
  
Abstract—This study combined the Taguchi method with the 

genetic algorithm (GA) to analyse the optimal design 
parameters of the thermal distribution in an air-core linear 
brushless permanent magnet motor (ALBPMM). First, this 
study adopted an L18(21×37) orthogonal array to determine the 
significant factors, including active currents, the length of 
magnets, pole distance of magnets, air-gap length, and thickness 
and width of coils. Then, the study uses response surface 
methodology (RSM) to construct the predictive model. Finally, 
the optimal combinations of design parameters that involve 
using real-code GA were obtained and verified by finite element 
modelling. The simulation results show that the thermal 
distribution in the optimal design of parameters is 41% more 
effective than that of any models in which the parameters are 
not optimised. Therefore, the proposed approach can be used as 
the basis for designing and predicting the temperature effects of 
the ALBPMM.. 
 

Index Terms—Taguchi, genetic algorithm, air-core linear 
brushless permanent magnet motor, response surface 
methodology. 
 

I. INTRODUCTION 
In recent years, linear motors have been widely used in the 

demand for high-speed and linear motion applications that 
can raise production efficiency, including electrical, 
electronic, and mechanical and automation industries [1]. 
Among all linear motors, the air-core linear brushless 
permanent magnet motor (ALBPMM) works with no 
cogging force and exhibits simple structures and a low failure 
rate [2]. Thus, it has been increasingly used in light-load, 
high-dynamic-response, and high-stability machines [3]. 
However, the air-core linear motors demonstrate poor heat 
dissipation, compared with other linear motors, because their 
stator is constructed in a U-shaped channel for embedding the 
mover. If the problems of poor dissipation are not solved, 
then thermal stress would lead to inaccuracy and instability 
of linear motors [4]. Above all, the thermal strain generated 
by thermal stress is the main cause of the inaccuracy and 
deformation of linear motors [5]. Therefore, the linear motors 
that undergo proper cooling system can produce 50% more 
energy than those without cooling can [6], but thus increasing 
the additional complex cooling feedback systems. In general, 
to simplify the thermal analysis model of air-core linear 
motors, most researchers use thermal resistance models to 
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simplify cooling systems for obtaining the equivalent 
analysis mode. However, the deviation of the analytical 
results can be increased considerably [7] even though the 
heat resistance models can quickly estimate thermal 
performance. 

Therefore, some researchers have developed many 
improvements for the cooling systems of air-core linear 
motors. Huang [8] et al., used 3D finite element analysis 
(FEA) to establish the heat transfer analysis models of 
air-core linear synchronous motor. They focused on an 
analytical model to perform steady and transient FEA on the 
heat analysis of motors. Huang [9] et al., conducted heat flow 
analysis on air-core linear motors, calculating the coefficient 
of thermal convection to improve the modelling result of coil 
windings. They used FEA on this model to simulate the 
thermal field of motors. Li [10] et al., used the optimal design 
of air-core permanent linear motors to create and analyse the 
thermal fields of motors. An [11] et al., used the optimal 
design of air-core linear motors to analyse the effect of 
current density and the thickness of the coils on a heat 
transfer model. In addition, Rovers [12] et al., studied the 
cooling sheet materials of air-core linear motors, winding the 
coil and assembling sheet materials as an apparatus of 
reducing temperature distributions. Pan [13] et al., designed a 
cooling plate in the slot of air-core linear motors, which can 
avert the eddy current and thus reducing the heat losses of the 
motor. Therefore, to reduce the temperature of the motor 
body, the optimal design methods of the parameter conditions 
of the motor must be provided. Generally, by using 
traditional optimal methods, the discontinuity distribution of 
objective function leads to local optimal solution or early 
convergence. Therefore, in this paper we adopted a Taguchi 
method and analysis of variance (ANOVA) to determine the 
significant parameters affecting the temperature distribution 
of a motor and used response surface methodology (RSM) to 
establish a mathematical prediction model. Finally, we used 
the real-code genetic algorithm to determine the optimal 
parameter combination and optimal temperature distribution 
of the ALBPMM. 

