
  
Abstract—Gas/steam combined-cycle is a well-known 

technology for power generation due to its numerous 
advantages including high efficiency and low environmental 
emission. The purpose of this paper was investigation of 
thermodynamic parameters' behavior of single-pressure system 
due to load reduction of gas turbine. In this study, dynamic 
simulation is performed to analyze the transient behavior of a 
combined-cycle power plant. This simulation was done using 
mass and energy conservation equations for each component as 
a control volume. Governing equations set was solved by 
forward finite difference method and the results were 
illustrated by some figures. For validation of this transient 
modeling, the bottoming cycle parameters values at the end of 
transient operation were compared with the numerical output 
of the well-known commercial software Thermo flow in steady 
state mode that acceptable adaption have been seen. 
 
Index Terms—Combined-cycle power plant, dynamic modeling, 
transient behavior, heat recovery steam generator (HRSG) 
 

I. INTRODUCTION 
As the electricity consumption has risen quickly over the 

past few decades, the number of thermal power plants has 
increased worldwide. A heat recovery steam generator 
(HRSG) produces steam by using the heat from exhaust gas 
of the gas turbine and feeds it to steam turbine. This 
combination produces electricity more efficiently than either 
the gas turbine or steam turbine alone which causes a very 
good ratio of transformed electrical power per CO2 emission. 
The combined cycle power plants are characterized as the 21st 
century power generation by their high efficiency and 
possibility to operate on different load conditions by reason 
of variation in consumer load [1]. They are particularly 
suitable for managing peak and cyclic loads, i.e., daily 
start/stop operations, since their response characteristics are 
better than those of other conventional power plants such as 
fossil fuel and nuclear power plants [2]. 

An increasingly important utilization for the combined- 
cycle power plants is the compensation of varying electricity 
feed-in from renewable energy source like wind power. A 
combination between wind power and other energy sources 
such as combined cycles with improved load flexibility 
should be used in order to mitigate the economic effects of 
wind variability [1]. 
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A power plant is basically operated on its design 
conditions. However, it also operates on the so called 
off-design conditions due to the variation in a power load, 
process requirement or operating mode. Therefore, the 
transient behavior of the system should be well-known for the 
safe operation and reliable control [3]. So these parameters 
may be used for estimating thermal and mechanical stresses 
which are important in HRSG design and operation [4]. 

Until now various authors studied in field of combined 
cycle power plants that some of them investigate simulation 
and dynamic behavior of these power plants: Ahluwalia and 
his coworker in [5] discusses the dynamic modeling of a 
gas-fired 60Mw combined cycle power plant; Kim TS in [2] 
simulates the transient behavior of a dual-pressure bottoming 
system for a combined cycle power plant. Kim JH in [6] 
describes models for transient analysis of heavy duty 150Mw 
gas turbines. Also Shin JY performs a dynamic simulation to 
analyze the transient behavior of a combined-cycle power 
plant thoroughly in [3]. Additionally Sanaye prepared a 
developed thermal model for predicting the working 
conditions of HRSG elements during transient startup 
procedure in [4]. Also Alobaid investigates start up process 
of a combined cycle power plant by using both static and 
dynamic simulation in [1].  

In this study single-pressure combined cycle power plant 
has been designed, mathematically modeled and its transient 
behavior investigated. This modeling is useful to analyze the 
transient behavior of a combined cycle power plant during 
load reduction of gas turbine of system. Knowing the 
transient performance helps to estimate mechanical and 
thermal stresses which are important in power plant design 
and operation. Transient analysis of gas turbine has been 
done in [6] and its data is utilized in this paper. Geometric 
and thermodynamic of bottoming cycle of studied power 
plant has been performed by the well-known commercial 
software [7]. Each component of the power plant system is 
mathematically modeled and then integrated into the 
unsteady form of conservation equations, and then the 
governing equations have been solved by Forward Finite 
Difference method; Computational program of this method 
written by mathematical software EES [8]. 

