

 Abstract—An evolutionary network (EN) in formatted

protein sequence space is a very large graph representing
information about sequence similarity of relatively short
protein fragments. This graph can be used for detecting hidden
relatedness between proteins, which is highly significant in
protein annotation. Effective EN analysis requires an
appropriate graph clustering approach. Based on the fact that
biological relatedness is strongly dependent on the number of
independent graph nodes connections, we develop a network
clustering method that is capable to produce quality clusters the
members of which have a satisfactory level of relatedness.

In this article we describe a new network partitioning
method which is based on the k-cycles graph connectivity
approach. After formally defining a unique structure, named
k-ladder connectivity, we demonstrate that the k-ladder-based
algorithm is able to successfully detect the groups of
functionally related proteins.

To exhibit the quality of the method, we have conducted a set
of experiments in which it has been very effective in clustering
of EN, as well as the significantly denser protein-protein
interaction networks (PPINs). Furthermore, it can be simply
adapted for more complicated structures than cycles, as well as
applied to other large networks of different types.

Index Terms—K-ladder, connectivity algorithm, network
clustering, protein evolutionary network, formatted protein
sequence space, protein-protein interaction networks.

I. INTRODUCTION
Proteins are the main components in all living organisms.

Significant progress in molecular genetic technology during
the last decade provided us with a vast amount of protein
sequences that exist in nature. For example, the recent release
of the UniProt database (http://www.uniprot.org/) contains
more than 40,000,000 protein sequences. However, many of
these protein sequences have no proper annotation – meaning
that the structure and biological function of the
corresponding proteins are unknown. Such characterization
of these proteins on the basis of their known sequences and
often according to some other high-throughput information is
one of the main challenges in computational biology.

Among a multitude of bioinformatics methods and
algorithms dedicated to reveal the sought-after protein
organization and biological functionality, there is a group of
approaches that use graph analysis techniques applied to
various kinds of protein associated networks. A common

Manuscript received May 14, 2014; revised July 19, 2014. This work was

supported by the European Union seventh framework program via the
PathoSys Project (grant number 260429).

The authors are with the ORT Braude College of Engineering, Karmiel,
Israel and Research Fellow at Institute of Evolution, University of Haifa,
Israel (e-mail: reshma.iidsalld2007@gmail.com, asoffer@braude.ac.il and
ahumu@yahoo.com, vlvolkov@braude.ac.il, zakharf@research.haifa.ac.il).

example of such a network is the Protein-Protein Interaction
network (PPI or PPIN), a dedicated graph used for integrative
representation of the structure and behavior of biological
systems.

The Protein-Protein Interaction network is modeled as an
undirected graph G= (V, E), which may include a large
number of components. V is a set of nodes representing
mainly proteins, but may also represent genes, RNAs and
other molecules. E is a set of edges representing protein
pairwise interactions. The definition of the edges is method
specific: in some models the edges represent physical
interaction or co-membership in protein complex. Edges may
also carry weights to represent the probability of an
interaction.

PPINs are successfully used for prediction of a single
protein function, signaling and metabolic pathways, as well
as to understanding of physiological processes and molecular
basis of some diseases. Clustering of PPINs is aimed at
identifying two types of cellular modules: protein complexes
and functional modules [1]. Protein complexes are groups of
proteins that interact with each other at the same time and
place, forming a unique multi-molecular machine. Functional
modules, in contrast, consist of proteins that participate in a
particular cellular process while binding each other at various
conditions or phases of the cell cycle. This aspect of PPINs is
very essential for functional annotation of proteins.

Another type of protein network, which can be used for the
functional annotation, is Protein Evolutionary Network (EN)
[2]-[4]. The EN is a graph formed by proteins sequence
fragments of a specific size (about 20 amino acids). The
connection condition in this network is characterized by a
small Hamming distance (which means high sequence
identity). The most important property of the EN is the
existence of paths in which protein sequences may gradually
change from a particular initial sequence to a completely
different one, while conserving the structural and functional
properties of the corresponding protein fragments [3]-[4].
This phenomenon enables finding hidden relatedness
between proteins, which cannot be detected by other methods.
This knowledge is very important for protein annotation [3],
[5] and studies of evolutionary processes [6].

