
  

   
Abstract—Support vector machines (SVM) have been 

successfully applied in numerous areas of pattern recognitions, 
and have demonstrated excellent performance. However, 
traditional SVM does not make efficient use of both labeled 
training data and unlabeled testing data. Moreover, one usually 
encounters high dimensional and nonlinear distributed data in 
classification problems, especially in financial credit rating 
assessments. They generally degrade the performance of a 
classifier due to the curse of dimensionality. This study 
addresses these problems by proposing a novel intelligent 
system which integrates a kernel locality preserving projection 
(KLPP) with a data-dependent manifold-regularized SVM. 
KLPP is employed to gain a perfect approximation of data 
manifold and simultaneously preserve local within-class 
geometric structures according to prior class-label information. 
Empirical results indicate that, compared with other 
dimensionality reduction methods and conventional classifiers, 
the hybrid classifier performs best. 
 

Index Terms—Credit rating, dimensionality reduction, 
kernel locality preserving projections, subspace analysis, 
semi-supervised SVM.  
 

I. INTRODUCTION 
The subprime mortgage crisis in 2007 results mainly from 

credit risk. Credit quality assessment is important for the 
banking sector. The bank with the most accurate estimation 
of its borrower’s credit quality will be the most profitable. On 
the other hand, corporate credit quality (or rating) is typically 
very costly to assess, since they require agencies such as 
Standard and Poors or Moody to invest heavily in terms of 
time and human resources to perform deep analysis of a 
company’s risk status. For controlling credit risk, all banking 
and investment institutes invest heavily on establishing an 
automatic decision support system for evaluating the credit 
quality of their borrowers. The objective of this study is thus 
to develop a reliable and accurate data mining system for 
credit quality evaluations. 

Corporate credit rating predictions are studied intensively 
by the academic and business community. Many researchers 
have attempted to construct automatic classification systems 
using methods from statistics, data mining, and artificial 
intelligence. However, traditional methods usually perform 
poor when they encounter the high dimensional and 
nonlinear distributed financial input data. This study 
 
 

Manuscript received May 15, 2014; revised July 17, 2014. This work was 
supported by the Ministry of Science and Technology of Taiwan. 

Shian-Chang Huang is with the Department of Business Administration, 
National Changhua University of Education, Changhua, Taiwan (e-mail: 
shhuang@cc.ncue.edu.tw). 

addresses the problems by integrating a kernel locality 
preserving projections with a semi-supervised version of 
support vector machine for credit rating forecasting. 

Numerous classification techniques have been adopted for 
credit scoring. These techniques include: (1) traditional 
statistical methods; such as discriminant analysis, logistic 
regressiones [1], [2], and Bayesian networks; (2) 
non-parametric statistical models such as k-nearest neighbors 
[3]; (3) decision trees [4]; (4) neural networks [5], [6]. 
Recently, the support vector machine (SVM) [7]-[9], a 
special form of kernel classifiers, has become increasingly 
popular. The formulation of SVM simultaneously embodies 
the structural risk (a maximum margin classifier) and 
empirical risk minimization principles. Consequently, SVM 
combines excellent generalization properties with a sparse 
model representation. 

Traditional SVM uses only the labeled data to train the 
model. However, unlabeled (testing) data usually provide 
important information about intrinsic geometry of the data 
manifold which helps for the out-of-sample model 
generalization and preventing the problem of overfitting. As 
a result, an approach that is able to make better use of both 
labeled and unlabeled data for training and regularization [10] 
to improve recognition performance is of potentially great 
practical significance. The new solution to deal with the 
problem is the semi-supervised learning (or transductive 
learning) [11], which falls between unsupervised learning 
(without any labeled training data) and supervised learning 
(with completely labeled training data). In the last decades, 
semi-supervised learning has attracted an increasing amount 
of attention. Recently, there are considerable interest and 
succuss on semi-supervised learning algorithms [12]-[15]. 
Manifold-regularized SVM (MR-SVM) [12] is a novel 
framework for data-dependent geometric regularization 
which brings together ideas from the theory of regularization 
in reproducing kernel Hilbert spaces (RKHS), manifold 
learning and spectral methods. Specifically, the MR-SVM 
used data-dependent norm to warp the structure of the RKHS 
to reflect the underlying geometry of the data. 

