
  
Abstract—In this paper, we propose a variational model of 

multiphase image segmentation using n binary label functions 
for n regions. This framework is subject to a constraint to avoid 
the vacuum and overlapping problem. Firstly, we solve the 
simple problem without the constraint. In order to improve the 
computation efficiency of the unconstrained problem, we design 
the Split Bregman algorithm in the alternating minimization, 
which transforms the unconstrained model into a series of 
simple Euler-Lagrange equations. These equations are solved 
via Gauss-Seidel iterative method or expressed as generalized 
thresholding formulas in analytical forms. Secondly, we project 
the results above onto the constraint using Lagrange multiplier 
method. Due to the linear structure of the constraint, we can 
also solve the projection scheme quickly. Finally, numerical 
results on 2D and 3D images demonstrate that our proposed 
Split-Bregman-Projection (SBP) algorithm is competitive in 
terms of quality and efficiency compared to other methods. 
 

Index Terms—Active contour model, lagrange multiplier, 
split bregman, binary label function, multiphase segmentation  
 

I. INTRODUCTION 
The task of image segmentation is to partition an image 

into a finite number of regions according to different image 
properties. Multiphase image segmentation can be 
considered the extension from two phase segmentation. Due 
to the significance in various image processing applications 
such as in medical image analysis [1], image segmentation 
has received more and more attention by researchers in recent 
years. One of the important problems of image segmentation 
is how to design the characteristic function of each region. 

In general, the existing characteristic functions can be 
categorized into three classes. The first class is designed 
using the concept of Gamma-convergence [2]-[4] and the 
classic Mumford-Shah model [5]. The second one expresses 
the active contours using zero level sets of signed distance 
functions [6]. The third one uses label functions to achieve 
the goal [7]. We focus on the last two classes here. 

Based on reduced Mumford-Shah model and level set 
method, Chan and Vese [8] proposed the popular variational 
level set model of two phase image segmentation, usually 
called Chan-Vese model. It has been extended to multiphase 
image segmentation, such as Vese and Chan [9] used n level 
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set functions to represent 2n regions, Pan et al. [10] 
introduced n-1 level set functions for n regions, Samson et al. 
[11] used n level set functions for n regions, and Chung and 
Vese [12] used only one level set function to represent 
contours.  

Label function methods have good correspondence with 
level set methods because the Heaviside expression of a level 
set function is a typical label function. Besides, Bresson et al. 
[13] proposed a binary label function for two phase image 
segmentation, Lie et al. proposed a scheme using n label 
functions for 2n regions [14] and a scalar label function for n 
regions [15].  

For the two phase image segmentation using a binary label 
function, Bresson et al. [13] verified that the global 
optimization can be realized based on convex relaxation and 
thresholding techniques, which have been used to solve the 
models of multiphase image segmentation [7], [16] and [18], 
although it has not yet the feature of globalization.  

In order to improve the computation efficiency, Bresson et 
al. [13] designed a dual method and Goldstein et al. [17] 
introduced the Split Bregman algorithm for two phase image 
segmentation. Also, these two methods have been used to 
solve multiphase image segmentation [16] and [18] 
respectively. In this paper, we’ll propose a fast algorithm for 
multiphase image segmentation combing the Split Bregman 
algorithm and constraint projection method. 

The remainder of this paper is organized as follows. In 
Section II, some related models and algorithms are reviewed. 
In Section III, a variational model for multiphase image 
segmentation using n binary label functions for n regions is 
proposed and its Split-Bregman-Projection (SBP) algorithm 
is designed. Some experiments are given in Section IV. The 
concluding remarks are presented in Section V. 

 

II. FAST GLOBAL MINIMIZATION OF TWO PHASE 
SEGMENTATION MODEL 

A. Globally Convex Segmentation Models 

Let NΩ ⊂ ℜ be image domain, 0u : Ω → ℜ be a given image. 
The variable X in 0( )u X is a point in .Ω  using the Heaviside 
function H; the Chan-Vese model [8] of two phase image 
segmentation can be stated as the following variational level 
set formulation: 
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where φ is a standard level set function. The minimization of 
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(1) can be solved by the standard PDE method. Its gradient 
descent equation is 
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where δ is the Delta function with ( ) ( ) .Hδ φ φ φ= ∂ ∂  

Due to the local nature of (1), its result depends on 
initialization of the level set function. In order to solve this 
problem, Bresson et al. [13] transformed (1) into a globally 
convex segmentation (GCS) model. We remind the general 
ideas.  

