

 Abstract—Electronic trading amounts for the vast majority

of all financial transactions with bonds and equities in the world.

This type of trading is based largely on the brokering of

messages from the buy side, brokers or financial institutions, to

a sell side (usually an exchange). Since not all trading is done at

the same time these messaging systems need to account for

server down times, sequencing, high throughput and

performance requirements. Therefore, most fintech companies

employ queuing mechanism to manage the message flow. This

paper analyzes the way in which Kafka, one of the premiere

messaging systems currently in use, can simplify various

systems in use such as message brokering, persistence or fault

tolerance. The authors of this paper hope to demonstrate the

use of Kafka as a messaging system, backup solution and alert

broker for software operators and developers with low

fault-tolerance and rigid up-time requirements.

Index Terms—Kafka, message queue, electronic trading,

message broker.

I. INTRODUCTION

The rise of electronic trading in stock markets is believed

to have started in 1971, when NASDAQ, the largest stock

exchange in the world, was founded. NASDAQ was founded

as a computerized trading platform and thus was moving

away from other markets where stocks were traded manually

through a stockbroker via an open outcry [1]. This is not to

say that there weren’t other attempts before 1971 to automate

stock trading but it is largely believed that the market truly

reached maturity in 1971. At first, progress was slow for

electronic trading as it took another 14 years before the next

major step was reached, the introduction, in 1985, of a retail

trading platform by Trade*Plus on AOL and Compuserve

terminals [1]. Another 9 years passed before the next major

step in the evolution of stock markets happened, when “K.

Aufhause & Co. became the first brokerage firm to offer

online trading via its WealthWeb” [1]. Despite its slow start,

from the moment when brokers realized the power of the

internet and interconnected computers the writing was

quickly on the wall for traditional trading solutions. In only a

few years multiple US companies started offering networked

services for small traders and, by the late 1990s, the

popularity of electronic trading had already become a global

phenomenon, not only a US one.

Currently, in a report published by the Bank of

International Settlements as early as 2016, electronic trading

has become the dominant method for several fixed income

markets [2]. According to the study, which reflected numbers

Manuscript received October 9, 2019; revised March 10, 2020.

Vlad Bucur, Ovidiu Stan, and Liviu Miclea are with theDepartment of
Automation, Technical University of Cluj Napoca, Cluj, Romania (e-mail:

Ovidiu.stan@aut.utcluj.ro).

from 2016, 90% of all futures trading was done electronically.

In foreign currency exchanges (FX) and equities 80% of

trading was done electronically. Even government and other

covered bonds, a safer investment instrument with a lower

risk that is advertised using traditional media such as TV or

radio, 50% of all trading was done electronically. These

numbers reflected the global market as they were the result of

polling over 30 trading platform providers [2]. Not only is

trading done electronically, but it is overwhelmingly done

automatically. In a paper published in 2013, which later

became the go-to-reference for studies on algorithmic trading

for multiple publications, Morton Glantz & Robert Kissell

concluded that, in 2012, 85% of volume of trades in global

markets was done by algorithmic trading [3].

This flurry of market activity is enabled by message

brokering systems that can handle throughput of millions of

messages every minute and tens or hundreds of millions of

messages daily. It’s important to note that, unlike the popular

belief that all trading is done nearly instantaneously, most

messages can persist in a broker’s, bank’s and exchange’s

databases for days, weeks or even months. Trades aren’t

solved instantaneously, and multiple paper trails must be kept

for audit reasons, or to accommodate multiple brokers,

working from different countries on different timelines with

the same order. This is one of the reasons why the number of

messages send and received on a daily basis reaches such

staggering values. And as a result of these needs, most traders

have resorted to using different types of messaging systems

and queues to keep order in their books. Stock exchanges

allow customers to interact via XML, JSON or FIX

Messaging standards and therefore might need to

accommodate various possible responses to an execution

report, a type of acknowledgment that an order or trade has

been processed. Companies themselves need to be able to

queue messages overnight, from brokers that might need to

make changes to an order that will only go into effect the next

morning and they need to ensure that the flow of messages to

the exchange is not interrupted or lost lest they risk losing

money.

As a result, many companies have chosen to implement

third party messaging services such as ActiveMQ, RabbitMQ,

JMS and, for the purpose of this paper, Kafka. Kafka started

development in 2008 at LinkedIN, where three programmers

wanted to solve problems when dealing with streams of data

[4]. It later became part of the Apache project and was open

sourced becoming available to developers worldwide.

