
  

  

Abstract—In this research study, a novel metaheuristic 

approach using nanotechnology is proposed, known as 

Artificial Carbon Nanotube Synthesis Optimization (ACNSO), 

in order to develop a vaccine cold chain network in north of 

Thailand. The scope of the study emphasizes Area 1 of the 

Office Disease Prevention and Control in the Chiang Mai region. 

Vaccines must be transported both to the Provincial Health 

Offices and hospitals in the region. This study seeks to arrange 

the transportation routes involved in order to achieve the 

shortest possible total distance. The algorithm must first of all 

assess the travel conditions between each point in the network, 

and then generate the starting solution. Efficient solutions to 

this problem will cut the total processing time. The study then 

made a comparison between the results produced by ACNSO 

algorithm and those of other algorithms used in earlier studies. 

Full factorial design was the statistical approach used to 

evaluate the optimal parameters for the algorithm. The 

experiment was designed to examine the various factors which 

influence the algorithm performance. The results showed that 

ACNSO algorithm found the best solution in experimental 

algorithms and 3rd processing time. 

 
Index Terms—Vaccine cold chain network, metaheuristic 

approach, full factorial design, nanotechnology, artificial 

carbon nanotube synthesis optimization.  

 

I. INTRODUCTION 

Transport is a very important consideration in the 

vaccination supply chain according to the Vaccine Cold 

Chain (VCC) is to ensure that the quality of the vaccine is 

sustained throughout the process from manufacturing until it 

reaches the patient. This is achieved by controlling the 

storage temperatures within an acceptable range throughout 

the journey. Vaccines are a vital element in the prevention of 

disease, but their effectiveness can be adversely affected by 

inadequate conditions during storage or transportation. These 

conditions can be difficult to control, and vaccines tend to be 

very sensitive to temperature changes or the wrong kind of 

lighting since they are complex biological products [1]. In 

Thailand, international vaccine producers have started VCC, 

using aircraft to bring vaccines into the country where they 

are delivered to the Department of Disease Control (DDC). 

From the DDC, the vaccines are then sent to the 13 regional 

Disease Prevention and Control (ODPC) using refrigerated 

carriers. The OPDCs are then responsible for distributing the 

vaccines to the Province Health Office (PHO), where they are 

sent on hospitals or to Contracting Units for Primary Care 

(CUP). In the final stage of the chain, the Primary Care 
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Centre obtains the vaccines from the CUP. 

Under the current system, the ODPCs must take 

responsibility for transporting the vaccines to the PHO and 

CUP within their own geographical areas. Chiang Mai is 

served by ODPC 1, along with Chiang Rai, Nan, Phayao, 

Mae Hong Son, Nan, Lamphun, Phrae, and Lampang and 

Phrae [2]. A total of 102 public hospitals then use the 

vaccines. Fig. 1 shows the basic vaccine cold chain network. 

ODPC 1 normally allocates one refrigerated vehicle for each 

PHO, and then employs. Google Maps to perform the 

distance calculations in the region between origins and 

destinations for the vaccines. The information collected 

about distances to PHOs and CUPs is then saved in a 

symmetric matrix. 

 

 
Fig. 1. In this basic vaccine cold chain network, ODPC 1 is the starting 

point for the refrigerated vehicle, which then delivers to each PHO before 

coming back to ODPC 1. Each PHO then has a refrigerated vehicle for 

deliveries to the local CUPs before completing its journey at the PHO. It is 

not possible to exceed the capacity of the refrigerated vehicle. 

 

The vaccine cold chain network is sometimes known as the 

capacitated Vehicle Routing Problem (VRP) and has 

similarities with the classical VRP. In this case, the optimal 

routes form a single path and use a single depot of origin. 

Several variants of VRP have been studied to address the 

wide variety of conditions in the real world [3]. For example, 

capacitated VRP (CVRP) [4], Heterogeneous fleet VRP 

(HVRP) [5], Multi depot VRP (MDVRP) [6], VRP with time 

windows (VRPTW) [7], VRP with simultaneous pickup and 

deliveries (VRPSPD) [8]. The VRP aim is to minimize the 

cost or the distance, while there is one vehicle visiting one 

customer, and the journey begins and ends at the same point. 