Considering ( ) 0,δ φ ≥  we replace ( )δ φ with 1, which does 
not affect the result of the evolution equation (2). This leads 
to the equivalent equation as follows 
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The flow (3) represents the gradient descent for 

minimizing the energy 
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where ψ is a binary label function: {0,1}.ψ ∈  We change the 
notation φ into ψ to avoid any confusion with the standard 
level set function here. Equation (4) is a non-convex model 
due to the definition domain of .ψ  The authors [13] modified 
it to the following convex minimization problem by relaxing 
the binary constraint of the label function ψ over the interval 
[0,1]: 
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In addition, the authors [13] used the geodesic length [19] 
and proposed the enhanced convex energy minimization 
model combining edge and region terms 
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where 0( )g u is an edge detection function, and one common 
choice for the edge detector is 

( )0 2
0
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=
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                   (7) 

Gσ is a Gaussian kernel, and 0G uσ ∗ is a smoother to 0.u  

B. The Split Bregman Algorithm 
The Split Bregman algorithm was initially introduced for 

solving general L1-norm problems [20]. In [17], this method 

was applied to the GCS model.  
Energy (6) is a minimization problem with multiple 

variables, which is usually solved via alternating 
optimization technique. In each loop, we firstly fix label 
function ψ to minimize the functional with respect to 
parameter 1c and 2,c  then we fix 1c and 2c to solve the 
minimization with respect to .ψ  The parameters 1c and 

2c are estimated as 
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The energy minimization with respect toψ is 
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Based on [20], Goldstein et al. [17] introduced auxiliary 
variable d and Bregman iterative parameter b to transform (9) 
into the following form 
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where
1

.
k k kkb b dψ

+
= + ∇ −  Using the variational method, 

we can obtain the Euler-Lagrange equations of ψ and d as 
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Equation (11) can be solved using Gauss-Seidel iterative 
method, and (12) can be presented as the following 
generalized soft thresholding formula in analytical form 
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Finally, the result of global minimization can be obtained 
via the following formula 
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III. THE SPLIT-BREGMAN-PROJECTION ALGORITHM 

A. The Proposed Energy  
Under the variational level set framework, Samson et al. 

[11] proposed the following level set energy minimization 
functional 
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where the first term of the right-hand side of (15) is used to 
enforce the regularity of the interface, the second one is a 
data fidelity term, and the third one is a penalty term used to 
avoid the vacuum and overlapping problem. See [11] for 
more details. 

Based on [20], [13] and [17], we replace the level set 
function , 1,... ,i i nφ = by the binary label functions , 1,..., .i i nψ =  
Hence we can rewrite (15) as the following energy 
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where iψ satisfies two constraints 
( ) ( )1 0i i iK ψ ψ ψ= − = ( { }0,1 , 1,...,i i nψ ∈ = )        (17) 
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Together with the constraints (17) and (18), energy (16) 
can be rewritten as the following compact form 
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B. Computation Strategy 
Obviously, energy (19) is a minimization problem with 

constraints, which usually can be solved through Lagrange 
Multiplier method [14], penalty function method or 
augmented Lagrange method [15]. In this paper, we propose 
a simple and fast algorithm without introducing too many 
parameters as the methods mentioned above.  

Firstly, we’ll solve the following simple problem without 
the constraint (18) 
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Then we use Lagrange multiplier method project ψ  onto 
the constraint (18), i. e.  
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where λ is the Lagrange multiplier. 

C. Solving ψ Using the Split Bregman Algorithm 

After ( )1,2,...ic i n=  is estimated, we relax constraint (17) 

by letting [ ]0,1iψ ∈ and apply the Split Bregman method 
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alternative minimization method to find the numerical 
solution for (22). 
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The solution of (23) is given by the following PDEs: 
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We also obtain 1k

iψ + using a Gauss-Seidel method. To 

ensure [ ]1 0,1k
iψ + ∈ , we can use the following formula: 
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Minimization with respect to
1k

id
+

can be performed 
explicitly using the generalized soft thresholding formula:  
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D. Projection 
The Euler-Lagrange equation of the energy functional (21) 

is as follows: 
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From (18) and (28), we get 
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At last, the final segmented regions are found by 

thresholding the function iψ to get: 
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E. Algorithm Details 
The Split-Bregman-Projection minimization scheme is 

placed into algorithm 1, we get the following scheme for 
segmentation.  