Kafka’s vision is to allow streaming from multiple connected

platforms, all at once, including databases [4]. As a result,

developers are able to connect and integrate streams and APIs,

process them and build applications on top of them [4]. This

has become particularly useful to companies that need to

Vlad Bucur, Ovidiu Stan, Liviu Miclea

An Analysis of the Implementation of Kafka in

High-Frequency Electronic Trading Environments

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

52DOI: 10.7763/IJMO.2020.V10.746

communicate between applications in several different ways,

both internally and externally.

This paper will focus on how integrating Kafka can help

with managing time and data-loss sensitive streams from a

financial markets’ perspective. It will be structured in four

sections, beyond the introductory part: a brief explanation of

how Kafka works, both in general terms and in the context of

this paper, a section analyzing and describing the

implementation of Kafka for multiple tasks in

message-driven electronic trading systems, a succinct

comparison between Kafka and other messaging queues and

finally a conclusion which will also highlight some research

challenges with Kafka implementations and general message

management systems.

II. THE INNER WORKINGS OF A KAFKA CLUSTER

Kafka primarily is a “distributed streaming platform” [5].

It allows developers to subscribe and publish streams, store

them and process them. In essence, when initially developed,

Kafka was engineered as a pure messaging queue system, but

was later modified to be based on an abstraction of a commit

log [6]. Kafka still works as a cluster of servers, despite this

not being a requirement to using it as Kafka can delegate this

clustering duty to Kubernetes. However, when run by itself,

the Kafka cluster is formed out of at least one broker, or a

“physical” instance of Kafka, at least one topic and at least

one partition. It’s important to note that topics and partitions

do not need to be created explicitly by the developer, because

if they do not exist, Kafka will take care of their creation

automatically.

Kafka uses topics, as showed in Fig.1, to manage the

messages it receives from producer threads. A topic is a basic

messaging queue that is, however, split up in at least one

partition. Messages split up in multiple partitions are not in

order, however, due to load balancing concerns. In order for

messages to be in order developers need to generate a specific

key for the message, using an internal serializer tool provided

by Kafka. When messages are assigned to partitions, they are

also assigned and index number, known as an offset in Kafka

terminology. The offset is the position of a message in a

partition from which a consumer thread will begin reading a

topic. Developers can determine whether the consumer

threads read topics from the beginning, or index 0, or from

another offset number, based on what their needs are.

Deleting messages from Kafka topics is a complicated affair

and is arguably one of the weak points of working with Kafka,

which is why it’s important to note that the messaging system

uses offset numbers to purge topics on a user determined

schedule (by default: one week).

Beyond simply acting as a messaging system Kafka offers

load balancing and failover solutions for managing cases of

force majeure. If multiple brokers are available in a cluster

the system will distribute partitions separately to each broker.

If, for example, a cluster is formed of three brokers and a

topic is formed of three partitions, each broker in the cluster

will host one partition for load balancing purposes. Kafka

also enables users to replicate data once or twice. The official

documentation recommends that data be replicated twice,

and in such a scenario each of the three brokers mentioned

above would hold a copy of a distinct partition from their

original load-balancing assigned partition. Should one broker

encounter issue the consumer threads could reorient

themselves to one of the remaining two brokers which would

have an in-sync copy (ISC) of the partition they are reading

from.

Fig. 1. Kafka standalone cluster.

Fig. 2. Basic architecture of an electronic trading system using Kafka.

III. IMPLEMENTATION OF KAFKA IN ELECTRONIC TRADING

SYSTEMS

One of the most common ways to use Kafka in any type of

server application is to synchronize and normalize input from

various sources. In the case of electronic trading mechanisms

in particular this means that several buy-side (brokerage

firms, financial institutions, etc.) terminals are linked to a

Kafka cluster or topic and their messages are threaded

through to a sell-side (stock exchange).

In Fig. 2 a basic software architecture of an electronic

trading system using Kafka is shown. The architecture

follows the basic design patterns of a messaging queue

cluster with a few notable exceptions. In the above image the

processing and storage of data is left to the internal

messaging system entirely. Here, instead of directly

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

53

connecting to a database using DB connectors provided by

Kafka the tasks of storing messages, sequence numbers and

replication are left to the internal messaging system.

This helps companies to improve performance and

cyber-security. Firstly, by letting the internal messaging

system handle all data storage the data can be stored in flat

file databases on the client’s side. This results in greatly

improved performance as the part of the architecture that

handles the processing of messages does not need to connect

to a remote server but rather does all the processing on a local

hard drive. Secondly, the data replication can be done

through an internal network, ensuring that, in addition to the

data replication in Kafka topics, a hard copy of all

transactions is kept on a local hard drive in a different part of

the network without requiring access to the internet to

achieve, only a functioning local network. Thirdly, this

method ensures that business and customer sensitive data is

kept only on company computers until it is disseminated back

to the broker or financial institution that started the order.

