
  

  
 Abstract—An evolutionary network (EN) in formatted 

protein sequence space is a very large graph representing 
information about sequence similarity of relatively short 
protein fragments. This graph can be used for detecting hidden 
relatedness between proteins, which is highly significant in 
protein annotation. Effective EN analysis requires an 
appropriate graph clustering approach. Based on the fact that 
biological relatedness is strongly dependent on the number of 
independent graph nodes connections, we develop a network 
clustering method that is capable to produce quality clusters the 
members of which have a satisfactory level of relatedness.  

In this article we describe a new network partitioning 
method which is based on the k-cycles graph connectivity 
approach. After formally defining a unique structure, named 
k-ladder connectivity, we demonstrate that the k-ladder-based 
algorithm is able to successfully detect the groups of 
functionally related proteins.  

To exhibit the quality of the method, we have conducted a set 
of experiments in which it has been very effective in clustering 
of EN, as well as the significantly denser protein-protein 
interaction networks (PPINs). Furthermore, it can be simply 
adapted for more complicated structures than cycles, as well as 
applied to other large networks of different types. 
 

Index Terms—K-ladder, connectivity algorithm, network 
clustering, protein evolutionary network, formatted protein 
sequence space, protein-protein interaction networks.  
 

I. INTRODUCTION 
Proteins are the main components in all living organisms. 

Significant progress in molecular genetic technology during 
the last decade provided us with a vast amount of protein 
sequences that exist in nature. For example, the recent release 
of the UniProt database (http://www.uniprot.org/) contains 
more than 40,000,000 protein sequences. However, many of 
these protein sequences have no proper annotation – meaning 
that the structure and biological function of the 
corresponding proteins are unknown. Such characterization 
of these proteins on the basis of their known sequences and 
often according to some other high-throughput information is 
one of the main challenges in computational biology. 

Among a multitude of bioinformatics methods and 
algorithms dedicated to reveal the sought-after protein 
organization and biological functionality, there is a group of 
approaches that use graph analysis techniques applied to 
various kinds of protein associated networks. A common 
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example of such a network is the Protein-Protein Interaction 
network (PPI or PPIN), a dedicated graph used for integrative 
representation of the structure and behavior of biological 
systems.  

The Protein-Protein Interaction network is modeled as an 
undirected graph G= (V, E), which may include a large 
number of components. V is a set of nodes representing 
mainly proteins, but may also represent genes, RNAs and 
other molecules. E is a set of edges representing protein 
pairwise interactions. The definition of the edges is method 
specific: in some models the edges represent physical 
interaction or co-membership in protein complex. Edges may 
also carry weights to represent the probability of an 
interaction. 

PPINs are successfully used for prediction of a single 
protein function, signaling and metabolic pathways, as well 
as to understanding of physiological processes and molecular 
basis of some diseases. Clustering of PPINs is aimed at 
identifying two types of cellular modules: protein complexes 
and functional modules [1]. Protein complexes are groups of 
proteins that interact with each other at the same time and 
place, forming a unique multi-molecular machine. Functional 
modules, in contrast, consist of proteins that participate in a 
particular cellular process while binding each other at various 
conditions or phases of the cell cycle. This aspect of PPINs is 
very essential for functional annotation of proteins. 

Another type of protein network, which can be used for the 
functional annotation, is Protein Evolutionary Network (EN) 
[2]-[4]. The EN is a graph formed by proteins sequence 
fragments of a specific size (about 20 amino acids). The 
connection condition in this network is characterized by a 
small Hamming distance (which means high sequence 
identity). The most important property of the EN is the 
existence of paths in which protein sequences may  gradually 
change from a particular initial sequence to a completely 
different one,  while conserving the structural and functional 
properties of the corresponding protein fragments [3]-[4]. 
This phenomenon enables finding hidden relatedness 
between proteins, which cannot be detected by other methods. 
This knowledge is very important for protein annotation [3], 
[5] and studies of evolutionary processes [6].  