The power of kernel methods lies in the implicit use of a 
high dimensional RKHS induced by a positive semidefinite 
(PSD) kernel. Kernel classifiers map input data into a high 
dimensional RKHS where simple linear classification is 
performed. However, owing to the large amounts of data 
from public financial statements that can be used for 
corporate credit rating predictions, the large scale of input 
data makes kernel classifiers infeasible due to the curse of 
dimensionality ([16]). Consequently, first one needs to 
transform the input data space to a suitable low dimensional 
subspace that optimally represents the data. Regarding 
dimensionality reduction, linear algorithms such as principal 
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component analysis (PCA) and linear discriminant analysis 
(LDA) are the two most widely used methods due to their 
relative simplicity and effectiveness. 

However, as indicated by [17], in many real world 
problems there is no evidence that the data is sampled from a 
linear subspace. This problem has motivated researchers to 
consider manifold-based techniques for dimensionality 
reduction. Recently, various manifold learning techniques 
such as ISOMAP [18], Locally Linear Embedding  LLE, [19] 
and Laplacian Eigenmap [20], have been proposed to reduce 
the dimensionality of a fixed input data set while maximally 
preserving certain inter-point relationships. However, these 
methods are unsuitable for credit rating forecasting, because 
they cannot provide an explicit subspace mapping for a new 
test sample. To address this deficiency, [21] proposed 
locality preserving projections (LPP) to approximate the 
eigenfunctions of the Laplace Beltrami operator on the data 
manifold, and so that new test samples can be easily mapped 
to the learned low-dimensional feature subspace. Although 
LPP is often effective, it performs poorly when data samples 
are subject to complex nonlinear changes since it is a linear 
method in nature. 

This research adopted a kernel version of LPP KLPP, [22], 
[23] for subspace learning, which preserves geometric 
relations according to prior class-label information and 
represents complex nonlinear variations of real data by 
nonlinear kernel mapping. Incorporating KLPP significantly 
reduces the computational loading of kernel classifiers and 
simultaneously enhances forecasting accuracy. Moreover, 
this study also applies four types of multi-class kernel 
classifiers to classify enterprize credit ratings for comparison. 
Empirical results indicate that, compared with other 
dimensionality reduction methods and conventional 
classifiers, the hybrid classifier (KLPP+semi-supervised 
SVM) performs best. The proposed method can help 
financial institutions to accurately assess credit risk and 
substantially reduce losses. 

The remainder of this paper is organized as follows: 
section II describes traditional locality preserving projections 
and multi-class kernel classifiers. Section III introduces the 
KLPP algorithm and manifold-regularized SVMs. 
Subsequently, Section IV describes the study data and 
discusses the empirical findings. Conclusions are given in 
Section V. 

 

II. PRIOR RESEARCH 

A. Locality Preserving Projections 
This section presents the dimensionality reduction method 

of [21]. Given m  samples =1|m n
i i ∈x R , dimensionality 

reduction aims at finding =1|m d
i i ∈z R , nd = , where iz  can 

represents ix . Locality Preserving Projection (LPP, [21]) is 
one of the famous algorithms. It builds a graph incorporating 
neighborhood information of the data set. Using the notion of 
Laplacian of the graph [24], one then computes a 
transformation matrix which maps the data points to a 
subspace. This transformation optimally preserves local 
neighborhood information in a certain sense. Based on 
standard spectral graph theory (see [24] for a comprehensive 
reference and [20] for applications to data representation), 

given a graph G  with m  vertices, each vertex represents a 
data point. Let W  be a symmetric mm×  matrix with ijW  

having the weight of the edge joining vertices i  and j . The 
G  and W  can be defined to characterize certain statistical 
or geometric properties of the data set. The purpose of LPP is 
to represent each vertex of a graph as a low dimensional 
vector that preserves similarities between the vertex pairs, 
where similarity is measured by the edge weight. Let 

1 2= [ , ,..., ]T
mz z zz  be the map from the graph to the real 

line. The optimal z  tries to minimize under appropriate 
constraint. This objective function incurs a heavy penalty if 
neighboring vertices i  and j  are mapped far apart. 
Therefore, minimizing it is an attempt to ensure that if 
vertices i  and j  are close then iz  and jz  are close as well. 