Algorithm 1: the Split-Bregman-Projection Scheme 

– Initialization:
0 0

0,i id b= = for i = 1, …, n;  

– while ( )1k k kE E E ε+ − > do 

– Compute 
1

;
k k kk
i i iib b dψ

+
= + ∇ −  

– Compute 1k
iψ + from (24);  

– Compute 
1k

id
+

from (27); 

– Compute 1k
iψ + from (29); 

– Find *
iψ from (30); 

– Update ic ; 
– end while 

 
IV.

 
EXPERIMENTAL RESULTS

 In this section, a large set of comparison experiments is 
presented to test the performance of multiphase segmentation 
using the proposed SBP algorithm. Our results are compared 
with other related works [11] and [15] in quality and 
efficiency. All the tests are performed on a laptop which is 
equipped with the Intel (R) core (TM) 2 Duo CPU E7400 @ 
2.80 GHz processors and 2 GB of RAM. We build the whole 
system under Windows XP using MATLAB v7.0 library. 

A.

 

Parameter Settings 
There are a number of parameters that must be 

appropriately determined. Some of them have default values. 
We give the description as follows: The time step and the 
space step used by (15) are always held as 0.2 and 1 
respectively; the parameters ε and η used by (19) are fixed 
as 0.001 and 0.5 respectively; the other parameters should be 
determined manually. 

For quantitative comparison of the following experimental 
results, the accuracy of clustering is analyzed by the 
Classification accuracy. All computation time are reported in 
seconds. 

B.

 

Comparison and Analysis of 2D Experiments 
In this part, we consider two-dimensional cases and restrict 

ourselves to gray-scale images.  

The first experiment tries to verify the superior 
performance of our proposed SBP algorithm over the 
traditional Samson et al.’s algorithm [11]. Fig. 1(e)-(j) show 
that our proposed SBP model improves the accuracy of 
clustering. Additionally, table I demonstrates that the SBP 
algorithm can really speed up the convergence rate of 
Samson et al.’s algorithm. 

In Fig. 2, we compare the piecewise constant level set 
method (PCLSM) in [15] with our SBP algorithm. The 
phases of both methods are displayed in the last two rows. 
Our method gives better segmentation results than PCLSM 
does from Fig. 2(d)-(k).  

In Fig. 3, we test our method with four-phase image 
segmentation. The image in Fig. 3(a) is available to the public 
at http://www.bic.mni.mcgill.ca/brainweb/. There are four 
classes that should be identified: cerebrospinal fluid (CSF), 
gray matter (GM), white matter (WM) and the background. 
But we do not depict the background phase here. Compared 
with the exact results (Fig. 3 (c)–(e)) from the website above, 
our results (Fig. 3 (f)–(h)) are satisfactory.  

C. Comparison and Analysis of 3D Experiments 
In this part, we extend our mode to three-dimensional 

segmentation and reconstruction. 
Fig. 4 shows the 3D segmentation and reconstruction of an 

artificial Palace with three phases. We designed 95 2D 
synthetic images as the original input data for the 3D 
segmentation and reconstruction. We do not depict the 
background here. The size of each image is 150*150 pixels. 

The data presented on Fig. 5 is provided by The National 
Library of Medicine’s Visible Human Project. We select 105 
2D images as the original input data. The size of each image 
is 150*128 pixels. There are three phases that should be 
identified: mandible, teeth and the background. Also, we do 
not depict the background phase here.  

Computation time and number of iterations required for 
convergence are shown in table II. As can be seen, our 
proposed SBP algorithm is easy to extend to 
three-dimensional problems, and the results seem as good as 
for two-dimensional problems. 

 

 

(a) 

   

(b)                                   (c)                                  (d) 
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(e)                                   (f)                                  (g) 

   
(h)                                   (i)                                  (j) 

Fig. 1. Comparison of the samson et al.’s method with the SBP method on 
different noise levels. (a) the clean piecewise constant image; (b)–(d) images 
contaminated by zero mean Gaussian noise with standard device 15, 30, and 
45 respectively; (e)–(g) the misclassified pixels of the Samson et al.’s method 
corresponding to (b)–(d) with γ = 115, 155, 200 and μ = 1500, 1600, 1800 
respectively; (h)–(j) the misclassified pixels of the SBP model corresponding 
to (b)–(d) with γ  = 25, 40, 120 and θ = 3000, 5000, 8000 respectively. The 
image size is 254*254 pixels. 
 