In the case of EN, there are at least two reasons for the 
application of clustering procedure. The first one is 
associated with the fact that the clusters can detect groups of 
functional or structural relatedness [5], [7], which can be 
used for protein classification and sequence annotation. The 
second is that the clustering procedure can potentially help to 
reduce the need for storage, and can also ease the access to 
ENs of very large size. For example, in a protein sequence 
database of 107 sequences there are more than 109 fragments 
of 20 amino acids. This means that EN of such database 
would consist from 109 nodes, which can have about 1018 
edges! Although real ENs are far from being a clique, the 
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storage requirements, of all connections, for a full protein 
universe is practically enormous. A simple way to overcome 
this problem is to combine nodes in groups (clusters) and to 
refer to these clusters as super-nodes. This would 
substantially decrease the number of connections, as is 
illustrated in Fig. 1. This idea is somewhat similar to the 
well-known multilevel approach [8], with the difference that 
in our case the super-nodes are groups of some functional or 
structural relatedness. Another requirement from the 
algorithm is that it should be fast enough and scalable, to 
make possible its application during the EN creation, where 
the calculation speed is a crucial parameter.   

 

 
Fig. 1. Combining nodes in groups (clusters) substantially decreases the 

amount of connections. 
 

There is a various graph clustering methods which are 
applied for the analysis of biological, in particular PPI 
networks (see [1], [9], [10]). However, there is no universal 
approach which can be satisfactory for all cases. Each 
specific network and corresponding clustering procedure 
requires application of the approach with best match to this 
specific need. In many cases the clusters are defined as 
groups with increased amount of internal connections – in 
comparison to external (i.e. cluster selection is a type 
optimization problem). In other cases the clusters are defined 
as groups with some specific properties (without comparison 
with the rest part of graph). Similarly, the networks can be of 
various sizes, densities and models (i.e. random, scale-free 
and so on).   

The challenge that motivated us in this work was to develop 
a new clustering method that focuses on the connected 
components and works well for ENs. In addition, we propose 
several approaches for the adaptation of our technique to 
smaller but significantly more dense PPINs. 

The rest of this article is organized in the following way: 
In Section II we present and explain the methods and 

algorithms developed. In Section III we describe the set of 
experiments conducted in order to test the ability of our 
methodology to partition a protein network. We also present 
and discuss the results obtained in these experiments. We 
conclude with a general discussion and an outlook in Section 
V.  

 

II. METHODOLOGY 
In this section we describe and explain the new concepts, 

methods and algorithms we developed in order to properly 
partition EN and more. 

A. Approach 
The K-ladder connectivity is a new approach to graph 

clustering, that we propose as an alternative to other 
commonly used approaches to node-connectivity, such as the 
bi- and tri-connected components [11], [12] . According to 
the K-ladder basic approach, two cycles (each composed by 
less or equal to K edges) are considered connected if and only 
if they have at least one common edge. In contrast to the 
classic connectivity approach, the proposed method deals 
with certain structural elements connections rather than 
simple node connections. The connectivity approach is 
selected for EN analysis is due to the fact that similarity of 
protein fragments is strongly dependent on the number of 
independent pathways (e.g., maximum flow) between 
fragments [5]. The classic connectivity approach has a 
certain limitation, since as clusters become larger, the 
probability of the appearance of new pathways between 
nodes increases dramatically. This fact causes a performance 
decrease. It is shown in this work, that the application of a 
well-known decomposition of a graph into bi- and 
tri-connected components, according to [11], [12], does not 
work effectively for this case. In contrast, the K-ladder 
connectivity-based algorithm, proposed here, provides 
satisfactory results. In addition, we enhance the K-ladder 
connectivity definition, by providing stronger requirements 
for connectivity, in order to reduce noise caused by uncertain 
connections. 

B. Foundation of Ladder Path and K-Ladder Connected 
Component 

In this section we explain and formalize the K-ladder 
connectivity graph partitioning concept.  

We design an algorithm to compute the ladder-connected 
components of a graph and formally show the correctness of 
this algorithm.  We start with some basic definitions.  