With some simple algebraic formulations, we have 
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where WDL −=  is the graph Laplacian ([24]) and D  is a 
diagonal matrix whose entries are column (or row, since W  
is symmetric) sums of W , 

jijii WD ∑= . Finally, the 

minimization problem reduces to find  
*
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= arg = argmin .min

T
T
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        (3) 

The constraint 1=zz DT  removes an arbitrary scaling 
factor in the embedding. The optimal Z s can be obtained by 
solving the minimum eigenvalue eigen-problem: 

zz DL λ= . If we choose a linear function, i.e., 
= ( ) = T

i i iz f x a x . Eq. (3) can be rewritten as:  

*

=1 =1
= arg = argmin minT T T

T T TD XDX
L XLX

z z a a
a z z a a      (4)  

where 1= [ ,..., ]mX x x . The optimal a ’s are the eigenvectors 
corresponding to the minimum eigenvalue of eigen-problem: 

=T TXLX XDXλa a . 

B. Support Vector Machines 
Based on the structured risk minimization (SRM) principle, 

SVMs seek to minimize an upper bound of the generalization 
error instead of the empirical error as in other neural 
networks. SVM classifiers construct a hyperplane to separate 
the two classes (labelled 1,1}{−∈y ) so that the margin 
(the distance between the hyperplane and the nearest point) is 
maximal. The SVM classification function is formulated as 
follows:  

=sign( ( ) ),Ty bφ +w x                       (5) 

where ( )xφ  is called the feature, which is a nonlinear 
mapping from the input space x  to the future space. The 
coefficients w  and b  are estimated by the following 
optimization problem:  
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 with  

( ( ) ) 1 , = 1,...,T
i i i iy b i lφ ξ+ ≥ −w x      (7)  

,1,...,=0, lii ≥ξ               (8) 

where C  is a prescribed parameter, which evaluates the 
trade-off between the empirical risk and the smoothness of 
the model. 

After taking the Lagrangian and conditions for optimality, 
the dual solution of this convex optimization problem can be 
formulated as follows:  

 

=1 , =1

1( ) = ( , ),max 2

l l

i i j i j i j
i i j

D y y K
α

α α α α−∑ ∑ x x   (9) 

with constraints,  
 liCi 1,...,=,0 ≤≤ α  (10) 

 0,=
1=

ii

l

i

yα∑  (11) 

where α  are Lagrangian multipliers, which are also the 
solution to the dual problem, and ( , )i jK x x  is the kernel 

function. b follows from the complementarity 
Karush-Kuhn-Tucker (KKT) conditions. The decision 
function is given by  

=1

( ) = ( , ) .
l

i i i
i

f sign y K bα⎛ ⎞+⎜ ⎟
⎝ ⎠
∑x x x  (12) 

The value of the kernel is equal to the inner product of two 
vectors x  and ix  in the feature space, such that 

( , ) = ( ) ( )i iK φ φx x x x . Any function that satisfying 
Mercer’s condition ([7]) can be used as the Kernel function. 

C. General Kernel Classifiers: Kernel Dependency 
Estimation (KDE) 

In [25]-[26], multi-class classifications are considered as 
structured output prediction problem. Both the input and the 
output portions of the data are mapped into their feature 
spaces, denoted as F  and L , respectively. As usual, these 
mappings can be implicitly defined via two kernel functions:  

 
           ( , ') = ( ) ( ')K φ φ⋅x x x x  (13) 

( , ') = ( ) ( '),L LL φ φ⋅y y y y                      (14) 
 

where : X Tφ →  and :l Y Tφ →  are the input and the output 
feature mapping, respectively. Then every function 

:f X T→  in the original domain, can be mapped to a 
corresponding function :F K L→  in the transformed space 
defined as ( ( )) = ( ( ))LF fφ φx x . 