 

II.  GEOMETRY OF LINEAR MOTORS      
In this study, the stator structure of the ALBPMM 

comprised bilateral permanent magnets arranged in a 
U-shaped channel with permanent magnets fixed on the 
stator in a polar-staggered arrangement to prevent magnetic 
leakage and maximize the use of the magnetic flux. In 
addition to the parameters of the controlling system, the 
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significant parameters affecting the motor’s temperature 
distribution include the geometries and dimensions of the 
stator and mover. Fig. 1 presents the topography of the 
air-core linear motor.   
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Fig. 1. (a) The three-dimensional model of ALBPMM (b) Design 
parameters of ALBPMM. 

 

III. 2D THERMAL ANALYSIS OF LINEAR MOTOR 

Because of the special structure of the ALBPMM and 
corresponding electromagnetic generation process, 
performing a thermal analysis on it is more difficult than 
doing so on a rotary motor. The thermal field of ALBPMM is 
a complex heat conduction problem. Thus, to analyse the 
steady heat field of the motor, the homogeneous materials are 
assumed and the two-dimensional diffusion equations are 
derived from the theory of heat transfer and Fourier's law of 
heat conduction in (1).   
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where T is temperature, g  is the rate of energy generated per 
unit volume, k is thermal conductivity, C is the specific heat 
capacity, and ρ is the density of materials. Because the effect 
of heat transfer by radiation is not significant in the motor, 
only the heat transfer by conduction and convection is 
considered. The initial and boundary conditions are 
expressed as 
 

( ) ( )yxTyxT ,0,, 0=                                (2) 

( ) ( ) ( )∞−=⋅∇ TThnTk
yx nn 0,

                    (3)  

( ) ( ) qnTk
yx nn =⋅∇

,
                                (4)  

 
   Formulation (2) represents the initial condition, 
formulation (3) represents the convection boundary of the 
surface of the epoxy, permanent magnet and back-iron of the 
motor, and formulation (4) represents the boundary condition 
at the contact surface. In formulation (3), h is the coefficient 
of convection, T0 and T∞ are the temperature of convection 

boundary surface and environmental temperature 
respectively, and nx and ny are the direction cosines of 
exterior normal along boundary line.         
                                                 

IV. MAGNETIC THERMAL COUPLING FINITE ELEMENT 
ANALYSIS OF THE MOTOR 

The COMSOL 4.2 finite element software is used to 
simulate the temperature distribution of ALBPMM by 
coupling the models of magnetic fields and heat transfer. In 
the analysis process, the magnetic field models and boundary 
conditions are set first, and the results from the magnetic 
analysis are then coupled to the heat transfer model. The 
flowchart of the magnet-thermal coupling is shown in Fig. 2. 
The original parameters of motor are described in Table I. 

 

Fig. 2. The flowchart of magnet-thermal coupling analysis. 
 

TABLE I: THE SETTINGS OF PARAMETERS 
Parameter Symbol Unit Value 
Air-gap length δ mm 0.6 
Number of phases m  3 
Magnet height hm mm 30 
Magnet width wm mm 3 
Magnets of pole distance dm mm 5 
Magnet length lm mm 14 
Coil thickness tc mm 3.5 
Coil width wc mm 4 
Back iron height hb mm 66 
Back iron width wb mm 4 
Electrical conductivity of the 
copper coil σc S/m 5.99×107 

Electrical conductivity of the 
back iron σb S/m 1.03×107 

Relative permeability of the 
back iron μr  2000 

Br curve of the Permanent 
magnet   T 1.23 

Current density of the 
magnetic field  J A/mm2 3.58 

 
The magnetic analysis in Fig. 3(a) is conducted using the 

symmetry planes to reduce the cost of simulation. The current 
setting is sine wave, in which the current value is based on the 
position of the mover. The three-phase A-B-C coils 
modelling are used in this work. Therefore, the current and 
back-EMF are sinusoidal with 120° degrees phase shift. 
When phase “A” faces the magnetic pole, the current is zero; 
only phases “B” and “C” have current flowing through them. 
The positive and negative directions represent those of the 
current. After setting the required boundary conditions and 
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parameters, finite element mesh analysis is performed; the 
number of grid nodes of mesh was 6550 as shown in Fig. 
3(b). 
 