An undirected graph ),( EVG =  is a pair, where V  is a 
set of nodes and E  is a set of 2-element subsets of ,V called 
edges. The degree of a node Vv ∈ denoted )deg(v is the 
number of edges incident to the node. A path in G is a 
sequence ),...,( 21 tvvvp = such that Evv ii ∈+ ),( 1 for 

all }1,....,1{ −∈ ti . A path ),...,( 21 tvvvp =  is called 

simple if ji vv ≠ for all }.,...,1{ tji ∈≠  pv ∈  denotes 

that v is a node in the path p . Similarly, pe∈ denotes that 
e  is an edge in the path p . The size of a path is the number 
of distinct edges in the path. A cycle in G is a path 

),...,( 21 tvvvc = with tvv =1 . A cycle ),...,( 21 tvvvc =  is 

called simple if ji vv ≠ for all },...,1{ tji ∈≠ . We say that 

two cycles c  and 'c  are edge-intersecting if they share a 
common edge (i.e., if Ee ∈∃  such that ce ∈ and 'ce∈ ). 
We now formally define the notion of a ladder path between 
two nodes.  

Definition:  We say that the edges e and 'e are k -ladder 
connected if either 'ee = or if there exists a finite sequence 
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of cycles ),...,, 21 dccc in G  such that: 

 1ce∈  and dce ∈' . 

 Each size of the cycle ic  is at most k .   

 Each cycle ic  in the sequence is simple.  

 Each consecutive cycles ic and 1+ic in the sequence are 
edge intersecting.   

An example 3 -ladder connection is given in Fig. 2. 

 
Fig. 2. Example of ladder connection. The edges ),( ba and ),( wx  are 

3 -ladder connected. However, the edges ),( ba  and ),( zy are not 

3 -ladder connected, since the size of the cycle ),,,( zwyx  is 4. 

 
To define the k -ladder connected components of  G  we 

first need to show that the ladder connectivity forms an 
equivalence relation. More formally, we denote '~ ee if and 
only if the edges e  and 'e  are k -ladder connected in ,G  
and show that it is an equivalence relation.  This equivalence 
relation induces a natural partition of the edges of the graph 
G  into disjoint subsets, called the k -ladder connected 
components of G .  

Claim: The relation ~  is an equivalence relation.  
Proof:  Reflexivity: observe that ee ~ by definition. 

Symmetry:  if '~ ee  then ee ~'  by the fact that ,G  is an 
undirected graph, using the same sequence of cycles 
connecting e  to 'e  in a reverse order. Transitivity: If 

21 ~ ee and 32 ~ ee , then by concatenating the sequence of 

cycles connecting 1e to 2e  with the sequence of cycles 

connecting 2e  to 3e  (through the common edge 2e ) we get 

that 31 ~ ee .   

We now define a new graph ),( *** EVG =  

corresponding to the given graph ),( EVG = . We will later 

use *G  to compute the k -ladder-connected components 
of G . From now on we shall assume that ),( EVG =  and 

k  are fixed. 
Definition: Let the node set of the undirected graph 

),( *** EVG =  be }),(|{ ),(
* EyxvV yx ∈= . Let the edge 

set be  ),{ ),(),(
*

zyyx vvE =   | There exists a simple cycle 

Gc ∈ with size at most k , where cyx ∈),(  and  

}.),( czy ∈  

Intuitively,  ),( *** EVG =  has a node corresponding to 
each edge of G Additionally,  ),( *** EVG =   has an edge 

joining two neighboring edges of G  if the two neighboring 
edges lie on a short simple cycle in G .  An example for a 
graph G  and its corresponding graph *G  for 3=k  is 
given in Fig. 3. 

 

 
Fig. 3. Example for a graph G  and its corresponding *G  (for 3=k ) Edges 

),( ba  and ),( vu are 3 -ladder connected in G . Observe that the 

nodes ),( bav  and ),( vuv  are on the same connected component of 

.*G Conversely,  ),( ba  and ),( yx  are not 3 -ladder connected in G . 

Observe that ),( yxv  is an isolated node in *G , and in particular ),( bav  and 

),( yxv  are not in the same connected component of *G .  

 
We now define the following standard equivalence 

relation on the nodes of *G . We denote  ),(),( bayx vv ≈  if and 

only if there exists a path from ),( yxv  to ),( bav  in *G .We 

next show that the k -ladder components of G  are exactly 

the connected component of *G  Therefore the problem of 
finding the k -ladder components of G reduces to the 

problem of finding the connected components of *G . More 
formally:  

Proposition: ),(~),( bayx if and only if  

.),(),( bayx vv ≈  

 Proof:  If ),( yx  and ),( ba are k -ladder path connected 

in ),( EVG = , then there exists edge-intersecting cycles 

dccc ,...,, 21  each with at most k  edges where 1),( cyx ∈  

and suppose iiii cvue ∈= ),(   and 1),( +∈= iiii cvue .  