Like distances between examples in the input space, it is 
also possible to think of loss function as a distance measure in 
the output space. We can measure inner products in the 
output space using a kernel function, denoting this as 

( , ') = ( ) ( ')L LL φ φ⋅y y y y , where :L Y Lφ → . This map makes 

it possible to consider a large class of nonlinear loss function. 
By using Lφ , one embeds the output objects in the space L  
for general loss measures. The general loss function make it 
possible to consider multi-class patterns, structured objects 
such as strings, trees, graphs and so forth as outputs. 

First, define some kernel functions for output spaces. In 
M-class pattern recognition, given = {1,..., }Y k , one often 
uses the distance or loss function ( , ') = 1 [ = ']LL −y y y y , 

where [ = ']y y  is 1  if = 'y y  and 0  otherwise. To 
construct a corresponding inner product it is necessary to 
embed this distance into a Euclidean space, which can be 
done using the following kernel:  

1( , ') = [ = '],
2

L y y y y                    (15) 

as  
2( , ') =|| ( ) ( ') || = ( , ) ( ', ')

2 ( , ') = 1 [ = ']
L LLL L L

L
φ φ− + −
−

y y y y y y y y
y y y y

 

Similarly, one can also embed the input space X to a 
feature space F by another kernel function : X Fφ →  for 
general distance measures. Our objective is to minimize the 
following risk function using the feature space  F induced by 
the kernel K  and the loss function measured in the space L  
nduced by kernel L ,  

( ) = ( , ( , )) ( , ),
x y

R LL f dPα α
×∫ y x x y           (16) 

where P  is the joint distribution of x  and y . To do this we 

must learn the mapping from ( )φ x  to ( )Lφ y . Our solution 

is to decompose ( )Lφ y  into p  orthogonal directions using 
kernel principal components analysis (see, e.g. [10] chapter 
14). One can then learn the mapping from ( )φ x  to each 
direction independently using a standard kernel regression 
method. Finally, to output a estimation y  given a test 
example x  one must solve a pre-image problem. For more 
details concerning the algorithm we refer to [26]. 

 

III. THE PROPOSED METHOD 

A. Kernel Locality Preserving Projections 
Since Locality Preserving Projection (LPP) is a linear 

method in nature, it is inadequate for representing nonlinear 
data space. Moreover, LPP seeks to preserve local structures 
defined by the nearest neighbors. It often fails to preserve 
within-class local structure, which is very important for 
rating classification, because the nearest neighbors may 
belong to different classes due to the influence of complex 
variations. This paper uses a kernel version of LPP proposed 
by [22], [23] for subspace learning. First, the nonlinear kernel 
mapping is used to map the data into an implicit feature 
(RKHS) space F , and a linear transformation is then 
performed to preserve within-class geometric structures in 
F . Thus, a nonlinear subspace is obtained to approximate 
the intrinsic geometric structure of the data manifold. Namely, 
a function is selected in the high dimensional RKHS, i.e., 
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where φ  is the nonlinear mapping function, ( , )j iK x x  is the 

Mercer Kernel, and φP  is a projecting transformation that can 

preserve the within-class geometric structure of the data. 
Equations (3) of previous section can be rewritten as  

*

=1 =1
= arg = arg ,min minT T

T TD KDK
L KLK

α α
α α α

z z
z z   (18) 

where T
m ],...,[= 1 ααα . The optimal α ’s are the 

eigenvectors corresponding to the minimum eigenvalue of 
the following eigen-problem: αλα KDKKLK = . 

The weight matrix W  in Equation (1) is still unspecified. 
In [21] and [27], the weight matrix W  was simply defined 
by nearest-neighbor relations. Here, similar to [28] prior 
class-label information is used to define the W . In fact, each 
entry in the weight matrix W  can be regarded as the 
similarity metric of a pair of samples. The dot product 
between two samples is in a sense a similarity measure. 
Therefore, weight matrix W  is defined as follows: 

      

if and both belong
( ) ( )

= to the same class;
0 otherwise,

i jT
i j

ijW
φ φ
⎧
⎪
⎨
⎪
⎩

x x
x x  

That is, the within-class geometric information is 
emphasized, and the similarity between two samples is set to 
zero if they belong to different classes. Thus, matrices W  
and K  are unified into a consistent dot product form except 
that matrix W  has a strong constraint. 

