
  

  
Abstract—Providing temporal coordination among public 

transport servicesis of vital importance in transit planning, as it 
has direct impacts on the waiting time imposed on transferring 
passengers. This task, which is widely recognized as schedule 
synchronization, is highly complicated by nature since it 
typically leads to a complex combinatorial optimization 
problem. This study aims to investigate the capability of 
simulated annealing algorithm in coping with this problem. A 
new mathematical programming model is presented for the 
purpose of minimizing the total transfer waiting time in transit 
networks. Then, a simulated annealing algorithm is developed 
and applied to a small-size transit network in order to test the 
algorithm applicability. The numerical results showed the 
capability of the algorithm in tackling the transit schedule 
synchronization problem. 
 

Index Terms—Transit, public transport, simulated annealing, 
schedule.  
 

I. INTRODUCTION 
In public transport systems, it is almost implausible to 

connect all origins and destinations with direct lines because 
of economic reasons. Therefore, transit users often need to 
take several services to arrive at their destinations. Lack of 
temporal coordination between arrival and departure of 
related services at transfer points imposes long waiting times 
on transferring passengers. Reducing this waiting time, 
widely known as transfer waiting time, is a crucial step in 
public transport planning and is the main aim of transit 
timetable coordination. 

Transit schedule coordination, also known as schedule 
synchronization, concerns with setting the timetables for a 
transit network by which coordination among services at 
connecting stops are guaranteed [1]. It is typically 
accomplished through modifying the existing timetables and 
shifting the departure/arrival times of transit vehicles for the 
purpose of minimizing transfer waiting time between related 
services. As a major stage in transit timetabling, this task is 
unanimously considered as the most problematic stage for 
public transport planners [2].  

Although the schedulesynchronization is sometimes 
simplified in practice in the favor of coordination at a few 
transfer points, network-wide synchronization is a highly 
difficult problem by nature, as its formulation results in a 
complex combinatorial optimization problem [3], [4]. In fact, 
this problem in many cases is a NP-hard problem, which is 
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unlikely to be solved with conventional solution methods [5]. 
The intractability of this problem relies on the need for 
searching the optimum solution in a very large search space 
created by permutation of all possible departure/arrival times 
of operating transit vehicles in each line. That is, an effective 
algorithm for finding the exact solution for this problem is 
very less likely to exist [4]. Hence, the use of approximate 
methods (e.g. metaheuristic algorithms) which yield 
near-optimum solutions in a relatively short time could be an 
alternative in coping with the transit schedule 
synchronization problem. 

This paper aims to investigate the applicability of the 
simulated annealing, as a powerful metaheuristic, in coping 
withthis problem. A novel formulation is presented for the 
purpose of minimizing the total transfer waiting time in 
transit networks. Restriction of transfer waiting times at all 
transfer points to a tolerable range is a novelty in the 
proposed model. Afterwards, the application of the simulated 
annealingis investigated through a numerical example. 

 

II. LITERATURE REVIEW 
Coordination of timetables has always been a concern for 

public transport planners and several approaches have arisen 
in the literature in order to tackle this complex problem. The 
most common objective considered in these approaches is 
minimization of total transfer waiting time imposed on all 
transferring passengers in transit networks over a scheduling 
period (e.g. peak/off-peak periods). Although the schedule 
synchronization problem has been modeled as a quadratic 
assignment problem in a few cases, the Mixed-Integer Linear 
Programming (MILP) and Mixed-Integer Nonlinear 
Programming (MINP) have been two classical forms for this 
problemin the previous work. 

Reference [2] developed a mixed integer programming 
model for maximizing the number of simultaneous arrivals of 
buses from different lines at some selected transfer points. 
Reference [4] improved this model for preventing bus 
bunching and optimizing passengers’ transfer in bus systems. 
They used Branch and Bound, as well as multi-start iterated 
local search algorithms to resolve the optimization problem.  