Clearly, there is a path 
),,...,,,,...,,,,...,,( 111111 bauvuuvuyxp ddd −−−= in 

G starting from node y  and ending at  b  along the edges 

of dccc ,...,, 21 . Observe that any two neighboring edges on 

the path p   belong to a simple cycle with at most k  edges 

and thus .),(),( bayx vv ≈  

Conversely, if there is a path 
),....,,(' ),(),(),( yxcbba vvvp = from  ),( bav   to  ),( yxv  in *G , 

then any two neighboring nodes in 'p  represent neighboring 

edges on a cycle with at most k  edges in G.  One can use 
these cycles to show that ),( ba and ),( yx are k -ladder 

connected in G .  
The correctness of the next algorithm immediately follows 

from the above proposition. 
Notation:  The graph }{\ vG  is the graph defined by 

removing the node v  from the graph G.  
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C. Methods 
In this section we present two methods for graph 

decomposition, using k -ladder connectivity analysis. In 
section (III) we present a third k -ladder-based approach, 
which includes an enhancement to the basic k -ladder 
connectivity definition. The motivation for developing the 
enhanced approach is explained at the review of the research 
experiments. 

1) Structured decomposition algorithm using G* 
First we formalize the graph partitioning method, which 

uses the basic algorithm for detecting the k -ladder 
connectivity components. This method builds the G* graph 
that is defined in the previous Section (II. 2).  

Decomposition Algorithm via *G : 
Input: undirected graph ),( EVG =  and an integer 
 k > 0. 
Output: the k -ladder components of G . 

φφ ←← ** , EV  

For every ),( yx  in E : 

 ),(
**

yxvVV ∪→  

For every ),( vu  in E : 

If 1)deg( =u  or 1)deg( =v , 
Continue to the next edge. 

Run }){\( vGBFS  using node u  as a starting node and 
compute 

 The distance ),(}{\ xud vG  from u  to every node x  in 

the graph }{\ vG .   

This BFS should be carried out only up to breadth 2−k .  
For every Ewv ∈),( :    

If  2),(}{\ −≤ kwud vG  

),( ),(),(
**

wvvu vvEE ∪←   

Run )( *GDFS  to compute the connected components of 
).,( *** EVG =  

2) Optimized (heuristic) decomposition algorithm 
The algorithm described above can be rather bulky if the 

network is sufficiently large and dense. For faster 
calculations, in case of simple k -ladder components, the 
following algorithm can be used: 

Input: undirected graph ),( EVG =  and an integer 

 k  > 0. 
Output: the k -ladder components of G . 
Create: 
L1– list of nodes for "local BFS" (3); 
L2– list of edges of a selected cycle; 
L3 – the first list of the connected components (integer). 

The size of the list is equal to current number of the 
connected components. Each member (i) of the list points to 
another member ),( jij ≥ , which means that component i 
was attached to j . In the beginning (i.e. when a new 
component (member) is added) ji = . 

For each edge ),( nmk =  associate variable lk  pointing 
to index of corresponding connected component in L3. Initial 
value of each 1−=lk  (i.e. non-associated). 

L4 and  L5 lists of indexes from L3. 
Run )(GBFS  starting from the some node u  and compute 

the distance ),( wud  in the graph G  for every w . For every 
frond edge ),( wv  in E  put one node (with maximal d) in to 
L1. 