B. Manifold-Regularized SVM 
Standard statistical learning assumes that there is a 

probability distribution P  on YX ×  according to which 
training examples are generated. Labeled examples are 

),( yx  pairs drawn from P . Unlabeled examples are simply 

Xx ∈  drawn from the marginal distribution XP  of P . 

Knowledge of the marginal XP  can give a better function 
learning for classification. Semi-supervised learning 
(especially, manifold regularization) assumes that if two 
points Xxx ∈21,  are close in the intrinsic geometry of XP , 

then the conditional distributions )|( 1xyP  and )|( 2xyP  
are similar. In other words, the conditional probability 
distribution )|( xyP  varies smoothly along the geodesics 

in the intrinsic geometry of XP . 

Given a set of labeled examples liyx ii 1,...,=),,( , the 
kernel learning framework estimates an unknown function in 
RKHS KH  with corresponding norm K|||| ⋅  by minimizing  

* 2

=1

1= arg ( , , ) || || ,min
l

i i K
f H iK

f V x y f f
l

γ
∈

+∑        (19) 

where V  is some loss function, such as soft margin loss 
function for SVM. Penalizing the RKHS norm imposes 
smoothness conditions on possible solutions. The classical 
representer Theorem states that the solution to this 
minimization problem exists in KH  (with Mercer kernel K ) 
and can be written as  

),,(=
1=

* xxKf ii

l

i
α∑                            (20) 

The problem is reduced to optimizing over the finite 
dimensional space of coefficients iα . Manifold-based 
regularization extends this framework by incorporating 
additional information about the geometric structure of the 
marginal XP  by introducing an additional regularizer 

 

,||||||||),,(1
minarg= 22

1=

*
IIKii

l

if
fffyxV

l
f γγ ++∑

∈ KH

 (21) 
 

where 2|||| If  is an appropriate penalty term that reflect the 

intrinsic structure of XP . In the setting, γ  controls the 

complexity of the function in the ambient space while Iγ  
controls the complexity of the function in the intrinsic 
geometry of XP . 

However, in most applications we do not know XP . 

Therefore one needs to get empirical estimates of If |||| . In 
order to get good empirical estimates, unlabeled examples 
should be added in the training process. When the support of 

XP  is a compact submanifold M X⊂ . A natural choice 

for If ||||  is 〉∇〈∇∫ ff MM
M

, . 

The term 〉∇〈∇∫ ff MM
M

,  may be approximated on the 

basis of labeled and unlabeled data using the graph Laplacian. 
Given a set of labeled examples l

iii yx 1=)},{(  and a set of u  

unlabeled examples ul
ljjx +
+1=}{ , the term 

fLf
lu

ff T ~~
)(

1, 2+
≈〉∇〈∇∫ MM

M
, where 

T
ulxfxff )](),...,([=~

1 +  and WDL −=  is the graph 

Laplacian ([24]). ijW  are the edge weights in the data 

adjacency graph. D  is a diagonal matrix whose entries are 
column (or row, since W  is symmetric) sums of W , 

ij
ul

jii WD ∑ +

1=
= . Finally, the term 2)(

1
lu +

 is a 

normalizing coefficient. 
Similarly, by representer theorem ([12]), the solution of 

equation (21) has an expansion in terms of both labeled and 

unlabeled examples. ),(=)(
1=

* xxKxf ii
ul

i
α∑ +

. For the 

setting of SVM, the loss function is defined as 
))((0,1max=),,( iiii xfyfyxV − . Introducing slack 
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variables, using standard Lagrange Multiplier techniques, a 
similar solution like traditional SVM can be derived easily. 

For more details concerning the solution, we refer to [12]  
and [13]. 