 

II. SYSTEM DESCRIPTION 
Generally, combined cycle power plant is composed of gas 

turbines, heat recovery steam generators (HRSGs), and steam 
turbines. The gas turbine exhaust gas flows through a HRSG 
in which thermal energy of the exhaust gas is used for steam 
production. The HRSG supplies high-pressure (HP) and 
low-pressure (LP) steam turbine and the deaerator, 
respectively. Combined cycle power plant may have various 
configurations according to the number of HRSG pressure 
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levels, deaerator type, steam turbine type and so on [3].  
A schematic diagram of the system of this study is shown 

in Fig.1. Designed cycle includes one 150 Mw GE 7F engine, 
single-pressure type HRSG and an integral self-heating 
deareator with a condensing steam turbine. Feed water 
supplied from the condenser by the boiler feed pump is 
heated in LP preheater (LTE) before it enters the LP drum 
(LPB). Saturated water in the LP drum is recirculated through 
the LP evaporator. Steam produced in the LP drum is 
supplied to the integral self-heating deaerator. Water is also 
drawn from LP drum to the HP drum (HPB1) through the HP 
economizers (HPE1 & HPE3). Steam is produced in the HP 
drum and superheated through the HP super heater (HPS3) 
for electrical power generation. The system design variables 
are also shown in Fig.1. Also TABLE I contains design data 
of cycle. 

 

III. COMPONENT MODELS 

A. Gas turbine 
Transient behavior of a combined cycle power plant may 

be caused by star-up, shut down or load reduction. In this 
study, gas turbine of the cycle is imposed to load reduction, 
so the system shows its transient behavior affected by this 
load change from full load state to 80%. 

For modeling of gas turbine, the necessary data extracted 
from [6] and variation of gas turbine parameters can be seen 
in Fig.2, Fig.3 and Fig.4. 

B. Heat Recovery Steam Generator (HRSG) 
HRSG is an important component of combined cycle 

power plant; Because it suffering thermal and mechanical 
stresses that can be important for design and control of whole 
system. 

The flue gas reduction rate ( gQ ) after passing an HRSG 
component is expressed as follows: 

  (1))1)(( 21 lossgggg KhhmQ −−=
          

where gm  indicates the flue gas mass flow rate and (hg1-hg2) 
is the gas enthalpy reduction. It was assumed that a part of the 
gas energy was lost through HRSG casing (about 2% as the 
typical value for Kloss). 

Also gas energy reduction rate is equal to heat transfer 
between gas and HRSG element  

(2)  )~~( mgoog TTAUQ −=  
where Uo represents the gas side heat transfer coefficient 
(including convection and radiation effects) and Ao is the 
outer heat transfer surface area. Also mT~ and gT~  describe 
average metal and gas temperature respectively. 

gQ  is absorbed by the tube wall ( mQ ,(4)), fins ( fQ ,(5)), 
as well as steam in super heaters, water in economizers and 
the mixture of steam and water in evaporator tubes ( wQ ,(7)) 
as is shown in the following equation[4]: 

 
wfmg QQQQ ++=                                  (3) 

The rate of energy absorbed by the metal of HRSG heating 
element ( mQ ) is expressed as  
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Also the rate of energy absorbed by fins ( fQ ) is  
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where M and c in (4) and (5) represent mass and specific 

heat, respectively; Also Tm and Tf are metal and fin 
temperature respectively. 

 Equation (6) predicts an average value for the fin 
temperature as follows: 

 
)(3.0 wgwf TTTT −×+=                           (6) 

 
where Tg and Tw are the gas and steam/water temperatures, 

respectively. 
The absorbed energy by steam or water ( wQ ) can be 

estimated by the following equation: 
 

bdaccuminoutw QQQQQ −+−= )(                     (7) 
 
where outQ and inQ are the rate of energy flowing in and 

out of an HRSG heating element as explained below[4] 
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where wm
.

denotes the mass flow rate of steam or water while
outwh ,  and inwh , refer to the enthalpy of outlet and inlet flows 

respectively. 
accumQ  is the energy accumulation inside a heating 

element which is produced by the change in temperature and 
mass of steam/water with time and is computed by below 
equation: 
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where u stands for internal energy and tΔ  represents the time 
step. Superscripts e and i refer to the end and the beginning of 
a time step [4]. 

During the transient operation of an HRSG, due to slow 
energy variation during a time interval in a heating element 
which is a control volume, SSSF process (dEcv/dt=0) was 
applied for the gas flow, as well as the water or steam flow in 
economizers and super heaters. However, due to large mass 
of water/steam mixture in evaporator and drum, and the high 
rate of energy variation due to boiling, USUF process was 
considered in the mass and energy analysis. Subsequently 

accumQ  in (10) was set equal to zero for single phase flow 
(including gas/water/steam flows). However, for analyzing 
two-phase flow in evaporators and drums, the numerical 

International Journal of Modeling and Optimization, Vol. 2, No. 1, February 2012

65



  

value of accumQ  was computed from (10) [4]. 