For every w from L1 do "local BFS":  
Make )(GBFS  starting from w  (up to breadth 

12/ +k for the even k and 2/)1( +k  for odd k); in this BFS 
we don't open nodes v, such that ),(),( wudvu > ;  

For each opened node the correspondent "father" node is 
remembered; 

Each frond edge ),( nm  is corresponding to a simple cycle 
with at most k edges; to select this cycle do:      

Clear  L2 and add ),( nm  to L2;  

mv =1 ; 

while ( wv ≠1 ) 
{ 
 v2 = father (v1); 
 add ),( 21 vv  to L2; 

 21 vv = ; 
} 

mv =1 ; 

while ( wv ≠1 ) 
{ 
 v2 = father (v1); 
 if ( ),( 21 vv  is already present in L2) 

  delete ),( 21 vv  from L2; 
 else  
  add ),( 21 vv  to L2; 

 21 vv = ; 
} 
After this procedure the list L2 contains all edges of the 

selected cycle.  
Associate each new selected cycle to one of the already 

selected connected components or create a new component: 
if 1−=lk  for every edge from L2 
    add a new component to L3; 
   3( )lk sizeof L=  for every edge from L2 
else 
 for each pair of edges  K1 and K2 from L2 do 
   if 1 2 1 2( 1& 1)lk lk lk lk= − ≠ − =  

   if 1 2( 1& 1)lk lk≠ − ≠ −  unite connected 

components 1lk  and 2lk  (as described below) 

Uniting the connected components 1lk  and 2lk : 

Clear 4L  and 2
5 4L b ac− . 

Add 1lk  to 4L ; 
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While ( 3 1 1[ ]L lk lk≠ ) 

 1 3 1[ ];lk l lk=  

 add 1lk  to 4L ; 

add 2lk  to 5L  

while ( 3 2 2[ ]L lk lk≠ ) 

 2 3 2[ ];lk l lk=  

 add 2lk  to 5L ; 

For each member k from 4L  and 5L  do: 

  
3 4 1 2

3 5 1 2

[ [ ]] min{ , }&

[ [ ]] min{ , }

L L k lk lk

L L k lk lk

=

=
 

 
Renumbering and output of components 
 

III. RESULTS 
We have conducted a set of experiments in order to test the 

ability of our methodology to partition various protein 
networks.  In this section we describe these experiments and 
present and discuss their results. 

In the first experiment we tested our k-ladder based 
algorithm on an EN. The network partitioning was done as a 
multi-step process: Step 1 includes preparations (or 
pre-processing) of the network, in order to find the major 
connectivity components and reduce the network’s size. In 
the second step we compared bi-, tri- and then k-ladder 
connected components-based decompositions to the outcome 
of step 1. The k-ladder connectivity approach performed well 
and produced satisfactory results.   

We then tried the basic k-ladder algorithm on PPI 
networks (which are denser). This experiment is described in 
as follows: 

 
The EN used in this experiment is described in [2], and 

available at 
http://www.genome.haifa.ac.il/~zfrenkel/DATABASES1/. It 
is constructed from 112 prokaryotic proteomes (a total of 
about 32×104 proteins) and contains 5.98*107 nodes (the 
“orphan” fragments were not taken into account) and 
4.79×108 edges. To reduce the network size we selected the 
components which were connected at least in 80% sequence 
identity level (called “threshold”).  These components were 
considered as super-nodes and all their external connections 
were preserved. The distribution of such components is 
described in [2]. This approach enables to dramatically 
decrease the average density of the network. The new 
reduced network contains 2.57×107 nodes (including the 
super-nodes) and 3.63×107 edges. That means the density of 
the network was decreased in more than five times by this 
procedure. In addition, only nodes concerning to 3-core were 
selected for further analysis. All nodes with degrees less than 
three were repeatedly deleted until the amount of nodes 
stopped changing. The resulting network contains 5.54×106 
nodes and 1.87×107 edges. The largest connected component 
contains 1.08×106 nodes (about 20% of the graph). The 

second component contains only 2126 nodes (see Table I, 
(1)). These two main components were selected for further 
analysis. 

B. Step 2: Bi-, Tri- and K-Ladder Connected Components 
The two largest connected components obtained in the 

previous step were selected for further partitioning. As 
shown in Table I ((2)-(5)), the bi- and tri- connected 
components-based methods were able to detect only 
relatively small components, while the main part of graph 
stays undivided. However, as may be directly observed in the 
graph visualization done by Fruchterman-Reingold's 
force-directed algorithm [13] using the 3D mode of the Pajek 
visualization tool [14], this main part of graph is composed of 
several clusters, that were not detected by the tri-connected 
algorithm (Fig. 4A). In contrast, using the 3-ladder 
connected components method allows to split it into compact 
meaningful clusters (as seen in Fig. 4 B, C). It is very 
important to note, that the partition obtained by 
Ladder-with-an-a 3-Ladder connected components is 
compatible with the biological functions of the 
corresponding proteins (Fig. 5). As expected [5], the clusters 
connected by many alternative connections have relatively 
similar functions (in our case, different families of 
transcriptional regulators), whereas better separated clusters 
have more distinct functions. 