TABLE I: ITERATIONS, COMPUTATION TIME AND ACCURACY 

Solving methods Noise 
figures Iterations Computation 

time 
Classification 
accuracy 

The method [11] 
Fig. 1(b) 143 16.74 99.82% 
Fig. 1(c) 219 25.63 99.27% 
Fig. 1(d) 405 35.67 98.76% 

     

The SBP method 
Fig. 1(b) 13 1.30 99.84% 
Fig. 1(c) 30 2.96 99.68% 
Fig. 1(d) 35 3.49 99.51% 

 
TABLE II: RESULTS FOR 3D SEGMENTATION AND RECONSTRUCTION 

Solving methods Figures Iterations Computation time 

The method [11] 
Fig. 4(d) 105 358.37 
Fig. 5(d) 278 947.61 

    

The SBP method 
Fig. 4(d) 9 50.26 
Fig. 5(d) 10 57.36 

 

   
(a)                          (b)                         (c) 

    
(d)                          (e)                        (f)                         (g) 

    
(h)                          (i)                        (j)                         (k) 

Fig. 2. Comparison of the PCLSM method and the SPB methods. (a) the 
noisy image; (b) the segmentation by the PCLSM method; (c) by the SBP 
method; (d)–(g) the four phases by the PCLSM method; (h)–(k) the label 
functions by the SBP method. The image size is 100*100 pixels. 
 

  
(a)                                   (b) 

   
(c)                                    (d)                                    (e) 

   
(f)                                    (g)                                    (h) 

Fig. 3.  Four-phase segmentation. (a) a brain MR image with noise 7% and 
RF-plus 20%; (b) the classification results by our proposed method; (c)-(e) 
the exact different tissues; (f)-(h) three phases by the SBP method. The image 
size is 160*200 pixels. 
 

   
(a)                                   (b)                                   (c) 

   
(d)                                   (e)                                   (f) 

Fig. 4.  3D segmentation and reconstruction of an artificial palace. (a)-(c) the 
15th, 45th and 75th image; (d) the results of 3D segmentation and 
reconstruction by the SBP method; (e) and (f) the different phases. 
 

   
(a)                                   (b)                                   (c) 

   
(d)                                   (e)                                   (f) 

Fig. 5.  3D segmentation and reconstruction of mandible and teeth. (a)-(c) the 
25th, 60th and 95th image. (d) the results of 3D segmentation and 
reconstruction by the SBP method. (e) and (f) the different phases. 
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V. CONCLUSION 
We have presented a variational model based on the binary 

label functions for multiphase image segmentation. Also, we 
proposed an efficient and fast numerical scheme to minimize 
the variational segmentation framework. The proposed 
Split-Bregman-Projection algorithm is easy to implement and 
allows us to avoid the usual drawback in the some traditional 
approaches to ensure a correct computation. But he energy 
functional for our approach is locally convex, which means 
that proper initial guesses are needed. Future works are how 
to choice good initial contours and to investigate the global 
minimization approach of multiphase image segmentation. 

REFERENCES 
[1] A. Yezzi, S. Kichenassamy, A. Kumar, P. Olver, and A. Tannenbaum, 

“A geometric snake model for segmentation of medical imagery,” 
IEEE Trans. on Med. Imaging, vol. 16, pp.199-209, April 1997. 

[2] L. Ambrosio and V. M. Tortorelli, “Approximation of functionals 
depending on jumps by elliptic functionals via Gamma-convergence,” 
Comm. on Pure and Appl. Math., vol. 43, pp. 999-1036, 1990. 

[3] S. Esedoglu and Y.-H. Tsai, “Threshold dynamics for the piecewise 
constant Mumford-Shah functional,” Journal of Computational 
Physics, vol. 211, pp. 367-384, October 2004. 

[4] Y. M. Jung, S. H. Kang, and J. Shen, “Multiphase image segmentation 
via Modica-Mortola phase transition,” Society for Industrial and 
Applied Mathematics, vol. 67, pp. 1213-1232, 2007. 

[5] D. Mumford and J. Shah, “Optimal approximations by piecewise 
smooth functions and associated variational problems,” Comm. On 
Pure and Appl. Math., vol. 42, pp. 577-685, 1989. 

[6] S. Osher and J. A. Sethian, “Fronts propagating with curvature 
dependent speed: Algorithms based on Hamilton-Jacobi formulations,” 
Journal of Computational Physics, vol. 79, pp. 12-49, 1988. 