Reference [6] also proposed another method for 
maximizing synchronization between railway lines and 
facilitating transfers with minimum waiting time. Reference 
[7] presented a model for synchronizing train lines and feeder 
buses. The focus is on minimizing transfer time between the 
services and bus operating costs and developed a penalized 
objective function to find the optimum sets of frequencies 
using genetic algorithms. Another approach was proposed in 
[5] for modifying an existing timetable in order to minimize 
the total transfer waiting time for the entire of a bus network. 
Reference [8] developed a mixed integer programming 
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transferring passengers can be expressed as follows: 

( ) ]1  1k
ij ij j i jtw tw k h h modh⎡ ⎤= + − −⎣ ⎦             

(5) 

 

The absolute value of ( ݄ െ 	݄) is used in order to cover 
the situation in which the second line has a shorter headway 
than the first line headway. Having Equation (5), it is possible 
to identify the maximum feasible transfer waiting time 
imposed on transferring passengers from i to j at c(ݓݐ௫) 
over a scheduling period. Moreover, the total transfer waiting 
time from i to j at c (ܶ ܹሻ can also be calculated using this 
equation.  

As mentioned in the previous section, the main aim of 
transit timetable synchronization is to minimize the total 
transfer waiting time incurred by all transferring passengers 
in a transit network over a scheduling period (SP). Hence, the 
all transfer waiting times at all transfer points in the transit 
network should be taken into account and an optimization 
model should be developed for the purpose of minimizing 
this value subject to the operational limitations of transit 
systems. Since the transfer waiting time is a function of 
departure time from the first stop (Equation (3)), the total 
transfer waiting time in a transit network can be presented as 
a function of departure times from the first stops. In fact, 
transit schedule synchronization aims to find the set of 
departure times from the first stops by which the total transfer 
waiting time over SP becomes minimized. In the case of 
synchronizing existing transit systems, the solution is the set 
of shifts (X) in the existing departure times from the first 
stops which lead to minimum total transfer waiting time in a 
transit network. 

In order to develop the mathematical programming model 
for the timetable synchronization problem, we adopt the 
following underlying assumptions: 
1) Physical characteristics of the transit network, including 

the lines alignment, stop locationsand average running 
times between stops are provided. 

2)  Dwell times, walking times and number of transferring 
passengers at each transfer point in known. 

3) Transferring passengers at each transfer point are 
uniformly distributed among the feasible transfers 
between the related lines over SP. 

4) Headways are known and fixed over SP. 
From a planning point of view, some transfers are more 

important than others corresponding to their location, 
direction and time. For instance, some transfer points play a 
more important role in transit networks (e.g. intermodal 
interchanges) and transfers at such points should be favored. 
Therefore, the importance factor (I) should be considered as a 
weighting factor in addition to the number of transferring 
passengers in order to reflect the planning concerns in 
synchronizing transit timetables. 

Considering the transfer waiting time as a function of the 
shift in the first departure time and the importance factor, the 
synchronization model for minimizing the total transfer 
waiting time in a transit network can be proposed as follows: 
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where, 
N : number of directional lines in the network 
m : number of transfer points in the network ܲ  : number of transferring passenger at each transfer ݂ : filtering factor for unfeasible transfers (1 if transfer 

between I and j is feasible at c, and 0 otherwise) ݓݐ : k-th transfer waiting time from i to j at c ݓݐଵ : the first transfer waiting time from i to j at c ߩ  : hourly volume of transferring passengers from i to j at 
c ܺ : shift in the departure time from the first stop in line i 

In this model, the objective function is the total transfer 
waiting time in the network considering the importance of 
transfers. Equations (7), (8), (9) and (11) present the 
parameters used in the objective function. Constraint (12) 
guarantees the first transfer from i to j at cto occur 
andConstraint (13) provides the opportunity to restrict the 
maximum feasible waiting time to a pre-determined tolerable 
value (Tmax). Since the shift in the exiting timetable is in 
minutes, the decision variable (X) can take only integer 
values (Constraint 15). This parameter is allowed to vary 
within the range defined in Constraint (14) in order to 
maintain the existing line frequencies (i.e. no need for 
adding/removing the existing services). 

 

IV. APPLICATION OF SIMULATED ANNEALING 
The schedule synchronization model developed in the 

previous section is a combinatorial optimization problem. 
The complexity of this model mainly relies on the need to 
search for the optimum solution in a huge search space made 
up by combination of all feasible shifts in the departure times 
from the first stops. It should be noted here that the 
complexity of this optimization problem increases 
exponentially by the number of directional lines. 
Consequently, the problem becomes intractable in the case of 
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minutes 
4) All the transfers are considered at the same level of 

importance (i.e.  ܫ = 1). 
Since the performance of simulated annealing algorithm is 

highly affected by its basic parameters and operators, a range 
of sensitivity analysis was conducted on the algorithm in this 
study. Based on this analysis, the penalty factors are selected 
as P1=P2=1. The initial temperature was selected 1000 andthe 
temperature schedule function was also chosen as follow: 

0  0.95kT T=                                 (18) 

where, T is the current temperature, T0 is the initial 
temperature and k is the annealing factor. The annealing 
function, which generates the trial solutions, was also 
developed so that only integers were assigned to the decision 
variables. 