Additionally, when using an internal messaging system to

manage Kafka topics, the communication between

counterparty, Kafka and end customer is easier to achieve.

The internal messaging system will convert all messages sent

by Kafka to a common format agreed upon by the stock

exchange. This means both outbound and inbound messages

are handled in the same language and conversion only needs

to be done one way, from Kafka to the messaging standard

and back. Perhaps the question then arises, where in all of this

does Kafka help simplify the functionality of an electronic

trading system if the internal messaging system handles the

conversion of messages? In fact, in this particular case,

before the advent of Kafka, the messaging system would’ve

been required to handle either multiple types of strings

(JSON, plain String, char arrays, POJOs, etc.) whereas now,

while using Kafka, the conversion can be done with the

provided Kafka classes. In the code snippet below (Fig. 3),

Kafka is able to use its consumer functionality to receive all

types of messages from multiple sources, convert the JSON

to a specific type of object intended for use with the internal

messaging system and then send these messages for

processing to the messaging system itself.

It’s extremely important to underline that the ability to

handle all types of input at a cluster level, before the message

reaches and internal messaging system is a massive

advantage offered by Kafka to electronic trading systems that

other messaging queue simply do not offer. Since the

processing of messages can be done independently, by the

API, there is no need to accommodate for a special case for

each queue that is employed. Before the advent of Kafka

most internal messaging systems used by banks and financial

institutions (for example FIX messaging systems) had a

separate setting that needed to be enabled for each type of

queue. Queues were not compatible with each other all the

time and, if a new queue was set up, the trading cluster

needed to be taken down, the new queue added to the

configuration file, tested and only then the server could be

booted back up. Kafka solves this issue because it processes

all types of messages through its topics and the entire topic

can be read by a middleware that stands between the internal

messaging system and the Kafka cluster. The problem of who

is sending what type of message is a non-issue at this point

and the developer only needs to focus on interpreting the

strings and sending them to the FIX engine. No matter how

many types of messages in different formats changes are

made only in code and they do not affect the immediate

functionality of the trading cluster.

Fig. 3. Implementation of a Kafka consumer thread with JSON-based
streams.

Beyond just managing the flow of inbound and outbound

messages one of the most important aspects of a messaging

queue system, especially from a high-frequency trading

perspective, is to ensure persistence. Persistence refers to the

process of storing an object and its characteristics after the

process which created that object has been completed [7].

While persistence often means redundant data [8], and this is

certainly the case in electronic trading systems, huge amounts

of data are persisted daily in trading systems for various

reasons. One of the most important reasons is due to

performance as persisted data is used to throttle trading

systems before the start of the trading day. Additionally,

smaller persistence methods are required to carry specific

information, or tags, from one different message to another,

since not all brokers and financial institutions send the same

amount of information in their messages.

Then, persistence is of three broad types: at startup,

scheduled and always. To implement a persistence of this

type using Kafka one would need to create three different

consumer threads at least, one to handle each of the types of

persistence. To know which messages, need to be persisted,

Kafka uses the offsets of each queue to determine from where

it needs to start sending messages to the cache. For data that

is needed at startup Kafka would send all messages from the

earliest offset to an internal cache and store them there for

when the internal messaging systems needs to reference them.

When data is required to be accessed on a schedule, for

example every five minutes, Kafka would set the offset to the

number that was last sent and then remove the remaining

objects for the active map. Finally, when data needs to be

persisted constantly, the latest offset would simply be sent to

the active cache.

This functionality basically bypasses the traditional

database approach somewhat, as Kafka uses its topics to store

data and then send it directly to a cache instead of a database

which is then, usually, loaded into memory and is only then

cached. On an implementation level, topics are created and

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

54

deleted as needed and associated to a producer thread. Once

the topic has been consumed it is deleted. When involved

with a physical database, methods are created separately for

handling all table management and concurrency situations

such as in a shared file scenario, if using a flat-file database.

The cache itself can be implemented in Java as an object

using streams to receive and distribute data.

Finally, one of the last aspects which needs to be

considered when managing a security and performance

critical messaging system is high availability, load and

replication of messages. Kafka offers a guarantee that, “a

topic with a replication factor N, will tolerate N-1 server

failures without losing any records committed to log” [5].

This is the basic replication mechanism of a Kafka cluster

and it can be enabled remotely in the cloud every time Kafka

is deployed. As a result, one of the most common

implementations of Kafka in a high-availability low

fault-tolerance system is to deploy multiple instance of the

internal messaging system and the Kafka cluster with Docker

and Kubernetes. An even easier solution involves a

third-party tool, Strimzi, which provides developers a way of

running a Kafka cluster on Kubernetes in various deployment

configurations [9].