[7] F. Li‚ C.-M. Shen‚ and C.-M. Li‚ “Multiphase soft segmentation with 
total variation and H1 regularization‚” Journal of Mathematical 
Imaging and Vision‚ vol. 37, pp. 98-111‚ February 2010. 

[8] T. F. Chan and L. A. Vese, “Active contours without edges,” IEEE 
Transactions on Image Processing, vol. 10, pp. 266–277, February 
2001. 

[9] L. A. Vese and T. F. Chan, “A multiphase level set framework for 
image segmentation using the Mumford and Shah model,” 
International Journal of Computer Vision, vol. 50, pp. 271-293, 2002. 

[10] Z.-K. Pan, H. Li, W.-B. Wei, Z.-B. Guo, and C.-F. Zhang, “A 
variational level set method of multiphase segmentation for 3D 
images,” Chinese Journal of Computers, vol. 32, pp. 2464-2474, 2009. 

[11] C. Samson, L. Blanc-Feraud, and G.Aubert, “A level set model for 
image classification,” International Journal of Computer Vision, vol. 
40, pp. 187-197, 2000. 

[12] G. Chung and L. A. Vese, “Energy minimization based segmentation 
and denoising using a multilayer level set approach,” Lecture Notes in 
Computer Science, vol. 3757, pp. 439-455, 2005. 

[13] X. Bresson, S.Esedoglu, P.Vandergheynst, J. P.Thiran, and S.Osher, 
“Fast global minimization of the active contour/snake model,” J. Math. 
Imaging and Vision, vol. 28, pp. 151-167, 2007. 

[14] J. Lie, M. Lysaker, and X.-C. Tai, “A binary level set model and some 
applications to Mumford-Shah image segmentation,” IEEE 
Transection on Image Processing, vol. 15, pp. 1171-1181, May 2006. 
 

[15] J. Lie, M. Lysaker, and X.-C. Tai, “A variant of the level set method 
and applications to image segmentation,” Mathematics of Computation, 
vol. 75, pp. 1155–1174, July 2006. 

[16] F. Li  and M. K. Ng, “Kernel density estimation based multiphase fuzzy 
region competition method for texture image segmentation,” 
Communications in Computational Physics, vol. 8, pp. 623-641, June 
2009. 

[17] T. Goldstein, X. Bresson, and S. Osher, “Geometric applications of the 
Split Bregman Method: Segmentation and surface reconstruction,” 
Journal of Scientific Computing, vol. 45, pp. 272-293, October 2010. 

[18] L.-Y. Wang et al, “Alternating convex relaxation minimization of  the 
multiphase image segmentation model and its Split Bregman 
algorithm,” Journal of Shandong University (Engineering Science), vol. 
41, pp. 40-45, April 2011. 

[19] V. Caselles, R. Kimmel,  and G. Sapiro, “Geodesic active contours,” 
International Journal of Computer Vision, vol. 22, pp. 61–79, February 
1997. 

[20] T. Goldstein and S. Osher, “The Split Bregman method for L1 
regularized problems,” SIAM Journal on Imaging Sciences, vol. 2, pp. 
323-343, April 2008. 

 

 

Cunliang Liu was born in 1977. He received the B.S. 
degree and M.S. degree in computer application 
technology from the Shenyang Ligong University, 
Shenyang, China, in 2000 and 2003, respectively. He is 
currently a lecturer in the College of Information 
Engineering at Qingdao University. His research 
interests include image segmentation, the variational 
methods and PDEs in image processing. 
 

 
 

 

Yongguo Zheng was born in 1963. He is currently a 
Professor of computer science at Shandong University 
of Science & Technology. Zheng’s research interests 
lie in the area of computer vision, image segmentation, 
object recognition, and tracking 

 

 

Zhenkuan Pan was born in 1966. He received his 
Ph.D. degree in engineering mechanics from Shanghai 
Jiao Tong University, China in 1992. Currently he is a 
professor of the College of Information Engineering at 
Qingdao University. His research interests include 
dynamics and control of multibody systems, computer 
simulation and variational image processing. He has 
published numerous papers and conference papers in 
the area of image processing and object recognition. 

 

 

Guodong Wang was born in 1980. He received his 
Ph.D degree in the Institute for Pattern Recognition 
and Artificial Intelligence, Huazhong University of 
Science and Technology, China in 2008. Currently he 
is a lecturer of the College of Information Engineering 
at Qingdao University. His research interests include 
image analysis and variational image processing. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

International Journal of Modeling and Optimization, Vol. 2, No. 1, February 2012

6