 
 (a) 

 
 (b) 

Fig. 3. (a) The geometrical structure of magnetic analysis (b)The finite 
element of mesh analysis. 

 

V.   TAGUCHI-BASED GENETIC ALGORITHM 

A. Taguchi Method and ANOVA 
Taguchi methods [14] mainly transform quality 

characteristics into a signal-to-noise (S/N) ratio, to measure 
the quality of the product. It is used to reveal the extents of 
the influence of production or product quality and its error 
factors. The S/N ratio can reveal the optimal design in which 
the variance is low and the quality characteristics are fair. The 
choice of quality characteristics can directly affect product 
quality. Thus, the S/N ratio is the indicator for evaluating 
quality. Its main function is to evaluate the stability of the 
process of production; the higher the S/N ratio is, the smaller 
the variance of the quality characteristics is and the more 
favourable the condition. In this study, the S/N ratio values 
corresponding to the conversions were calculated, using the 
smaller-the-better (STB) quality characteristics for obtaining 
the temperature response. The S/N ratio was calculated 
according to the following (5). 

S/N (dB)=-10 ∑
=

n

i
iy

n 1

21log                      (5) 

where yi is the temperature value for the experimental results 
and n is the number of tests in a trial.  

After the S/N ratio of each factor is computed, an analysis 
of variance (ANOVA) is used to yield the relative importance 
and influence of each parameter to the optimal objectives. 
The results include the sum of squares, degrees of freedom, 
variance, contribution, F values, and confidence level. The 
purpose of this method is to determine the significance of 
each factor, and the significant factors can serve as the 
optimal design factors for designing the prediction models 
and analysing the target value of the objectives. 

B.  Response Surface Methodology 
Response surface methodology [15] is also called 

“regression design”. Its purpose is mainly to find the optimal 
response and mathematical prediction models within 
specified ranges of each factor. In this study, the central 
composite design (CCD) in RSM was used, and the optimal 
predictive model was yielded using second-order polynomial 
functions, as shown in (6). 
where y is the response parameter, x is the design parameters, 

s is the number of design parameters, β0 is the constant term, 
βa is the first-order coefficients, βaa is the coefficients of the 
quadratic parameters, βab is the coefficients of the interaction 
parameters. 
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C.  Real-Code Genetic Algorithm 
Genetic algorithm (GA) is a random search method based 

on an optimized search mechanism for imitating biospheric 
natural selection. A real-code GA represents parameters with 
real numbers used in the duration of the entire algorithm 
processes. Since there are no encoding and decoding 
operations, the computation time is faster compared with 
other kinds of genetic algorithms [16]. Therefore, this work 
applied a real-code GA to solve the optimization problem of 
the thermal model by combining the design parameters in the 
ALBPMM. The following lists the steps in using the 
real-code GA: 

Step 1: Initalize the population. Set the maximum number 
of generations, number of groups, number of design variables, 
limits of parameters and conditions. The real-code GA 
manipulates the combination of design parameters used in 
vector modes, as shown in (7) and (8). 

( ) 6,...,1,,...,1,,...,1 === cNdGGI cd                 (7)                   
( )ccccc UUrUG minmaxmax −+=                 (8) 

where I is the number of each generation and Gc is design 
parameters between upper limits Umax c and lower limits Umin c, 
rc is a random number within [0,1] and c is the number of 
design parameters. 