However, the automated deployment approach is not the

only way in which Kafka can be used for load balancing and

high-availability. A bespoke solution using middleware

between the cluster and the internal messaging system can

also be employed. In this case messages from multiple

messaging systems are sent to one topic and then from that

topic they are distributed to at least two physical machines,

using in-sync replication for each machine, so that, if one

machine fails the other one can take up the status of leader

and continue sending messages to the counterparty.

IV. A COMPARISON OF KAFKA AND OTHER MESSAGING

SYSTEMS

Before attempting to compare Kafka to other messaging

systems it’s important to note that Kafka isn’t only a

messaging system. In fact, according to the developer’s

website, messaging is only one of the features of Kafka,

along with storing data and processing streams [5].

One of the ways in which it’s immediately apparent that

Kafka differs from other messaging systems is in the way in

which it uses queues. In a traditional queueing system queues

are not multiple-subscriber and once a process reads the data,

the data is gone [5]. In Kafka, the consumer group process

allows developers to divide up processing to a collection of

processes [5], as was the case with the high-availability

scenario described in section III. Furthermore, in a traditional

queueing system records retain their order and if “multiple

consumers consume from the queue the server will hand out

records in the order in which they are stored” [5]. The

partition inside Kafka topics offers load balancing and

ordering guarantees by assigning each partition in a topic to a

consumer in the consumer group so that each partition is used

by exactly one consumer at a time [5]. Since data in partitions

is stored in order, that guarantees that each consumer

consumes the data in order.

(a) (b)
Fig. 4. Comparision of queue implamentation. (a) ActiveMQ implementation

of a queue; (b) Kafka implementation of a queue.

Another major difference between Kafka and other

messaging queues, most notably ActiveMQ (also an Apache

project) is the way in which the architecture of the two

systems was developed (Figure 4). In the case of ActiveMQ it

uses JMS [10], the provided Java API for interfacing with

messaging brokers. This obviously makes it quicker in terms

of performance as the JMS API is designed to be a

lightweight API that wants to offer reliable ways of brokering

messages to clients. As a result, JMS type brokers, such as

ActiveMQ are not really considered universal data pipelines

[10]. It’s a completely different model from Kafka, which is

solely concerned with becoming a universal data pipeline and

has followed that design philosophy throughout its

development. The concept of topics in themselves was

designed to handle not one type of message broker interface,

but multiple. Therefore, the major difference is that, in the

end, almost all types of messaging queues require an

individual implementation of their message broker interface,

somewhere between the application and the final output

destination, whereas Kafka does not.

Finally, it’s important to note that Kafka isn’t just a

queueing system. While this obviously would invalidate the

comparison with other messaging systems, it should still be

noted that Kafka can be used in multiple ways, including, as a

database, for persistence purposes as a stream management

tool or as a storage system. However, it should be noted that

this might come to a cost in terms of performance,

particularly when using Kafka as a messaging system in

high-performance environments. Kafka’s message

acknowledgement system provides three levels of accuracy:

• acks = 0: in this case the producer does not wait for

an acknowledgment from the server and no

guarantee can be made that the server has received

the message [10]. This is one of the riskiest

approaches to managing a messaging queue and it

doesn’t carry any guarantees from Kafka

• acks = 1: in this case the leader writes the record to its

local log but will respond without waiting for full

acknowledgment [10]. This is usually the preferred

method of acknowledging a message was received

successfully as it doesn’t involve waiting for the

server to respond

• acks = all: the final case, in which the leader waits for

all servers to respond that they have acknowledged

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

55

the record [10]. This includes all in-sync replicas on

every Kafka broker.

None of the three solutions above are nearly as safe, quick

or elegant as using a regular JMS queue which will return the

acks from the server nearly instantaneously. And, in

high-performance environments even using the acks = 1

solution, which is the only intermediate solution that offers a

guarantee that messages were received, still drags

performance down considerably as Kafka waits for

confirmation from the leader.

V. CONCLUSIONS

Even though Kafka could be considered an established

product in most software development cycles knowledge of

its inner workings and concrete implementations using it as a

main message broker or storage solution are still quite sparse.

In an article from February 2019, of most in demand skills for

programmers Kafka came in second, only losing out to

GoLang a new object-oriented language from RedHat

Enterprises which also has a stake in Kafka [10].