Crucially, the vehicle capacity sets the delivery content limit 

[9].  It is difficult to optimize solutions in problems where 
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large road networks are used in real time and the problem is 

time-dependent, since the computational time required grows 

dramatically if the road network size increases [10]. The 

equations which follow describe the detail the mathematical 

model employed in studying the vaccine cold chain network 

along with the notations used. 

Indices 

 Z     denotes total distances  

 i,     denotes  OPDCi  

 j      denotes  PHO j 

 m    denotes  CUP m 

 k     denotes refrigerated  vehicles k from ODPC to PHO 

 l      denotes refrigerated  vehicles l from  PHO to CUP 

 p     is PHO (1,2,3,……,N) 

 q     is CUP (1,2,3,…….,M) 

 c     is capacity of refrigerated  vehicles 

 a     is demand  

    Parameters                     

 dij      is the distance from OPDCi to PHOj        

 djm   is the distance from PHOj to CUPm           

 N     is the number of PHO        

 M    is the number of CUP         

 K     is the number of vehicles from ODPC1 to PHOs       

 L     is the number of vehicles from PHOs to CUPs         

 v     are vaccines from ODPC1 to PHOs        

 y     are vaccines from PHO to CUP 

Decision variables:  
k

ijX
 = 1 if vehicles k from ODPCi to PHO j, otherwise 0         

l

jmX
  = 1 if vehicles l from PHOj to CUPm, otherwise 0          

k

iY
  = 1 if vaccines load in vehicles k, otherwise 0          

l

jY = 1 if vaccines load in vehicles l, otherwise 0    

iU
, jU

, mU
 = Auxiliary variable 0   
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Equation 1 determines the total of the distances from 

ODPC1 to the PHOs.  The constraints given by (2) and (3) 

indicate the refrigerated vehicles which link the ODPC1 to 

the PHOs and onwards to the CUPs. Constraints (4) and (5) 

determine that the vaccines are delivered only when 

required, while constraints (6) and (7) ensure that only 

refrigerated vehicles can be used for delivery to the PHOs 

and CUPs. The role of constraints (8) and (9) is to limit the 

quantity of vaccine to no more than the capacity of the 

vehicles used in the network.  Constraints (10) and (11) set 

the route of the refrigerated vehicles k and l to PHOj and 

CUPm by constraints (10) and (11), on at least one time both 

PHOj and CUPm while constraints (12) and (13) ensure that 

PHOj and CUPm receive the vaccines. Sub-tours are 

prevented within the network by the remaining constraints. 

This study is organized as follows. Section II presents a 

reviews of metaheuristic approaches.  Section III describes 

the new metaheuristic technique which makes use of carbon 

nanotubes synthesis (ACNSO). This algorithm can be 

applied to address the problem of the vaccine cold chain 

network as explained in Section IV. The results of the 

experiment along with the parameters employed are 

described in Section V, while the conclusion is presented in 

Section VI. 

 

II.  METAHEURISTIC APPROACHES 

Today’s optimization problems are often addressed using 

metaheuristic approaches because of the speed required when 

attempting to process larger quantities of data which must be 

processed simultaneously through numerous techniques. 

Many metaheuristic techniques have their inspiration in 

physics or biology. The term ‘heuristic’ is Greek, and refers 

to a trial and error approach to reaching a quick solution [11]. 

The aim of heuristic techniques is to rapidly determine a 

near-optimal solution rather than to guarantee the best 

possible outcome or indeed one which is feasible. Algorithms 

which take an approach based on heuristics offer the 

advantage of being much faster than classical methods. The 

Greek prefix ‘meta’ has the meaning of ‘beyond’ and 
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suggests a higher level approach. In this context, 

metaheuristic methods serve to modify and update algorithms 

and solutions when searching for the near optimal answer. 

Metaheuristic approaches were first researched by Glover. 