TABLE II: DESIGN VARIABLES aND THEIR CODED LEVELS 

Factor Unit Level 1 Level 2 Level 3

A Current A 2 6  

B Length of 
magnets mm 13 14 16.6 

C Width of 
magnets mm 3 4 5 

D Pole distance 
of magnets mm 1 3 5 

E Air-gap 
length mm 0.3 0.45 0.6 

F  Thickness of 
coil  mm 2 3.5 5 

G Width of coil mm 3 4 5.5 

H Wire 
diameter mm 0.3 0.6 0.7 

 
Step 2: Evaluate the fitness of all individuals in the 

generation according to the fitness value. The fitness function 
is the objective function of the optimal problem. Different 
types of problem have different definitions of fitness function 
to determine the fitness value. 

Step 3: Select and reproduce the chromosomes. In the GA, 
through selection and reproduction, unfavourable 
chromosomes (individuals) can be eliminated and favourable 
ones can be conserved. After iterative computation, the result 
gradually converges to a certain value, representing the most 
favourable chromosome  determined.  

Step 4: Perform the crossover. The purpose of crossover is 
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to ensure that individuals with high fitness develop high 
selectivity. This study used the crossover probability of 60%. 
When the randomly generated number within [0,1] is less 
than the set crossover rate, the crossover process is 
performed. 

Step 5: Operate the mutation. The purpose of mutation is 
to avoid premature convergence and trapping into local 
optimal solution in search space. If the randomly generated 

number within [0,1] is less than the set rate of mutation, the 
mutation operation is performed. The design parameter is 
multiplied by a random value between 0 and 1 to ensure that 
every individual is mutated. 

Step 6: Determine the stop conditions. The algorithm is 
terminated when the maximum number of generations is 
reached. If not, using the algorithm is continued.

 
TABLE III: L18(21×37) ORTHOGONAL ARRAY 

 A B C D E F G H No. of experiments 
(1)               (2) ky  S/N(dB) 

1 1 1 1 1 1 1 1 1 34.33 34.33 34.328 -30.714 
2 1 1 2 2 2 2 2 2 21.28 21.27 21.272 -26.557 
3 1 1 3 3 3 3 3 3 21.02 21.02 21.018 -26.452 
4 1 2 1 1 2 2 3 3 20.73 20.72 20.722 -26.329 
5 1 2 2 2 3 3 1 1 51.96 51.95 51.952 -34.313 
6 1 2 3 3 1 1 2 2 20.94 20.94 20.941 -26.421 
7 1 3 1 2 1 3 2 3 20.99 20.98 20.984 -26.438 
8 1 3 2 3 2 1 3 1 20.50 20.50 20.497 -26.234 
9 1 3 3 1 3 2 1 2 41.36 41.36 41.358 -32.332 
10 2 1 1 3 3 2 2 1 31.81 31.81 31.807 -30.051 
11 2 1 2 1 1 3 3 2 27.92 27.92 27.921 -28.919 
12 2 1 3 2 2 1 1 3 188.95 188.90 188.924 -45.526 
13 2 2 1 2 3 1 3 2 24.90 24.89 24.894 -27.922 
14 2 2 2 3 1 2 1 3 228.01 228.00 228.005 -47.159 
15 2 2 3 1 2 3 2 1 37.35 37.35 37.351 -31.447 
16 2 3 1 3 2 3 1 2 356.44 356.40 356.419 -51.040 
17 2 3 2 1 3 1 2 3 29.02 29.02 29.020 -29.255 
18 2 3 3 2 1 2 3 1 26.11 26.11 26.108 -28.336 
All results average y  66.862 -31.969 

 
TABLE VI: RESULTS OF ANOVA 

Factor DOF Sum of Sqrs Variance F-Ratio Confidence ρ％ Significant 
A 1 54037.636 54037.636 228.349 100% 18.283 Yes 
B 2 6979.732 3489.866 14.747 99.9% 2.361 Yes 
C 2 4177.974 2088.987 8.827 99.8% 1.414 No 
D 2 41935.709 20967.854 88.604 100% 14.188 Yes 
E 2 33944.377 16972.188 71.720 100% 11.484 Yes 
F 2 19868.441 9934.220 41.979 100% 6.722 Yes 
G 2 124974.401 62487.200 264.055 100% 42.283 Yes 
H 2 4916.360 2458.180 10.387 99.9% 1.663 No 
Error 20 4732.884 236.644 *NOTE: At least 99.9% confidence 
Total 35 295567.519  

