
  

  

 Abstract—Electronic trading amounts for the vast majority 

of all financial transactions with bonds and equities in the world. 

This type of trading is based largely on the brokering of 

messages from the buy side, brokers or financial institutions, to 

a sell side (usually an exchange). Since not all trading is done at 

the same time these messaging systems need to account for 

server down times, sequencing, high throughput and 

performance requirements. Therefore, most fintech companies 

employ queuing mechanism to manage the message flow. This 

paper analyzes the way in which Kafka, one of the premiere 

messaging systems currently in use, can simplify various 

systems in use such as message brokering, persistence or fault 

tolerance. The authors of this paper hope to demonstrate the 

use of Kafka as a messaging system, backup solution and alert 

broker for software operators and developers with low 

fault-tolerance and rigid up-time requirements. 

 
Index Terms—Kafka, message queue, electronic trading, 

message broker. 

  

I. INTRODUCTION 

The rise of electronic trading in stock markets is believed 

to have started in 1971, when NASDAQ, the largest stock 

exchange in the world, was founded. NASDAQ was founded 

as a computerized trading platform and thus was moving 

away from other markets where stocks were traded manually 

through a stockbroker via an open outcry [1]. This is not to 

say that there weren’t other attempts before 1971 to automate 

stock trading but it is largely believed that the market truly 

reached maturity in 1971. At first, progress was slow for 

electronic trading as it took another 14 years before the next 

major step was reached, the introduction, in 1985, of a retail 

trading platform by Trade*Plus on AOL and Compuserve 

terminals [1]. Another 9 years passed before the next major 

step in the evolution of stock markets happened, when “K. 

Aufhause & Co. became the first brokerage firm to offer 

online trading via its WealthWeb” [1]. Despite its slow start, 

from the moment when brokers realized the power of the 

internet and interconnected computers the writing was 

quickly on the wall for traditional trading solutions. In only a 

few years multiple US companies started offering networked 

services for small traders and, by the late 1990s, the 

popularity of electronic trading had already become a global 

phenomenon, not only a US one. 

Currently, in a report published by the Bank of 

International Settlements as early as 2016, electronic trading 

has become the dominant method for several fixed income 

markets [2]. According to the study, which reflected numbers 
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from 2016, 90% of all futures trading was done electronically. 

In foreign currency exchanges (FX) and equities 80% of 

trading was done electronically. Even government and other 

covered bonds, a safer investment instrument with a lower 

risk that is advertised using traditional media such as TV or 

radio, 50% of all trading was done electronically. These 

numbers reflected the global market as they were the result of 

polling over 30 trading platform providers [2]. Not only is 

trading done electronically, but it is overwhelmingly done 

automatically. In a paper published in 2013, which later 

became the go-to-reference for studies on algorithmic trading 

for multiple publications, Morton Glantz & Robert Kissell 

concluded that, in 2012, 85% of volume of trades in global 

markets was done by algorithmic trading [3]. 

This flurry of market activity is enabled by message 

brokering systems that can handle throughput of millions of 

messages every minute and tens or hundreds of millions of 

messages daily. It’s important to note that, unlike the popular 

belief that all trading is done nearly instantaneously, most 

messages can persist in a broker’s, bank’s and exchange’s 

databases for days, weeks or even months. Trades aren’t 

solved instantaneously, and multiple paper trails must be kept 

for audit reasons, or to accommodate multiple brokers, 

working from different countries on different timelines with 

the same order. This is one of the reasons why the number of 

messages send and received on a daily basis reaches such 

staggering values. And as a result of these needs, most traders 

have resorted to using different types of messaging systems 

and queues to keep order in their books. Stock exchanges 

allow customers to interact via XML, JSON or FIX 

Messaging standards and therefore might need to 

accommodate various possible responses to an execution 

report, a type of acknowledgment that an order or trade has 

been processed. Companies themselves need to be able to 

queue messages overnight, from brokers that might need to 

make changes to an order that will only go into effect the next 

morning and they need to ensure that the flow of messages to 

the exchange is not interrupted or lost lest they risk losing 

money. 