The local search approach relies on many iterations of a 

process being used to find neighboring solutions to the latest 

solution, and thus seeking to continually improve upon the 

current solution in local steps [12]. One advantage of 

metaheuristic algorithms is their ability, via their stochastic 

properties, to avoid becoming trapped in a local optimum 

[13].  Every metaheuristic step requires a balance to be found 

between the concepts of diversification and intensification. 

Diversification allows the algorithm to explore a wider 

search space and to generate more solutions. A higher degree 

of diversification can enhance the likelihood of finding the 

global optimum, but the convergence rate will be slow and 

the process is rather time-consuming. This was seen when 

using the Genetic Algorithm. It is vital that the algorithm 

avoids traps and does not become caught in a local optimum. 

The role of intensification is to provide better signal 

information which can help to generate better solutions. 

However, if intensification is too strong, the convergence rate 

will be rapid and the result is often a local optimum, as other 

possibilities are ignored. Without effective intensification, 

however, the computation time is extended and it can take a 

very long time to discover a global optimum. This was seen 

in the process of updating pheromones in the Ant colony 

optimization. Intensification therefore plays a key role in 

ensuring that the right amount of signal information is used in 

the process . There are nine different categories which can be 

used to classify the various metaheuristic techniques, 

including Physics-based, Music-based, Social-based, 

Biology-based, Swarm-based, Mathematics-based, 

Chemical-based, Sport-based and hybrid [14]. A number of 

algorithm types have been based on physics, including the 

Elevator Kinematics Optimization algorithm [15], 

Gravitation Search algorithm [16], Electromagnetism-like 

algorithm [17], Central Force optimization [18], Intelligent 

Water Drops algorithm [19], Big Bang-Big Crunch algorithm 

[20], and Galaxy-Based algorithm [21]. Social-based 

algorithms include the Imperialist Competitive algorithm [22] 

and Teaching Leaning based optimization [23]. Algorithms 

based on biology include the Genetic algorithm [24], 

Artificial Immune Systems [25], and Biogeography-based 

optimization [26] while one example of a chemical-based 

algorithm is the Artificial Chemical Reaction optimization 

algorithm [27].  Music is the basis for the Harmony search 

algorithm [28] while biology forms the inspiration for the Ant 

Colony optimization [29], Particle Swarm optimization [30], 

Cat Swarm optimization [31], Monarch Butterfly 

optimization [32], Cuckoo Search [33] and Whale 

optimization algorithm [34]. The Matheuristic [35] and Base 

Optimization algorithms [36] are inspired by mathematics, 

while metaheuristic algorithms can sometimes be based on 

more than one underlying type, such as the Cultural 

algorithm [37] which has both social and biological bases, as 

is the case for Colonial Competitive difference evolution [38] 

and the two-phased approximation for the bat algorithm [39]. 

While many of these algorithms have worked effectively on 

particular problems, improvements in the field can only be 

achieved through the successful development of 

metaheuristic techniques. No algorithm has yet been 

designed which is capable of giving the best outcomes in all 

scenarios, and for this reason there is a continuous series of 

artificial intelligence proposals offered to move closer to this 

goal. In most optimization the aim is to determine the best 

approach among all solutions. For example, the task might 

involve the optimization of the route from A to B. The 

algorithms created to address such optimization problems 

have seen little change since their introduction almost fifty 

years ago. These earlier approaches followed a step-by-step 

procedure in which the number of steps required would be in 

direct proportion to the quantity of data involved. This 

research created a new metaheuristic which incorporates the 

concept of Genetic algorithm, Cuckoo search and Ant colony 

optimization with detail in next section. 

 

III. ARTIFICIAL CARBON NANOTUBES SYTHESIS 

OPTIMIZATION (ACNSO) 

Nanotechnology is a term which establishes that the design, 

production, and application of all materials, systems, and 

equipment will occur at the nanoscale, which refers to sizes in 

the range of 1–100 nm. Nanotechnology is a broad and 

complex area of study focusing on the varying properties and 

structures of materials on the nanoscale [40]. Some major 

applications include nanoparticles, carbon nanotubes, 

nanoparticles, and Buckminster fullerene. Carbon nanotubes 

(CNTs) are formed by rolling graphene sheets into tubes of 

diameter 3-30 nm., and were first brought to attention in 1991 

by  Iijima in 1991 [41]. There are two main structural forms 

of carbon nanotubes: single-walled carbon nanotubes 

(SWCNT) and multiple-walled carbon nanotubes (MWCNT). 