VI. OPTIMAL DESIGN AND PROCESS OF ALBPMM 

TABLE Ⅴ: PARAMETER LEVELS OF ALBPMM IN RSM 
Design 
variables level Unit -1 0 -1 

x1 Current A 1.5 2 2.5 

x2 
Length of 
magnets mm 11 13 15 

x3 

Pole 
distance 
of 
magnets 

mm 4 5 6 

x4 
Air-gap 
length mm 0.3

5 
0.4
5 

0.5
5 

x5 
Thickness 
of coil mm 2.5 3.5 4.5 

x6 
Width of 
coil mm 2 3 4 

 
 

 
This study used a Taguchi-based real-code GA on the 

optimizing parameter design of the thermal analysis of the 
ALBPMM. Fig. 5 shows the research flowchart in this work. 

The steps of this process are listed as follows:  
Step 1: Use an L18 (21×37) orthogonal array, including eight 

controlled factors as the Taguchi method design parameters. 
As shown in Table II, Factor “A” is set at two levels, and the 
remaining factors are set at three levels.   

Step 2: Select the quality characteristic of STB and 
perform 18 sets of experiments involving different factor 
combinations on the orthogonal array. The finite element 
analysis software COMSOL is used to analyse the 
thermal-magnetic couple of the motor and calculate the 
temperature distribution. All the experimental data and S/N 
ratio are listed in Table III. 
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Fig. 5. The flowchart of the ALBPMM optimization design. 

 
 
Step 3: Use ANOVA to obtain the variation effect on the 

quality of each factor to determine the most significant 
factors in the entire experiment, as shown in Table IV. 

Step 4: Establish mathematical predictive models by using 
RSM. The temperature distribution of the motor is selected as 
the quality characteristic of the RSM. Its parameters are 
shown in Table V. 

Step 5: Run 31 experiments and use quadratic regression 
equations to establish the interaction among significant 
factors to obtain the mathematical predictive model of the 
objective. The result is shown in (9). 

 

65

645463

534362

524232

615141

3121
2

6

2
5

2
4

2
3

2
2

2
16

543

21

0.0266+
0.0224-0.0239-0.0207-

0.032-0.0234+0.0267+
0.013+0.0269-0.0227-
0.0716+0.0404+0.0145-

0.018-0.0142+0.0008-

0.0186-0.0017-0.0111-

0.0011-0.0517+0.2183

0.09070.0171+0.0013+
0.0176-0.7948293.32

xx
xxxxxx
xxxxxx

xxxxxx
xxxxxx

xxxxx

xxx

xxx

xxx
xxfT

+

+
+=

 (9) 

 
Step 6: Use the real-code GA to conduct iterative 

computation on every iterative selection, reproduction, 
crossover, and mutation. Use roulette wheel selection and the 
flat crossover [17] technique to set the rate probability of at 
60% and set the mutation rate at 10%. 

Step 7: Evaluate whether reaching the optimal condition. 
Step 8: Determine the combination of optimal parameters 

from parameter space, and analyse the thermal distribution of 
ALBPMM to confirm the result. 

 

VII. THE RESULTS AND ANALYSIS OF EXPERIMENT 

A. Factor Changes to the S/N Ratio Affect Taguchi Method 
Analysis 
Table VI shows the response table of each factor. The S/N 

ratios of each factor appear at different levels because of the 
average value corresponding to the 18 combination sets 
appearing at the same level. When the quality characteristic is 
the STB, the S/N ratio is negative. The closer to zero the S/N 
ratio approaches, the more favourable the quality 
characteristic is. According to the response table and figure 
of each factor corresponding to the S/N ratio, a set of the most 
favorable combination of factors can be found. Ensuring that 
the S/N ratio approaches zero requires using the combination 
A2B3C1D3E2F3G1H3.  