In the case of EN, there are at least two reasons for the
application of clustering procedure. The first one is
associated with the fact that the clusters can detect groups of
functional or structural relatedness [5], [7], which can be
used for protein classification and sequence annotation. The
second is that the clustering procedure can potentially help to
reduce the need for storage, and can also ease the access to
ENs of very large size. For example, in a protein sequence
database of 107 sequences there are more than 109 fragments
of 20 amino acids. This means that EN of such database
would consist from 109 nodes, which can have about 1018
edges! Although real ENs are far from being a clique, the

Application of a K-Ladder Connectivity Algorithm for
Clustering of Protein Evolutionary Network

Reshma Nibhani, Avi Soffer, Ahuva Mu'alem, Zeev Volkovich, and Zakharia Frenkel

367

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

DOI: 10.7763/IJMO.2014.V4.403

storage requirements, of all connections, for a full protein
universe is practically enormous. A simple way to overcome
this problem is to combine nodes in groups (clusters) and to
refer to these clusters as super-nodes. This would
substantially decrease the number of connections, as is
illustrated in Fig. 1. This idea is somewhat similar to the
well-known multilevel approach [8], with the difference that
in our case the super-nodes are groups of some functional or
structural relatedness. Another requirement from the
algorithm is that it should be fast enough and scalable, to
make possible its application during the EN creation, where
the calculation speed is a crucial parameter.

Fig. 1. Combining nodes in groups (clusters) substantially decreases the

amount of connections.

There is a various graph clustering methods which are
applied for the analysis of biological, in particular PPI
networks (see [1], [9], [10]). However, there is no universal
approach which can be satisfactory for all cases. Each
specific network and corresponding clustering procedure
requires application of the approach with best match to this
specific need. In many cases the clusters are defined as
groups with increased amount of internal connections – in
comparison to external (i.e. cluster selection is a type
optimization problem). In other cases the clusters are defined
as groups with some specific properties (without comparison
with the rest part of graph). Similarly, the networks can be of
various sizes, densities and models (i.e. random, scale-free
and so on).

The challenge that motivated us in this work was to develop
a new clustering method that focuses on the connected
components and works well for ENs. In addition, we propose
several approaches for the adaptation of our technique to
smaller but significantly more dense PPINs.

The rest of this article is organized in the following way:
In Section II we present and explain the methods and

algorithms developed. In Section III we describe the set of
experiments conducted in order to test the ability of our
methodology to partition a protein network. We also present
and discuss the results obtained in these experiments. We
conclude with a general discussion and an outlook in Section
V.

II. METHODOLOGY
In this section we describe and explain the new concepts,

methods and algorithms we developed in order to properly
partition EN and more.

A. Approach
The K-ladder connectivity is a new approach to graph

clustering, that we propose as an alternative to other
commonly used approaches to node-connectivity, such as the
bi- and tri-connected components [11], [12] . According to
the K-ladder basic approach, two cycles (each composed by
less or equal to K edges) are considered connected if and only
if they have at least one common edge. In contrast to the
classic connectivity approach, the proposed method deals
with certain structural elements connections rather than
simple node connections. The connectivity approach is
selected for EN analysis is due to the fact that similarity of
protein fragments is strongly dependent on the number of
independent pathways (e.g., maximum flow) between
fragments [5]. The classic connectivity approach has a
certain limitation, since as clusters become larger, the
probability of the appearance of new pathways between
nodes increases dramatically. This fact causes a performance
decrease. It is shown in this work, that the application of a
well-known decomposition of a graph into bi- and
tri-connected components, according to [11], [12], does not
work effectively for this case. In contrast, the K-ladder
connectivity-based algorithm, proposed here, provides
satisfactory results. In addition, we enhance the K-ladder
connectivity definition, by providing stronger requirements
for connectivity, in order to reduce noise caused by uncertain
connections.

B. Foundation of Ladder Path and K-Ladder Connected
Component

In this section we explain and formalize the K-ladder
connectivity graph partitioning concept.

We design an algorithm to compute the ladder-connected
components of a graph and formally show the correctness of
this algorithm. We start with some basic definitions.