 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. The Partitioning of the second largest component via selection of 
tri-connected components (a), 4-ladder connected components (b) and 

3-ladder connected components (c). Partitions are shown by different colors. 
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The code for the selection of bi-connected and 
tri-connected components was taken from OGDF (Open 
Graph Drawing Framework) - a self-contained C++ class 
library, which can be found at 
http://www.ogdf.net/doku.php. 

C. PPI Network Clustering 
The yeast PPI network used in this paper is described in 

[15]. Application of the k-ladder algorithm, described above 
in its basic form, to this network was unable to decompose 

the main part of the graph and more than 9,000 nodes from 
the 12,000 are remaining in one cluster. For this task, several 
types of connectivity structures were tested, such as "cycle of 
cycles". We chose to use an extreme case of this connectivity 
definition, where the connected elements of the ‘ladder’ are 
considered cliques of a certain selected size, and the 
condition for their connection is the existence of a chosen 
amount of common nodes. Such an approach was suggested 
in [16] as percolation of cliques [16], [17]. 

 
TABLE I: RESULTS OF PARTITION (ORDERED BY SIZE). SIZES ONLY OF THE FIRST 10 LARGEST COMPONENTS ARE SHOWN 

 (1) (2) (3) (4) (5) (6) (7) 
1 1.07724E6 609091 433976 1586 1574 6403 561 
2 2126 1750 1707 133 122 5861 347 
3 2017 1740 1664 83 84 5555 116 
4 1928 1557 1646 64 65 3423 103 
5 1895 1555 1591 55 41 3131 96 
6 1846 1517 1550 21 21 3058 93 
7 1829 1405 1541 19 19 3054 75 
8 1713 1390 1496 18 18 3021 64 
9 1671 1380 1496 15 16 2963 47 
10 1612 1379 1493 13 13 2954 41 

(1) – connected components of the primary graph after "pre-clustering" and filtering; 
(2), (3) – bi- and tri-connected components of the largest component of (1); 
(4), (5) – bi- and tri-connected components of the second largest component of (1); 
(6), (7) – 3-ladder connected components of the first two largest components of (1); 

 
TABLE II: DECOMPOSITION OF THE PRE-PROCEEDED YEAST PPI NETWORK USING 3-LADDER CONNECTIVITY ALGORITHM 

Threshold Cluster order number (ranged by size) 
1 2 3 4 5 6 7 8 9 10 

50 64 61 40 27 20 18 16 16 15 14 
60 147 134 64 55 45 34 28 27 26 24 
70 285 283 119 93 60 58 47 46 35 29 
75 798 297 117 64 47 37 35 30 28 26 
80 1409 166 48 42 41 40 31 30 25 24 

 
A drawback of the “cliques” method is a very high level of 

overlapping of the clusters that makes it difficult to 
accurately interpret the results. In an attempt to overcome this 
drawback, we enhanced the basic percolation method by 
adding another step: each detected cluster is deleted from the 
network. This modification contributes to reduction of the 
cluster overlapping level, as well as gradually simplifying the 
graph complexity. This method produced better results (data 
not shown). Nevertheless, the weakness of this approach lies 
in the fact that the graph partitioning and reduction process 
(i.e. cluster deletion) is dependent on the details of the 
particular clustering algorithm which leads to unstable 
results.  

In an attempt to stir away from this weakness we tried 
several other possibilities. For example, we tried to clean the 
noise by using the Jacquard index. I.e. for each edge if the 
amount of common neighbors of these nodes is less than 
some selected threshold, the edge was deleted. This approach 
does not work for PPIN: even for very high threshold, (more 
than 80 common nodes) the network was decomposed into 
multiple single nodes and one dense connected component, 
which was also a single k-ladder connected component (data 
not shown). 