As might be expected, the principal difference lies in the fact 

that the SWCNT involves just one graphene layer, allowing 

easy characterization, whereas the MWCNT comprises 

numerous single-walled tubes placed in a complex 

arrangement inside each other. The SWCNT is normally not 

as wide as the MWCNT and has a typical diameter of 1-2 nm. 

Three roll types of graphene are well-known: armchair 

carbon nanotubes, zigzag carbon nanotubes, and chiral 

carbon nanotubes. The tube chirality is used to describe the 

carbon nanotubes, and this will be determined by the chiral 

angle, θ, and the chiral vector. 

First of all, one graphene sheet is created using a specified 

chiral angle and vector. The description of the given using the 

Lattice translational indices (n, m) along with the unit 

vectors a1 and a2 as indicated in Ch = na1+ma2. The extent to 

which the tube twists is determined by the chiral angle (θ), 

defined as the angle (θ) between vectors Ch and a1, and 

which lies in the range of 0o ≤ |θ| ≤ 30o. Carbon nanotubes 

types differ in the way the graphene sheet is rolled up when 

they are created. The carbon bond geometry at the tube 

circumference is constrained by two limiting cases, which 

depend upon the chiral tubes. These are armchair (θ = 30o) 

and zig-zag (θ = 0o).   
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  Fig. 2. The flowchart of the ACNSO algorithm.       

Moreover, when 0o < |θ| < 30o, the nanotube is known as 

chiral. A number of methods have been applied for the 

synthesis of carbon nanotubes. The most frequently used 

approaches are arc discharge [42], laser ablation [43], and 

chemical vapor deposition [44]. It is also possible for carbon 

nanotubes to be formed naturally [45]. In order for carbon 

nanotubes to form, certain elements are required. These 

include T carbon source to act as the raw material for 

synthesis, a catalyst, and an adequate supply of energy. The 

synthesis of carbon nanotubes has been achieved through 

various m, often using hydrocarbons including methane and 

acetylene as precursors. Other sources of carbon can also be 

sued, including graphite, coal, or other kinds of hydrocarbon.  

An algorithm can simulate the synthesis of carbon 

nanotubes, and then after adaptation can be applied to solve 

specific problem types. The carbon sources encoding can be 

done as 

Binary, real string, and so forth. This study makes use of 

asymmetric strings. The encoding plan influences the carbon 

atoms from the carbon sources as can be seen in Figure 2.  In 

the case of ACNSO, the process opens with an initial carbon 

source set in a solution. 

A. Initialization of the Problem and Algorithm Parameters  

In this part, the input data used for the application are 

described. The algorithm in this study sets four variable 

parameters for investigation, while determining the number 

of Carbon Sources (CS), and Repetitions (R), as well as the 

Percentage of Carbon Nanotubes types (PCN) and the 

Proportion of Roll-up types (PR). At the start, CS and R are 

set for one parameter establish the proportion which is 

suitable for the solution. The Proportion of Synthesis Carbon 

Nanotubes types will determine the laser ablation, arc 

discharge, chemical vapor deposition and natural using a 

ratio of 30:30:30:10 respectively (with regard to a set 

constant). PR reveals the carbon nanotubes probability as 

indicated: Armchair carbon nanotubes, Zigzag carbon 

nanotubes and Chiral carbon nanotubes. PCN denotes the 

overall proportion of single to multi-wall carbon nanotubes. 