As a result, many companies have chosen to implement 

third party messaging services such as ActiveMQ, RabbitMQ, 

JMS and, for the purpose of this paper, Kafka. Kafka started 

development in 2008 at LinkedIN, where three programmers 

wanted to solve problems when dealing with streams of data 

[4]. It later became part of the Apache project and was open 

sourced becoming available to developers worldwide. 

Kafka’s vision is to allow streaming from multiple connected 

platforms, all at once, including databases [4]. As a result, 

developers are able to connect and integrate streams and APIs, 

process them and build applications on top of them [4]. This 

has become particularly useful to companies that need to 

Vlad Bucur, Ovidiu Stan, Liviu Miclea 

An Analysis of the Implementation of Kafka in 

High-Frequency Electronic Trading Environments 

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

52DOI: 10.7763/IJMO.2020.V10.746



  

communicate between applications in several different ways, 

both internally and externally. 

This paper will focus on how integrating Kafka can help 

with managing time and data-loss sensitive streams from a 

financial markets’ perspective. It will be structured in four 

sections, beyond the introductory part: a brief explanation of 

how Kafka works, both in general terms and in the context of 

this paper, a section analyzing and describing the 

implementation of Kafka for multiple tasks in 

message-driven electronic trading systems, a succinct 

comparison between Kafka and other messaging queues and 

finally a conclusion which will also highlight some research 

challenges with Kafka implementations and general message 

management systems. 

 

II. THE INNER WORKINGS OF A KAFKA CLUSTER 

Kafka primarily is a “distributed streaming platform” [5]. 

It allows developers to subscribe and publish streams, store 

them and process them. In essence, when initially developed, 

Kafka was engineered as a pure messaging queue system, but 

was later modified to be based on an abstraction of a commit 

log [6]. Kafka still works as a cluster of servers, despite this 

not being a requirement to using it as Kafka can delegate this 

clustering duty to Kubernetes. However, when run by itself, 

the Kafka cluster is formed out of at least one broker, or a 

“physical” instance of Kafka, at least one topic and at least 

one partition. It’s important to note that topics and partitions 

do not need to be created explicitly by the developer, because 

if they do not exist, Kafka will take care of their creation 

automatically. 

Kafka uses topics, as showed in Fig.1, to manage the 

messages it receives from producer threads. A topic is a basic 

messaging queue that is, however, split up in at least one 

partition. Messages split up in multiple partitions are not in 

order, however, due to load balancing concerns. In order for 

messages to be in order developers need to generate a specific 

key for the message, using an internal serializer tool provided 

by Kafka. When messages are assigned to partitions, they are 

also assigned and index number, known as an offset in Kafka 

terminology. The offset is the position of a message in a 

partition from which a consumer thread will begin reading a 

topic. Developers can determine whether the consumer 

threads read topics from the beginning, or index 0, or from 

another offset number, based on what their needs are. 

Deleting messages from Kafka topics is a complicated affair 

and is arguably one of the weak points of working with Kafka, 

which is why it’s important to note that the messaging system 

uses offset numbers to purge topics on a user determined 

schedule (by default: one week). 

Beyond simply acting as a messaging system Kafka offers 

load balancing and failover solutions for managing cases of 

force majeure. If multiple brokers are available in a cluster 

the system will distribute partitions separately to each broker. 

If, for example, a cluster is formed of three brokers and a 

topic is formed of three partitions, each broker in the cluster 

will host one partition for load balancing purposes. Kafka 

also enables users to replicate data once or twice. The official 

documentation recommends that data be replicated twice, 

and in such a scenario each of the three brokers mentioned 

above would hold a copy of a distinct partition from their 

original load-balancing assigned partition. Should one broker 

encounter issue the consumer threads could reorient 

themselves to one of the remaining two brokers which would 

have an in-sync copy (ISC) of the partition they are reading 

from. 

 

 

Fig. 1. Kafka standalone cluster. 

 

 

Fig. 2. Basic architecture of an electronic trading system using Kafka. 