Fig. 1.  Schematic view of designed combined cycle power plant with its system variables 

bdQ  describes the amount of energy loss in drum due to 
blow down to keep the water inside the drum chemically 
balanced. The blow down mass flow rate was considered to 

be about 1% of water mass flow rate (
.
bdm ) entering the drum 

and was evaluated by following equation: 

bdwtbdbd hmQ ,
.

=                                  (11)  

where bdwth ,  denotes the enthalpy of saturated water in the 
drum. 

To estimate the heat transfer rate between tube walls and 
steam/water, (12) can be used: 

 
)~~( wmiiw TTAUQ −=                             (12) 

 
where Ui is the overall heat transfer coefficient computed 
based on the inner heat transfer surface area (Ai) and wT~ is 
average steam/water temperature. 

The mass conservation relation inside the drum and 
evaporator is: 

 

outstinwt
stwt mm

dt
MMd

,,
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where Mwt and Mst are the water and steam mass in evaporator, 
respectively. inwtm ,  indicates the water mass flow rate 
entering the evaporator and is estimated by (14) and (15) and 

outstm ,  is the mass flow rate of the steam flowing out of the 
drum and is computed by (16). 
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Kp and Kd are related to HP and LP drum water level 
control system. The numerical values of these parameters 
were equal to 180kgm-1s-1 and 9200kgm-1, respsectively. Wld 
is computed from drum centerline and expressed in mm. In 
(16), Tw and Pw are the saturation temperature and pressure in 
the drum and outstm ,  is the steam mass flow rate out of drum 
at the steady-state operation. Kst was estimated 0.171 and 
0.1999 for HP drum (HPB1) and LP drum (LPB), 
respectively; calculated from design results of system done 
by [7]. 

C. Steam Turbine 
Because the response time of a steam turbine is known to 

be shorter than that of a HRSG, quasi-steady assumption 
could be applied to the steam turbine model [3]. 

While steam turbine is treated as a control volume, the 
following mass and energy equations are applied: 

 

outstinst
st mm
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d
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And 
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program for designing, modeling, and analysis of steam, gas 
and combined cycle power plants in steady-state mode using 
mass and energy conservation equations. 

Table П shows that there was a good agreement between 
two groups of results. An average difference of about 1.35% 
was found. 

 
TABLE I: SUMMARY OF DESIGN DATA OF CYCLE 

 

Gas turbine  GE7F 

Speed, rpm 3600 

Electrical Power, Mw 150 

Cycle Efficiency, % 34.5 

Outlet gas mass flow rate, kg/s 423.65 

Outlet gas temperature, K 867.05 

HRSG Dual-pressure type 

Stack temperature, K 445.95 

Deaerator  pressure, kpa 118.59 

Feed water temperature, K 312.04 

Outlet flow temperature of LTE, K 366.48 

Steam turbine 
Single-pressure, 
Condensing type, Without 
reheat 

Gross output power, kw 70979 

Input pressure, kpa 7584.11 

Input temperature, K 844.26 

Mass flow rate, kg/s 58.06 

 
TABLE П: COMPARISON OF THE MODEL OUTPUT FOR BOTTOMING CYCLE 

WITH THE COMMERCIAL SOFTWARE RESULTS IN STEADY CONDITION 

Parameters Modeling 
Results 

GT 
MASTER 

Difference 
(%) 

Outlet hot gas 
temperature of 
super heater, K 

713.35 722.15 1.22 

Outlet hot gas 
temperature of 
economizer, K 

496.33 490.15 1.26 

Outlet flue gas of 
stack temperature, 
K 

449.15 453.15 0.883 

Outlet steam 
temperature of 
super heater, K 

784.15 778.15 0.771 

HP drum pressere, 
kpa 6389 6274 1.83 

LP drum pressure, 
kpa 304.2 307.15 0.96 

VI. SUMMARY AND CONCLUSION 
A mathematical model for transient analysis of a combined 

cycle power plant was developed. Studied system was 
designed by the well-known commercial software 
geometrically and thermodynamically. This study considered 
load reduction in gas turbine as a dynamic behavior of cycle 
and its result have been shown in some figures. The model 
output at the end of transient operation (during which there 
was no change in parameter values and system was 
approximately in steady-state mode of operation) was 
compared with the numerical output of well-known 
commercial software. The agreement between these two 
groups of data was good.  
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