 
TABLE  I:

 
WILCOXON TESTS ON THE DIFFERENCES AMONG KLPP

 
,
 
ICA, AND PCA

 
(P-VALUE) 

     MR-SVM   1-vs-rest   1-vs-rest   1-vs-rest   MSVM   KDE   
 +KLPP   +ICA   +PCA        

MR-SVM+KLPP   1.0000   0.0079   0.0079   0.0079   0.0079   0.0079  
1-vs-rest+ICA   0.0079   1.0000   0.4206   0.1508   0.6905   0.8413  
1-vs-rest+PCA   0.0079   0.4206   1.0000   0.6905   0.4206   0.2222  

1-vs-rest   0.0079   0.1508   0.6905   1.0000   0.1111   0.1508  
MSVM   0.0079   0.6905   0.4206   0.1111   1.0000   0.8413  
KDE   0.0079   0.8413   0.2222   0.1508   0.8413   1.0000   

TABLE II:
 
WILCOXON TESTS ON THE DIFFERENCES AMONG KLPP AND RFE

 
(P-VALUE) 

 

 

IV. EXPERIMENTAL RESULTS AND ANALYSIS 
The TEJ (Taiwan Economic Journal) is a major provider of 

market data for Taiwan securities. This study used all the 
financial variables from the TEJ to forecast enterprize credit 
rating. Specifically, these financial variables include the 
following categories of information: company scale, 
financial structure, solvency, business performance, 
profitability, financial coverage and cash flow, for a total of 
thirty-six variables. Most of these variables are derived from 
publicly disclosed information that companies are required to 
file with authorities such as the securities and futures 
commission. They are important for financial analysis. 
Besides the financial variables, this study also included the 
historical rating of each company to improve rating accuracy. 

Rating information for target companies was also obtained 
from the TEJ, which provides the credit rating for all publicly 
traded companies in Taiwan. A TEJ rating classifies the risk 
of a company not meeting its financial commitments over a 
one-year period as low, medium, or high. A low risk rating 
indicates that an organization has an extremely strong 
capacity to meet its commitments whereas a high risk rating 
indicates that an organization is likely to default. 

This study tested three conventional classifiers and three 
kernel classifiers for corporate credit rating, including nearest 
neighbors (with one and three neighbors), logistic 
regressions, Bayesian networks, one-vs-rest SVM, 
multi-class SVM ([29]), and a general kernel classifier, 
kernel dependency estimation (KDE). For kernel classifiers, 
this study selected the polynomial kernel of two degrees for 
input owing to its good performance compared with other 
types of kernels. For output, a linear kernel is used for KDE 
due to its simplicity in computation. This study collected 
eighty-eight high technology companies that are traded on 
the Taiwan security market. Five ratings were obtained from 
TEJ for each company during the period from 2000 to 2004. 
The data set was randomly divided into ten parts, and 
ten-folds cross validation was applied to evaluate the model 
performance. 

Fig. 1 shows the average error rates of all pure methods. 

On average, the one-vs-rest SVM is better than other 
classifiers. Consequently, this study implemented a 
manifold-regularized one-vs-rest SVM (MR-SVM) for 
subsequent classifications. The semi-supervised SVM makes 
efficient use of both labeled training data and unlabeled 
testing data to enhance the out-of-sample model 
generalization and to prevent the problem of overfitting. 

 
TABLE  III: PERFORMANCE COMPARISON (ERROR RATE) OF KLPP AND RFE 

FOR YEARS OF 2000-2004 

 
 
On the other hand, due to the curse of dimensionality, 

irrelevant variables can degrade the performance of a kernel 
classifier. Suitable feature selection or dimensionality 
reduction schemes are often employed to improve classifier 
performance. Thus the KLPP algorithm were integrated into 
the MR-SVM, and compared with other two famous 
subspace learning algorithms, the PCA (Principal 
Component Analysis) and ICA (Independent Component 
Analysis, [30]). The dimension of subspace was set to five 
for all algorithms. Fig. 2 shows the results. Additionally, this 
study also compared KLPP with a famous feature selection 
algorithm, the recursive feature elimination (RFE) method 
proposed by [31]. The RFE algorithm recursively eliminates 
input variables to identify the most important five (RFE 5), 
ten (RFE 10), fifteen (RFE 15), and twenty (RFE 20) feature 
subsets for comparison. Fig. 3 shows the results. Fig.  2 and 
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     MR-SVM   1-vs-rest   1-vs-rest   1-vs-rest   1-vs-rest  
  +KLPP   +RFE 5   +RFE 10   +RFE 15   +RFE 20  

MR-SVM+KLPP   1.0000   0.0079   0.0079   0.0079   0.0079  
1-vs-rest+RFE 5   0.0079   1.0000   0.6905   0.8413   0.4603  

1-vs-rest+RFE 10  0.0079   0.6905   1.0000   0.4206   0.5476  
1-vs-rest+RFE 15  0.0079   0.8413   0.4206   1.0000   0.0952  
1-vs-rest+RFE 20  0.0079   0.4603   0.5476   0.0952   1.0000  



  

Fig. 3 also show the performance of pure classifiers without 
any subspace learning and feature selection schemes for 
comparison. 
 