B. Initial Carbon Sources Settings    

Any carbon atom carbon material which comprises 

molecules which can be used for organic synthesis can be 

termed a carbon source. The algorithm in this study makes 

use of initial carbon sources which are randomly positioned 

within the feasible search area. They do not, however, 

represent an initial solution, since this would make the 

difference in carbon source string size as shown in Fig. 4. A 

random approach sets the number of carbon sources as well 

as the number of string carbons. It is usually the case that the 

applicable number of carbon sources will be suitable for the 

solution space size. Once the first iteration in the process is 

complete it is normally the case that the strongest carbon 

nanotube structure will form the likely to be the substrate for 

the subsequent solution on the basis of the roulette wheel 

method. 

C.  Carbon Nanotubes Synthesis 

The process of synthesizing carbon nanotubes is very 

complex and can be approached in many different ways, but 

three methods can actually take place naturally. 

1) Arc discharge 

Carbon nanotubes were first generated through an 

arc-discharge evaporation technique in 1991. This method 

echoed that used in the earlier synthesis of fullerene. The 

process involved carbon needles of 1 mm in length and 4-30 

nanometers in diameter. The equipment assembly used for an 

arc-discharge comprises a pair of thin vertical electrodes 

anode and cathode – which are placed in the middle of the 

chamber. The cathode is the lower electrode, and has shallow 

dip designed for the purpose of holding a small piece of iron 

in place as evaporation takes place. Generation of the 

arc-discharge occurs by passing a 200 A DC current of 200 A 

at 20 V between two graphite the two electrodes which are 

fully immersed in an inert gas. The use of the carbon source 

allows the deposition of carbon nanotubes at the cathode, 

taking the appearance of soot. The carbon source thus fixes at 

the cathode, allowing the formation of carbon nanotubes 
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from the carbon molecules.  The initial arc- discharge is 

random, but then connection with the other carbon source 

takes place, allowing the connection point to be switched. 

The solution is created by the random method in the case 

where the conditions are not met at the start, as shown in Fig. 

3. 

2) Laser ablation 

Richard Smalley and colleagues first made use of laser 

ablation in 1995 in order to grow nanotubes of superior 

quality. The carbon target is ablated by highly intense pulses 

from the laser, and then heated to 1200°C in a tube furnace. 

This process serves to destroy the carbon source through the 

use of high temperatures. The carbon molecules can then take 

the form of bonded carbon nanotubes. The carbon molecules 

stay in remains in the carbon form while no fewer than two 

atoms are sent to the carbon source pool. Within the carbon 

source pool, the random technique then generates further 

carbon nanotubes, as shown in Fig. 4. 

 

 
Fig. 3. Carbon nanotubes of arc discharge synthesis 

 

 
Fig. 4. Carbon nanotubes used in laser ablation synthesis 

 

3)  Chemical vapor deposition  

The easiest and most common approach to growing carbon 

nanotubes under laboratory conditions involves chemical 

vapor deposition (CVD). Such CVD systems operate by 

injecting a vaporized hydrocarbon compound, such as 

methane or ethane, into a furnace.  The hot zone within the 

furnace has a substrate upon which there has been deposited a 

thin film which may contain iron, cobalt, or nickel, which has 

either undergone separation or has been pre-patterned into 

nanoscale metal islands. These islands serve as catalysts for 

the carbon nanotube growth. The catalyst is critical, and 

therefore must be very carefully deposited. This CVD 

approach composition of the molecule from the carbon 

source, catalyzed by the metal which thus initiates the growth 

of the carbon nanotube. The catalysts are able to break down 

the carbon atoms, while the carbon molecules create the 

nanotube structure as shown in Fig. 5. 

4) Natural 

Carbon nanotubes have long existed in nature, but until 

recently the microscopes required for their observation were 

not available. Therefore, the natural process offers a random 

approach in the absence of a carbon source pool. The 

outcome is the creation of many dual carbon atoms whose 

composition involves carbon nanotubes. 