 

III. IMPLEMENTATION OF KAFKA IN ELECTRONIC TRADING 

SYSTEMS 

One of the most common ways to use Kafka in any type of 

server application is to synchronize and normalize input from 

various sources. In the case of electronic trading mechanisms 

in particular this means that several buy-side (brokerage 

firms, financial institutions, etc.) terminals are linked to a 

Kafka cluster or topic and their messages are threaded 

through to a sell-side (stock exchange). 

In Fig. 2 a basic software architecture of an electronic 

trading system using Kafka is shown. The architecture 

follows the basic design patterns of a messaging queue 

cluster with a few notable exceptions. In the above image the 

processing and storage of data is left to the internal 

messaging system entirely. Here, instead of directly 
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connecting to a database using DB connectors provided by 

Kafka the tasks of storing messages, sequence numbers and 

replication are left to the internal messaging system. 

This helps companies to improve performance and 

cyber-security. Firstly, by letting the internal messaging 

system handle all data storage the data can be stored in flat 

file databases on the client’s side. This results in greatly 

improved performance as the part of the architecture that 

handles the processing of messages does not need to connect 

to a remote server but rather does all the processing on a local 

hard drive. Secondly, the data replication can be done 

through an internal network, ensuring that, in addition to the 

data replication in Kafka topics, a hard copy of all 

transactions is kept on a local hard drive in a different part of 

the network without requiring access to the internet to 

achieve, only a functioning local network. Thirdly, this 

method ensures that business and customer sensitive data is 

kept only on company computers until it is disseminated back 

to the broker or financial institution that started the order. 

Additionally, when using an internal messaging system to 

manage Kafka topics, the communication between 

counterparty, Kafka and end customer is easier to achieve. 

The internal messaging system will convert all messages sent 

by Kafka to a common format agreed upon by the stock 

exchange. This means both outbound and inbound messages 

are handled in the same language and conversion only needs 

to be done one way, from Kafka to the messaging standard 

and back. Perhaps the question then arises, where in all of this 

does Kafka help simplify the functionality of an electronic 

trading system if the internal messaging system handles the 

conversion of messages? In fact, in this particular case, 

before the advent of Kafka, the messaging system would’ve 

been required to handle either multiple types of strings 

(JSON, plain String, char arrays, POJOs, etc.) whereas now, 

while using Kafka, the conversion can be done with the 

provided Kafka classes. In the code snippet below (Fig. 3), 

Kafka is able to use its consumer functionality to receive all 

types of messages from multiple sources, convert the JSON 

to a specific type of object intended for use with the internal 

messaging system and then send these messages for 

processing to the messaging system itself. 

It’s extremely important to underline that the ability to 

handle all types of input at a cluster level, before the message 

reaches and internal messaging system is a massive 

advantage offered by Kafka to electronic trading systems that 

other messaging queue simply do not offer. Since the 

processing of messages can be done independently, by the 

API, there is no need to accommodate for a special case for 

each queue that is employed. Before the advent of Kafka 

most internal messaging systems used by banks and financial 

institutions (for example FIX messaging systems) had a 

separate setting that needed to be enabled for each type of 

queue. Queues were not compatible with each other all the 

time and, if a new queue was set up, the trading cluster 

needed to be taken down, the new queue added to the 

configuration file, tested and only then the server could be 

booted back up. Kafka solves this issue because it processes 

all types of messages through its topics and the entire topic 

can be read by a middleware that stands between the internal 

messaging system and the Kafka cluster. The problem of who 

is sending what type of message is a non-issue at this point 

and the developer only needs to focus on interpreting the 

strings and sending them to the FIX engine. No matter how 

many types of messages in different formats changes are 

made only in code and they do not affect the immediate 

functionality of the trading cluster. 

 

 

Fig. 3. Implementation of a Kafka consumer thread with JSON-based 
streams. 

 

Beyond just managing the flow of inbound and outbound 

messages one of the most important aspects of a messaging 

queue system, especially from a high-frequency trading 

perspective, is to ensure persistence. Persistence refers to the 

process of storing an object and its characteristics after the 

process which created that object has been completed [7]. 