As a result of the high demand for Kafka skills in the

workplace we, the authors of the paper, postulate that one of

the major reasons for this high demand is a lack of knowledge

related to the way Kafka operates and what exactly it might

be good for, let alone how to use it properly. The reason why

Kafka became more popular was not due to, perhaps, its

intended use as a message broker for big data but rather as a

tool for managing disparate messaging systems in

non-monolithic applications – micro-services in the cloud.

We base our theory on the fact that, throughout researching

this paper, most of the references to other scientific articles

that we found were based on high-throughput, big data

systems using Kafka as a message broker or storage solution.

However, that should not dissuade developers from using

Kafka nor should it be an indictment of the product itself. We

believe that Kafka is a powerful tool which has yet to be used

to its full extent in non-cloud environments, especially in

those environments where high-availability and low

fault-tolerance are critical to success. And while, it can be

argued, that performance wise JSM or API based broker

interfaces are quicker than Kafka we cannot ignore that the

world of software development is moving to a distributed

solution where implementing a different API for each

solution is simply becoming an impossible task, wasting too

much time and resources which are already at a premium in

the industry.

CONFLICT OF INTEREST

The authors declare no conflict of interest.

AUTHOR CONTRIBUTIONS

BV conducted the research, algorithm and wrote the paper;

SO analyzed the experimental stage and the English grammar;

ML assured the experimental work. All authors had approved

the final version.

ACKNOWLEDGMENT

The research presented in this paper was supported by the

following projects: ROBIN (PN-III-P1-1.2-PCCDI-2017-

0734) and SeMed (2933/55/GNaC 2018).

REFERENCES

[1] V. Market, Multi-asset Risk Modeling: Techniques for a Global
Economy in an Electronic and Algorithmic Trading Era, Academic

Press, 2013, pp. 258.

[2] Anadiotis, Geroge. (2017). Kafka: The story so far. [Online]. Available:
https://www.zdnet.com/article/kafka-the-story-so-far/

[3] A. Kafka. (2019). Introduction. [Online]. Available:
https://kafka.apache.org/intro

[4] Confluent. (2019). What is apache kafka? [Online]. Available:

https://www.confluent.io/what-is-apache-kafka/
[5] B. Stephanie, “Contracted persistent object programming,” Swiss

Federal Institute of Technology Zurich, 2015.

[6] W. Thorsten and K. Veit, “Persistence in data warehousing,” in Porc.

2012 Sixth International Conference on Research Challenges in

Information Science (RCIS), 2012.
[7] Strimzi. (2019). Overview. [Online]. Available: https://strimzi.io/

[8] T. Liam. (2019). [Online]. Available: Best-paying programming
languages, skills: Here are the top earners.

https://www.zdnet.com/article/best-paying-programming-languages-s

kills-here-are-the-top-earners/
[9] A. Kafka. (2019). Documentation. [Online]. Available

https://kafka.apache.org/20/documentation.html
[10] ActiveMQ. (2019). Hello World. [Online]. Available

https://activemq.apache.org/hello-world

Copyright © 2020 by the authors. This is an open access article distributed

under the Creative Commons Attribution License which permits unrestricted
use, distribution, and reproduction in any medium, provided the original

work is properly cited (CC BY 4.0).

Bucur V. is a PhD student in the Automation

Department at the Technical University of Cluj-Napoca.

His research interests include advanced Internet
technologies, dependable systems, cloud computing.

Stan O. is a lecturer in the Automation Department at

the Technical University of Cluj-Napoca. His research
interests include medical informatics, semantic

interoperability, information management in the age of

the Internet, dependability and fault-tolerant systems.
Stan received a PhD in systems engineering from the

Technical University of Cluj-Napoca. He is a member of
IEEE.

Miclea L. is a full professor the Automation Department
at the Technical University of Cluj-Napoca. He is also the

dean of the same faculty. He is the author or co-author of

17 books, 40 research works and more than 180 scientific

publications. His research interests include are

dependability, cyber-physical-systems, agent systems.
Miclea is a Senior member of IEEE and is regular the

general chairman of the IEEE-CS-TTTC-AQTR
conference.

International Journal of Modeling and Optimization, Vol. 10, No. 2, April 2020

56

https://www.zdnet.com/article/kafka-the-story-so-far/
https://kafka.apache.org/intro
https://www.confluent.io/what-is-apache-kafka/
https://strimzi.io/
https://www.zdnet.com/article/best-paying-programming-languages-skills-here-are-the-top-earners/
https://www.zdnet.com/article/best-paying-programming-languages-skills-here-are-the-top-earners/
https://kafka.apache.org/20/documentation.html
https://activemq.apache.org/hello-world
https://creativecommons.org/licenses/by/4.0/