Table III lists the results calculated using ANOVA at a 
confidence level of 99.9% for the smallest F (0.01,2,18)= 
10.39; hence, the significant factors are Factors A, B, D, E, F, 
G and H. Among these factors, Factor H is the wire diameter 
interacting in the active current with Factor A. If Factor H is 
also used as a significant parameter, then the current density 
would be affected. Therefore, the significant factors are 
Factors A, B, D, E, F, and G. 

B. Verification Taguchi Method 
After using the Taguchi methods and ANOVA to 
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determine the significant design factors and target value, the 
design values should be confirmed. The goal is to predict the 
quality characteristics of new design values and to determine 
whether the quality is improved. In order to confirm the 

adequacy of the developed methods, three confirmation 
experiments were carried out using new randomly selected 
test conditions, each within the experimental range defined 
earlier in Section V. 

 
(a) 

 

                                          (b) 
 

 

                                              (c) 
Fig. 6. (a) The non-optimal model temperature of temperature distribution and each point of temperature curve. (b)The Taguchi method model temperature of 
temperature distribution and each point of temperature curve. (c)The optimization model temperature of temperature distribution and each point of temperature 

curve. 
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C. Optimal Design Parameters Conditions and 
Temperature Distribution 
After a central composite design (CCD) in RSM 

mathematical model was constructed, using the real-code GA 
led to the optimal parameter combination. The Taguchi-based 
real-code GA can effectively reduce the tempeture of motor. 
When the curve of Taguchi-based real-code GA converges, 
its fitness value is at 89.84 °C. Table VII shows that the 
optimal design parameters of the non-optimized, traditional 
Taguchi method and Taguchi-based real-code GA through 
the verification of FEM. The current flows through phase 
“C” and the performing time is 6000s. The difference value is 

about 2°C compared with the result of Taguchi-based 
Real-code GA. Fig. 6 (a)-(b) shows the temperature 
distributions of P, R and U points of motor from 
non-optimization, traditional Taguchi method and 
Taguchi-based Real-code GA. The temperatures of P, R and 
U points in Fig. 6 (a) are 23.49°C, 82.76°C and 128.1°C, 
respectively. The temperatures of P, R and U points in Fig. 8 
(b) and Fig. 6  (c) are 20.90°C, 57.11°C and 88.67°C and 
20.62°C, 56.89°C and 85.59°C, respectively. Obviously the 
temperature distribution of motor can be effectively reduced 
through the Taguchi-based Real-code GA. 

 
TABLE VI: RESPONSE TABLE OF FACTORS VIA S/N RATIO (UNIT: dB) 

 A B C D E F G H 

Level 1 -28.421 -31.012 -32.082 -29.833 -31.331 -30.182 -40.181 -31.370 
Level 2 -35.517 -31.794 -32.073 -31.515 -34.522 -32.198 -28.361 -32.265 
Level 3  -33.101 -31.752 -34.56 -30.054 -33.527 -27.366 -32.272 
Effect 7.09 2.08 0.33 4.73 4.467 3.345 12.814 0.901 

TABLE VII: COMPARISONS OF NON-OPTIMISED, TAGUCHI METHOD, TAGUCHI  MECHED AND OPTIMISATION MODEL 
Design parameters A B D E F G T(℃) 
Non-optimised 6 14 5 0.6 3.5 4 131.26℃ 
Taguchi method 6 16.6 5 0.45 5 3 91.704℃ 
Optimization model 1.5 14 4 0.55 2.5 2 87.482℃ 

 

VIII.   CONCLUSION 
This study combined the Taguchi method, RSM, and a 

real-code GA to determine the significant design parameters 
of optimal temperature distribution for the ALBPMM, 
thereby deriving an ideal result. The result can provide 
developers with a reference of thermal distribution when 
designing air-core linear brushless permanent magnet motors. 
The method proposed by this study can also simplify the 
methods of prediction in thermal distribution. Thus, 
developers can reduce the time required for experiments and 
save costs on materials to improve the operational 
performance of the ALBPMM. 
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