 

 
Fig. 5. Carbon nanotubes used in chemical vapor deposition synthesis 

 

D. Roll-up Types Selection 

The formation of carbon nanotube structures arises in 

zigzag, armchair and chiral configurations. The differences 

among them lie in diameters and chiral angles, as well as their 

electrical properties. Armchair nanotubes have similar 

electrical properties to those of metals while zigzag and chiral 

nanotubes have electrical properties which more closely 

resemble those of semiconductors. Other differences occur at 

the nanoscale in three different directions, whereby the 

roll-up of the armchair sees uniform carbon atom 

arrangement as180-120-180-120 degrees. Meanwhile, the 

zigzag carbon nanotubes show an angle pattern 

of120-240-120-240 degrees. Chiral carbon nanotubes may 

have uncertain angles of arrangement, while the armchair 

roll-up can establish the upper – lower bound random value 

in the form of an even number. The upper – lower random 

approach is applied for every position in the zigzag roll-up, 

while the chiral roll-up makes use of upper – lower bound 

randomly, alternating with ignorance. The algorithm in this 

study sets the upper and lower values as+3 and –3 

respectively. The armchair, zigzag, and chiral random 

methods used in this process can be seen in Fig. 6. For the 

armchair new solution, number 3 had previously been used to 

find a new solution with no duplication of the preceding 

position, while number 6 was the maximum and had been 

used already in the creation of a new solution. 

 

 
Fig. 6. The novel solution for Armchair, Zigzag and chiral. 
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E. Carbon Nanotube Types Selection 

Single wall and multi-wall carbon nanotubes differ 

insofar as the multi-walled carbon nanotube has a number of 

concentric graphene cylinders, whose appearance is 

dependent on the graphene sheet rolling in the case of 

armchair, zig-zag, and chiral types. This study makes use of 

both single and multi-walled carbon nanotubes as solutions 

for the process of synthesis. The multi-walled carbon 

nanotubes for two wall layers and are therefore known as 

double-wall carbon nanotubes, which have a difference of 

one position in their diameter as can be seen in Fig. 7. 

Expansion of these double-wall carbon nanotubes arises 

when 1 is added to each position. In cases where the number 

duplicates an earlier value, this results in a new position on a 

random basis. Because of this, new solutions can be created 

by double-wall carbon nanotubes as the tube expands. 

 
Fig. 7. Generation of a new solutions of single and double wall nanotubes.  

 

The maximum is number 6, which can be used without the 

need to duplicate he earlier position which was replaced by a 

unique number. 

F. Comparing, Storing and Selecting Global Optimization 

This is due to each procedure being capable of producing 

the solution and not always having to finalize another. The 

comparison is to take the solution of each process and choose 

the best solution and collect the solution as the carbon source 

for the next iteration. The selection of global optimization is 

to choose the best so far from past to present iterations. 

However, this must be compared with the best of the current 

iterations to select the new best so far. 

G. Cracking the Optimal Nanotubes Solution for each 

Method 

For every process, the best solution must be based on the 

good outcomes in the present iteration, as the basis for each 

future solution is the outcome of the current solution. 

Cracking is used to destroy carbon nanotubes, returning them 

to the original carbon source. Working randomly, the carbon 

nanotubes are cracked into around 2-5 carbon atoms which 

are sent back to the carbon sources in order to form new 

carbon nanotubes. Repetition of the algorithm takes place 

until determination is complete. 

 

IV. ACNSO FOR VACCINE COLD CHAIN NETWORK 

PROBLEMS 

At the start, the parameters must first be set for both the 

vaccine cold chain network problem and the ACNSO 

algorithm Then the CS, R, and random carbon source size 

must have their parameters defined. The integers, 

representing hospitals, are then generated into the carbon 

source string using a random approach. Four of the 

synthesized carbon nanotube types must then be selected in 

proportion, along with the random roll-up types which 

include armchair, zigzag and chiral carbon nanotubes. In the 

next step, carbon nanotubes of both single and multiple wall 

types are randomly selected. The role of the application is 

then to assess the objective function from Equation 1, which 

is to achieve the minimum distance. Then the sorting process 

takes place by the objective function which serves to choose 

the optimal global solution for data storage, which is 

represented by a strong structure, while the weak structures 

of the carbon nanotubes are destroyed. In the last step, the 

carbon nanotubes are cracked from the remaining solution, 

and termination of the ACNSO occurs upon meeting the 

termination criteria. The optimal solution is then reported by 

the application if possible. Alternatively, the algorithm would 

be repeated. The detail and figures are shown in the artificial 

carbon nanotube synthesis optimization topic presents the 

figures involved and the details, while Fig. 8 shows the 

pseudo-code of the ACNSO when solving the vaccine cold 

chain network problem. 