These results led us to the thought that, possibly, the 
definition of noise as bad connected nodes was wrong. We 
suggest that, in contrast, the noise in the network comes from 
nodes with very high affinity to many other nodes. 

Accordingly, in the clustering process we removed all nodes 
with a connectivity degree larger than a selected threshold. 
The derived graph was decomposed by the k-ladder 
connectivity algorithm. The results are presented in Table II. 
Definitely, the correctness of this suggestion should be 
thoroughly investigated; however, its helpfulness for 
clustering is apparent. 

 

 
Fig. 5. 3-ladder connected components are in a good correspondence with 
belonging different biological functions of proteins. Only some of clusters 

are described: 
1. Malonyl-CoA-acyl-carrier-protein; 2. MTA/SAH nucleosidase; 3. 
Succinyl-CoA synthetase beta; 4. Aldehyde dehydrogenase 5. 
Phosphomannomutase 6. Molybdenum cofactor 7. Isocitrate lyase 8. 
Transcriptional regulator, LysR family; 9. Transcriptional regulator, ArsR 
family; 10. Transcriptional regulator, AsnC family; 11. Transcriptional 
regulator, MarR family; 12. Transcriptional regulator, CrP family; 13. BirA 
bifunctional protein; 14. Transcriptional regulator, GntR family; 15. 
Transcriptional regulator, GntR family; 16. Transcriptional regulator, LysR 
family; 17. Sigma-54-dependent transcriptional regulator. 
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IV. DISCUSSION 
In this article we have described the development of a new 

network partitioning method based on the k-cycles graph 
connectivity approach. We formally defined a unique 
structure named K-Ladder connectivity. We have 
demonstrated that the K-Ladder-based algorithm was able to 
achieve the main goal, which is to successfully select the 
groups of functionally related proteins in the EN. In addition, 
the algorithm has proven to be able to process scalable 
networks. If needed, the algorithm may be easily 
implemented in a way that enables processing the whole 
network as a collection of segments thus, loading of the full 
network into the memory is not required. This is critically 
important for extremely large graphs such as EN. 

Additional investigation is required in order to further 
develop this method for the use with denser networks. 
Although several possibilities were discussed, the practical 
significance of these modifications, of the basic K-Ladder 
algorithm, is yet uncertain. While these modifications 
consider much more complicated elements than a simple 
cycle (e.g. cliques), the advantage of the basic algorithm in 
speed and scalability are dramatically lost. For example, 
processing according to the clique percolation approach [16], 
[17] takes several hours for clustering, while the basic 
k-ladder approach takes only about a minute. 

Another problem of the application of k-ladder 
connectivity clustering to dense networks is the possibility of 
high overlapping between the resulting clusters. 

Although in the initial K-ladder approach there is a 
possibility for a node to belong to several clusters, the 
meaning of a connecting edge is unique. This is not the case 
when the unit is more complicated than cycle and connection 
rule requires more than just a common edge. For example, for 
the discussed above realization of this approach, where the 
connected elements of the "ladder" are cliques of a certain 
size, and the condition of their connection is the existence of 
a certain (sufficiently large) amount of common nodes, the 
overlapping between the selected clusters can be very high. 

In some attempts to overcome these limitations, we have 
shown that pre-processing of the network which includes 
cleaning of noise by deleting poor or, oppositely, good 
connected nodes can potentially be fruitful. But, a biological 
meaning of the obtained clusters desires additional analysis.  

As a final point we note that, as with all other clustering 
approaches, the applicability of the methods described above 
to other networks, different from the EN, is strongly 
dependent on the particular nature of the clusters, as well as 
on the network organization. 

 

V. CONCLUSIONS 
In this work we described a new powerful method for 

clustering of large Protein Evolutionary Networks. This new 
approach has proven to be very effective for clustering of the 
EN, producing a large number of meaningful small clusters. 
The algorithm was able to detect the clusters corresponding 
to different functional groups of proteins.  

Several possibilities to the application of this method to 
other network, in particular, PPIs (protein-protein interaction 
networks), were also explored. The applicability of the 

proposed approaches to those networks requires additional 
analysis. 
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