 
Fig. 1. Comparison of model forecasting performance (error rate) for years of 

2000-2004. 
 

 
Fig. 2. Performance comparison (error rate) of three dimensionality reduction 

schemes for years of 2000-2004. 
 

Fig. 2 shows that KLPP+MR-SVM significantly 
outperform other kernel classifiers. The MR-SVM with 
KLPP achieved the highest accuracy. This results fully 
demonstrate that in real rating problems the data is not 
sampled from a linear subspace. Hence, linear algorithms 
such as PCA and ICA fail to extract key information 
containing in the data. Considering graph-based nonlinear 
subspace learning (KLPP) and manifold-based 
semi-supervised SVM in rating problems are more effective. 

The comparisons of KLPP with RFE in Fig.  3 indicate that 
MR-SVM with KLPP is the most cost-efficient model 
because it has the fewest dimensionality of subspace and 
achieves the best accuracy. Clearly, pure one-vs-rest SVM, 
MSVM, and KDE classifiers containing all of the input 
variables are less accurate than classifiers containing fewer 
variables. That is, more information does not necessarily 
improve accuracy. 

Fig. 3 also shows that the performance improvement 
owing to RFE is limited regardless of the number of key 
features selected by RFE. RFE forms feature subset in 
original input space, but KLPP nonlinearly forms a subspace 
preserving local geometry of the within-class samples in high 
dimensional feature space, which contains sufficient 
information or latent structures to discriminate or represent 
the data, while the subset formed by RFE does not. 

The Wilcoxon rank-sum test ([32]) is a nonparametric 
alternative (for sample median) to the two sample t-test 

which is based solely on the order in which the observations 
from the two samples fall. For performance comparison, the 
Wilcoxon rank-sum test is performed on different models. 
The Wilcoxon comparison of our new model with ICA and 
PCA based classifiers is displayed in Table I, while the 
Wilcoxon comparison of our new model with RFE based 
classifiers is displayed in Table II. 

Tables I and II clearly demonstrate the superiority of the 
new hybrid classifier. Under 1% of significance, the new 
classifier substantially outperforms the ICA and PCA based 
model, moreover, it also outperforms RFE based model even 
higher dimension of features are selected. 

 

V.  CONCLUSIONS 
Corporate credit ratings provide important information 

about credit risk for banks or investors in financial markets. 
This study integrated KLPP with MR-SVM to create a novel 
system for rating predictions. The performance of the new 
system was examined using a data set comprising a large 
amount of financial information regarding Taiwanese high 
technology companies. The empirical results showed that the 
proposed system is more accurate and robust than pure SVM 
classifiers, and also outperforms conventional techniques 
when applied to multiple-class credit rating problems. 

Using the class information of data to guide the manifold 
learning, KLPP is a nonlinear subspace learning method, 
which preserves geometric relations according to prior 
class-label information and represents complex nonlinear 
variations of data samples by nonlinear kernel mapping. 
Integrating KLPP in a classifier can reduce its computational 
loading and simultaneously enhance their performance. In 
the second stage, this study used a manifold-regularized 
semi-supervised SVM for classification. The MR-SVM uses 
the data-dependent norm on RKHS to warp the structure of 
the RKHS to reflect the underlying geometry of the data. The 
success of the our hybrid classifier mainly attributes to the 
combination of two techniques. 

Future research may consider input of other data such as 
non-financial and macroeconomic variables. However, 
including more information does not guarantee higher 
accuracy. In this situation, nonlinear subspace analysis is an 
important strategies for enhancing classifier performance. 
What types of supervised or semi-supervised subspace 
learning algorithm are more effective and efficient to 
incorporate into kernel classifiers need further study. 
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