 

V.   EXPERIMENTAL DESIGN AND RESULTS 

The use of the algorithms in this study was guided by the 

statistics related to experiment theory, and the experiment 

was designed in terms of full factorial design 3 level. This 

was because it was necessary to conduct analysis of the 

factors covered while cutting the computational time required 

for each solution. The approach was used when it was 

necessary to take into consideration k factors, where each 

factor has three levels, given as high, medium and low.  One 

experiment used 3k data which is known as 3k factorial 

design. ACNSO was employed in designing the vaccine cold 

chain network, comprising one ODPC, eight PHOs and 102 

CUPs [46]. Application development was carried out in 

Visual Basic Express version and calculations were 

performed by computer using an Intel Core i7 3.40 GHz 

processor with 8 GB of RAM. Experimental design was 

assessed in trial version of Minitab 19. The experimental 

approach adopted for this study was thus a two-step 

sequential process [47]. The initial experiment was planned 

to examine the suitable settings for the parameters of ACNSO, 

encompassing the number of Carbon Sources (CS) and, 

Repetitions (R), the Percentage of Carbon Nanotube types 

(PCN), and the Proportion of Roll-up types (PR).  Every 

parameter was investigated at three levels, as shown in Table 

I, while the experiment used full factorial design (3k). The 

combined number of repetitions and carbon sources controls 

the number of candidate solutions which are found, and by 

extension the extent of the search in the solution space.  

When these parameters have higher values, the probability 

of a good solution is increased, but the time taken for 

computation is extended. The factors were therefore fixed in 

combination to permit 10,000 candidate solutions so that it 

was possible to make a fair comparison of the findings with 

those of other algorithms. 

TABLE I: EXPERIMENTAL FACTORS AND IT LEVEL 

 

Factors 

Levels 

Low Medium High 

R/CS 50/200 100/100 200/50 

PCN 20/40/40 (%) 40/20/40 (%) 40/40/20 (%) 

PR 25/75 (%) 50/50 (%) 75/25 (%) 
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Fig. 8. Pseudo code of ACNSO for vaccine cold chain network problem. 

 

 
Fig. 9. Residual plot analysis for the vaccine cold chain problem. 

 
Fig. 10. Vaccine cold chain problem main effect plot. 

 

The experiment was performed five times; each repetition 

used differing seed numbers chosen randomly, serving as a 

potential nuisance factor. The findings derived from 135 runs 

(33×5) as presented in Table II underwent analysis which 

applied a general linear version of analysis of variance 

(ANOVA) and made use of Source of Variation, Sum of 

Squares (SS), Degree of Freedom (DF), Mean Square (MS), 

and F and P values and P values. Statistical significance was 

deemed to be p <= 0.05 for a confidence level of 95%. 

Residual plot analysis takes into account normal probabilities 

and the histogram plot.  The graphs for the normal 

distribution Versus fits and Versus order indicate a normal 

distribution for the data, which are shown to be independent 

as indicated in Fig. 9. 

Table II demonstrates that only one factor was statistically 

significant for every problem size: Percentage of Carbon 

Nanotubes (PCN). Various solutions are presented by the 

Zigzag and Chiral nanotubes when string positions are 

switched, while the other remaining factors were not found to 

be statistically significant at the 95% level of confidence, 

among which were the number of carbon sources and 

repetitions (R/CS) and the proportion of roll- up types (PR). 

