate at which CTL 

cells are activated by T helper cells, and the second term 

expresses the natural rate of death of CTL cells. Meanwhile, 

the effect of the drug is not only for tumor cells, but also for 

all cells shown by the third term (3b) and (3c). The fourth 

term in (3b) shows the interaction of CTL cells with tumor 

cells, but CTL cells "lose" so that they decrease. 

Equation (3c) is the rate of change in T helper cell 

population over time t. The growth rate follows the logistic 

equation. Equation (3d) states the rate of chemotherapy drugs. 

Note that (3d) is only depends on M, so that it can be solved 

easily, which is then substituted into Equation (3a) - (3c). The 

solution of (3.d) is, ( ) 0

t a
M t K e 



−= + , where 
1

0

Ke
K





−
= . 

Thus, the model becomes 

( )1 1 1 0 11 tT T a
x T y T z K e T T

a t

 


−  
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 (4a) 

2 0 2

tdC a
CR C z K e C C

dt

  


− 
= − − + − 

 
  (4b) 

( )2 2 3 01 tdR a
x R y R CR z K e R

dt




− 
= − − − + 

 
 (4c) 

System (4) will be simulated in the next section. 

 

IV. SIMULATION 

Using the value as shown in Table I below, System (4) 

can be simulated. 

TABLE I: PARAMETER VALUE 

 
 

 
Fig. 4. Graphic Solution for tumor population at t = 5. 

 
Fig. 5. Graphic Solution at t = 0. 

 
Fig. 6. Graphic Solution at t = 0.5. 

 

 
Fig. 7. Graphic Solution at t = 0.8. 

 

 
Fig. 8. Graphic Solution at t = 1. 
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Fig. 3 to show the behavior of tumor cell population at t = 0, 

it can be seen that the population decreases directly. If t = 5 

(Fig. 4) which is higher than before, it can be seen that for the 

beginning the population increases and for the age (x- axis) 5,  

it become decreases. 

Fig. 5-8 tells us the more time is given, the faster (depends 

on age) the solution will decrease. It shows us that the 

solution is periodic. There are several possibilities why the 

solution becomes periodic, such as the nonlinear model due 

to the movement of each cell to another class, for example 

from helper T cell class to CTL cells. In addition, it is because 

of periodical paramaters. 

 

V. CONCLUSION 

Mathematical model of interaction between tumor cells 

and normal cells (CTL cells and helper T cells) has been 

proposed. Analysis of the model is only using simulations. 

For further research may discuss equilibrium point and 

analytical solutions. Beside, all variables as age structure 

may be discussed.  
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