While persistence often means redundant data [8], and this is 

certainly the case in electronic trading systems, huge amounts 

of data are persisted daily in trading systems for various 

reasons. One of the most important reasons is due to 

performance as persisted data is used to throttle trading 

systems before the start of the trading day. Additionally, 

smaller persistence methods are required to carry specific 

information, or tags, from one different message to another, 

since not all brokers and financial institutions send the same 

amount of information in their messages. 

Then, persistence is of three broad types: at startup, 

scheduled and always. To implement a persistence of this 

type using Kafka one would need to create three different 

consumer threads at least, one to handle each of the types of 

persistence. To know which messages, need to be persisted, 

Kafka uses the offsets of each queue to determine from where 

it needs to start sending messages to the cache. For data that 

is needed at startup Kafka would send all messages from the 

earliest offset to an internal cache and store them there for 

when the internal messaging systems needs to reference them. 

When data is required to be accessed on a schedule, for 

example every five minutes, Kafka would set the offset to the 

number that was last sent and then remove the remaining 

objects for the active map. Finally, when data needs to be 

persisted constantly, the latest offset would simply be sent to 

the active cache. 

This functionality basically bypasses the traditional 

database approach somewhat, as Kafka uses its topics to store 

data and then send it directly to a cache instead of a database 

which is then, usually, loaded into memory and is only then 

cached. On an implementation level, topics are created and 
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deleted as needed and associated to a producer thread. Once 

the topic has been consumed it is deleted. When involved 

with a physical database, methods are created separately for 

handling all table management and concurrency situations 

such as in a shared file scenario, if using a flat-file database. 

The cache itself can be implemented in Java as an object 

using streams to receive and distribute data. 

Finally, one of the last aspects which needs to be 

considered when managing a security and performance 

critical messaging system is high availability, load and 

replication of messages. Kafka offers a guarantee that, “a 

topic with a replication factor N, will tolerate N-1 server 

failures without losing any records committed to log” [5]. 

This is the basic replication mechanism of a Kafka cluster 

and it can be enabled remotely in the cloud every time Kafka 

is deployed. As a result, one of the most common 

implementations of Kafka in a high-availability low 

fault-tolerance system is to deploy multiple instance of the 

internal messaging system and the Kafka cluster with Docker 

and Kubernetes. An even easier solution involves a 

third-party tool, Strimzi, which provides developers a way of 

running a Kafka cluster on Kubernetes in various deployment 

configurations [9].  

However, the automated deployment approach is not the 

only way in which Kafka can be used for load balancing and 

high-availability. A bespoke solution using middleware 

between the cluster and the internal messaging system can 

also be employed. In this case messages from multiple 

messaging systems are sent to one topic and then from that 

topic they are distributed to at least two physical machines, 

using in-sync replication for each machine, so that, if one 

machine fails the other one can take up the status of leader 

and continue sending messages to the counterparty. 

 

IV. A COMPARISON OF KAFKA AND OTHER MESSAGING 

SYSTEMS 

Before attempting to compare Kafka to other messaging 

systems it’s important to note that Kafka isn’t only a 

messaging system. In fact, according to the developer’s 

website, messaging is only one of the features of Kafka, 

along with storing data and processing streams [5]. 

One of the ways in which it’s immediately apparent that 

Kafka differs from other messaging systems is in the way in 

which it uses queues. In a traditional queueing system queues 

are not multiple-subscriber and once a process reads the data, 

the data is gone [5]. In Kafka, the consumer group process 

allows developers to divide up processing to a collection of 

processes [5], as was the case with the high-availability 

scenario described in section III. Furthermore, in a traditional 

queueing system records retain their order and if “multiple 

consumers consume from the queue the server will hand out 

records in the order in which they are stored” [5]. The 

partition inside Kafka topics offers load balancing and 

ordering guarantees by assigning each partition in a topic to a 

consumer in the consumer group so that each partition is used 

by exactly one consumer at a time [5]. Since data in partitions 

is stored in order, that guarantees that each consumer 

consumes the data in order. 

 

 

 

(a) (b) 
Fig. 4. Comparision of queue implamentation. (a) ActiveMQ implementation 

of a queue; (b) Kafka implementation of a queue. 