TABLE II: ANOVA ON EXPERIMENTAL RESULTS DERIVED FROM  ACNSO 

ADDRESSING THE VACCINE COLD CHAIN PROBLEM 
Source DF SS MS F P 

 R/CS 2 2848 1424 0.41 0.667 

 PCN 2 207730 103865 29.7 0.000 

               PR 2 5471 2736 0.78 0.460 

R/CS * PCN 4 12763 3191 0.91 0.460 

R/CS * PR 4 17320 4330 1.24 0.300 

PCN * PR 4 13268 3317 0.95 0.439 

R/CS * PCN *PR 8 39347 4918 1.41 0.203 

Error 108 363892    

Total 134 717538    

 

The main effect plots represented in Fig. 10 indicate that 

the appropriate setting of ACNSO parameters should be 
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20/40/40 (%) for Percentage of Carbon Nanotubes type 

(PCN). This is the technique of the solution of both zigzag 

and chiral can find new solutions better than for the armchair. 

The remaining parameters can be adjusted as appropriate. 

However, this algorithm was designed to compare the 

experimental results obtained from Max-Min Ant System 

(MMAS), Central Force Optimization (CFO), Artificial 

Chemical Reaction Optimization Algorithm (ACROA), 

Hybrid Central Force Optimization (HCFO) and Hybrid 

Artificial Chemical Reaction Optimization Algorithm 

(HACROA). The appropriate parameters from the full 

factorial design use to 10 times to analyse route distance. 

These algorithms are based on Random technique.  As a 

result, the route distance is not equal as shown in Table III. 

TABLE III: THESE ALGORITHMS PRESENT THE AVERAGE CALCULATION TIME AND TOTAL DISTANCE FROM THE APPROPRIATE PARAMETERS 

Times MMAS (22.77 sec.) CFO (21.36 sec.) HCFO (24.65sec.) ACROA (20.36 sec.) HACROA (23.48 sec.) ACNSO (22.12 sec.) 

1 3848 3898 3848 3881 3832 3826 

2 3867 3872 3854 3872 3849 3804 

3 3898 3826 3867 3826 3854 3838 

4 3826 3854 3838 3854 3872 3792 

5 3881 3872 3848 3867 3826 3832 

6 3838 3906 3872 3848 3804 3792 

7 3854 3867 3804 3906 3816 3854 

8 3826 3854 3898 3838 3898 3826 

9 3906 3849 3804 3881 3792 3838 

10 3854 3881 3826 3898 3814 3804 

 

Vaccines must travel today via the shortest path, which 

involves carefully selecting the CUPs to minimize distance. 

The sum of the distances from ODPC 1 to all of the required 

CUPs is around 3923 km. In summary, the objective function 

derived from ACNSO and HACROA could achieve a 

distance of 3,792 km, but the processing time for ACNSO 

was shorter than that of the HACROA algorithm. 

 

VI.   CONCLUSION 

The inspiration underpinning this algorithm lay in the 

synthesis of carbon nanotubes, known as Artificial Carbon 

Nanotube Synthesis Optimization (ACNSO). There are 

various ACNSO techniques which can find solutions through 

four types of synthesis: arc discharge, laser ablation, 

chemical vapor deposition, and natural. Among the types 

produced are the roll forms of carbon nanotubes, armchair, 

zigzag, and chiral, and the single and double walled types. 

One major benefit of the algorithm is that carbon sources are 

created, for the initial solution and single node, so that 

solutions can be quickly found which are not in the local 

search, and hence an optimal solution is reached rapidly. The 

method employed is able to solve the vaccine cold chain 

network problem through a two-step sequential experiment. 

Algorithm performance is dependent upon the settings for the 

parameters, and hence the experiment employed full factorial 

design so as to examine the various ACNSO parameter 

settings. The ideal setting was found to be20/40/40 (%) for 

the Percentage of Carbon Nanotubes type (PCN). This setting 

was then applied for the next experiment which compared the 

algorithm in question with the performance of alternative 

algorithms such as MMAS, CFO, ACROA, HCFO and 

HACROA. The objective function was shown to be 

calculated to achieve a lower distance by ACNSO than by 

most other algorithms. The same result was also achieved by 

the HACROA algorithm which did so using less time for 

computation. However, it is possible to use this algorithm to 

solve different problems of vehicle routing, or to create a 

hybrid algorithm capable of solving problems with improved 

efficiency. 
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