 
Fig.  3. Improvement in objective function value. 

 

Using a 1.83 GHz CPU and 4 GB of RAM, the 
synchronization model was solved for the intended network 
after 5303 iterations in 104 sec. Fig. 3 displays the value of 
the penalized objective function versus iterations. As can be 
seen in this graph, the improvement in the objective function 
occurred faster at the higher temperatures and it became 
slower at the lower temperatures. The best solution found by 
the algorithm is as follows: 

X* = [-5, 1, -3, -2, 6, -5] 
According to this solution, the departure times from the 

first stops were altered and the modified timetable was 
created (Table III). Fig. 4 demonstrates the reduction in 
transfer waiting time under the synchronized schedule over 
one peak hour. 

 
TABLE III: DEPARTURE TIMES FROM THE FIRST STOPS UNDER THE 

MODIFIED SCHEDULE 

1 2 3 4 5 6 
7:55 
8:05 
8:15 
8:25 
8:35 
8:45 

8:01 
8:11 
8:21 
8:31 
8:41 
8:51 

7:57 
8:12 
8:27 
8:42 

 
 

7:58 
8:13 
8:28 
8:43 

 
 

8:06 
8:21 
8:36 
8:51 

 
 

7:55 
8:10 
8:25 
8:40 

 
 

 
As shown in Fig. 4-a, transfer waiting time at the transfer 

points A and B decreased by 14 and 18.7 percent, 
respectively, and the total transfer waiting time in the 
network declinedby 16.4%, from 3933 minutes to 3288 
minutes under the modified timetable. In other words, the 
modification of the existing timetable resulted in saving 645 
minutes just over one peak hour. Fig. 4-b also shows that the 
waiting time incurred by each transferring passengers in the 

network decreased by 5.83 minutes to 4.87 minutes, on 
average. In fact, the modification of the existing timetable led 
to reducing the average waiting time by almost 1 minute for 
each passenger. 

 
(a). Total transfer waiting time. 

 
(b). Average transfer waiting time for each transferring passenger. 

Fig.  4. Impacts of timetable synchronization on transfer waiting time. 
 
In addition to the reduction in the total transfer waiting 

time, synchronization of the existing timetable reduced long 
waiting times at the transfer points. Under the existing 
timetable, 10.2% of the waiting times exceed Tmax(12 
minutes). However, this percentage declined to 6.1% under 
the modified timetable due to restricting transfer waiting 
times to a pre-determined endurable waiting time (Constraint 
13). In fact, timetable synchronization not only reduced the 
total transfer waiting time in the network, but also prevents 
imposing long and unendurable waiting times on the waiting 
passengers. Overall, the proposed schedule synchronization 
method resulted in substantial improvements in the system 
performance and the quality of transfers in the intended 
network. 

 
 

VI. CONCLUSION 
This paper presented the application of a simulated 

annealing algorithm in coping with the transit schedule 
synchronization problem. A new optimization model was 
proposed for the purpose of minimizing the waiting time 
imposed on the transferring passengers in public transport 
systems. Restricting the transfer waiting time to a tolerable 
range is a novelty in this formulation. A simulated annealing 
algorithm was also developed in order to solve the proposed 
optimization problem. Application of the method to a transit 
network revealed that simulated annealing is a capable 
solution algorithm for tackling the transit schedule 
synchronization problem, which is a complex optimization 
problem by nature. 

Since the performance of simulated annealing is highly 
dependent on its basic parameters and operators, further 

480

International Journal of Modeling and Optimization, Vol. 4, No. 6, December 2014



  

sensitivity analysis on these features could improve the 
efficiency of this solution technique in terms of dealing with 
the timetable synchronization problem. Applying other 
metaheuristics and comparing the results to the developed 
simulated annealing algorithm could also be an extension for 
this work. 
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