 

Another major difference between Kafka and other 

messaging queues, most notably ActiveMQ (also an Apache 

project) is the way in which the architecture of the two 

systems was developed (Figure 4). In the case of ActiveMQ it 

uses JMS [10], the provided Java API for interfacing with 

messaging brokers. This obviously makes it quicker in terms 

of performance as the JMS API is designed to be a 

lightweight API that wants to offer reliable ways of brokering 

messages to clients. As a result, JMS type brokers, such as 

ActiveMQ are not really considered universal data pipelines 

[10]. It’s a completely different model from Kafka, which is 

solely concerned with becoming a universal data pipeline and 

has followed that design philosophy throughout its 

development. The concept of topics in themselves was 

designed to handle not one type of message broker interface, 

but multiple. Therefore, the major difference is that, in the 

end, almost all types of messaging queues require an 

individual implementation of their message broker interface, 

somewhere between the application and the final output 

destination, whereas Kafka does not. 

Finally, it’s important to note that Kafka isn’t just a 

queueing system. While this obviously would invalidate the 

comparison with other messaging systems, it should still be 

noted that Kafka can be used in multiple ways, including, as a 

database, for persistence purposes as a stream management 

tool or as a storage system. However, it should be noted that 

this might come to a cost in terms of performance, 

particularly when using Kafka as a messaging system in 

high-performance environments. Kafka’s message 

acknowledgement system provides three levels of accuracy: 

• acks = 0:  in this case the producer does not wait for 

an acknowledgment from the server and no 

guarantee can be made that the server has received 

the message [10]. This is one of the riskiest 

approaches to managing a messaging queue and it 

doesn’t carry any guarantees from Kafka 

• acks = 1: in this case the leader writes the record to its 

local log but will respond without waiting for full 

acknowledgment [10]. This is usually the preferred 

method of acknowledging a message was received 

successfully as it doesn’t involve waiting for the 

server to respond 

• acks = all: the final case, in which the leader waits for 

all servers to respond that they have acknowledged 
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the record [10]. This includes all in-sync replicas on 

every Kafka broker. 

None of the three solutions above are nearly as safe, quick 

or elegant as using a regular JMS queue which will return the 

acks from the server nearly instantaneously. And, in 

high-performance environments even using the acks = 1 

solution, which is the only intermediate solution that offers a 

guarantee that messages were received, still drags 

performance down considerably as Kafka waits for 

confirmation from the leader. 

 

V. CONCLUSIONS 

Even though Kafka could be considered an established 

product in most software development cycles knowledge of 

its inner workings and concrete implementations using it as a 

main message broker or storage solution are still quite sparse. 

In an article from February 2019, of most in demand skills for 

programmers Kafka came in second, only losing out to 

GoLang a new object-oriented language from RedHat 

Enterprises which also has a stake in Kafka [10].  

As a result of the high demand for Kafka skills in the 

workplace we, the authors of the paper, postulate that one of 

the major reasons for this high demand is a lack of knowledge 

related to the way Kafka operates and what exactly it might 

be good for, let alone how to use it properly. The reason why 

Kafka became more popular was not due to, perhaps, its 

intended use as a message broker for big data but rather as a 

tool for managing disparate messaging systems in 

non-monolithic applications – micro-services in the cloud. 

We base our theory on the fact that, throughout researching 

this paper, most of the references to other scientific articles 

that we found were based on high-throughput, big data 

systems using Kafka as a message broker or storage solution. 

However, that should not dissuade developers from using 

Kafka nor should it be an indictment of the product itself. We 

believe that Kafka is a powerful tool which has yet to be used 

to its full extent in non-cloud environments, especially in 

those environments where high-availability and low 

fault-tolerance are critical to success. And while, it can be 

argued, that performance wise JSM or API based broker 

interfaces are quicker than Kafka we cannot ignore that the 

world of software development is moving to a distributed 

solution where implementing a different API for each 

solution is simply becoming an impossible task, wasting too 

much time and resources which are already at a premium in 

the industry. 
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