An undirected graph),(EVG = is a pair, where V is a
set of nodes and E is a set of 2-element subsets of ,V called
edges. The degree of a node Vv ∈ denoted)deg(v is the
number of edges incident to the node. A path in G is a
sequence),...,(21 tvvvp = such that Evv ii ∈+),(1 for

all }1,....,1{ −∈ ti . A path),...,(21 tvvvp = is called

simple if ji vv ≠ for all }.,...,1{ tji ∈≠ pv ∈ denotes

that v is a node in the path p . Similarly, pe∈ denotes that
e is an edge in the path p . The size of a path is the number
of distinct edges in the path. A cycle in G is a path

),...,(21 tvvvc = with tvv =1 . A cycle),...,(21 tvvvc = is

called simple if ji vv ≠ for all },...,1{ tji ∈≠ . We say that

two cycles c and 'c are edge-intersecting if they share a
common edge (i.e., if Ee ∈∃ such that ce ∈ and 'ce∈).
We now formally define the notion of a ladder path between
two nodes.

Definition: We say that the edges e and 'e are k -ladder
connected if either 'ee = or if there exists a finite sequence

368

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

of cycles),...,, 21 dccc in G such that:

 1ce∈ and dce ∈' .

 Each size of the cycle ic is at most k .

 Each cycle ic in the sequence is simple.

 Each consecutive cycles ic and 1+ic in the sequence are
edge intersecting.

An example 3 -ladder connection is given in Fig. 2.

Fig. 2. Example of ladder connection. The edges),(ba and),(wx are

3 -ladder connected. However, the edges),(ba and),(zy are not

3 -ladder connected, since the size of the cycle),,,(zwyx is 4.

To define the k -ladder connected components of G we

first need to show that the ladder connectivity forms an
equivalence relation. More formally, we denote '~ ee if and
only if the edges e and 'e are k -ladder connected in ,G
and show that it is an equivalence relation. This equivalence
relation induces a natural partition of the edges of the graph
G into disjoint subsets, called the k -ladder connected
components of G .

Claim: The relation ~ is an equivalence relation.
Proof: Reflexivity: observe that ee ~ by definition.

Symmetry: if '~ ee then ee ~' by the fact that ,G is an
undirected graph, using the same sequence of cycles
connecting e to 'e in a reverse order. Transitivity: If

21 ~ ee and 32 ~ ee , then by concatenating the sequence of

cycles connecting 1e to 2e with the sequence of cycles

connecting 2e to 3e (through the common edge 2e) we get

that 31 ~ ee .

We now define a new graph),(*** EVG =

corresponding to the given graph),(EVG = . We will later

use *G to compute the k -ladder-connected components
of G . From now on we shall assume that),(EVG = and

k are fixed.
Definition: Let the node set of the undirected graph

),(*** EVG = be }),(|{),(
* EyxvV yx ∈= . Let the edge

set be),{),(),(
*

zyyx vvE = | There exists a simple cycle

Gc ∈ with size at most k , where cyx ∈),(and

}.),(czy ∈

Intuitively,),(*** EVG = has a node corresponding to
each edge of G Additionally,),(*** EVG = has an edge

joining two neighboring edges of G if the two neighboring
edges lie on a short simple cycle in G . An example for a
graph G and its corresponding graph *G for 3=k is
given in Fig. 3.

Fig. 3. Example for a graph G and its corresponding *G (for 3=k) Edges

),(ba and),(vu are 3 -ladder connected in G . Observe that the

nodes),(bav and),(vuv are on the same connected component of

.*G Conversely,),(ba and),(yx are not 3 -ladder connected in G .

Observe that),(yxv is an isolated node in *G , and in particular),(bav and

),(yxv are not in the same connected component of *G .

We now define the following standard equivalence

relation on the nodes of *G . We denote),(),(bayx vv ≈ if and

only if there exists a path from),(yxv to),(bav in *G .We

next show that the k -ladder components of G are exactly

the connected component of *G Therefore the problem of
finding the k -ladder components of G reduces to the

problem of finding the connected components of *G . More
formally:

Proposition:),(~),(bayx if and only if

.),(),(bayx vv ≈

 Proof: If),(yx and),(ba are k -ladder path connected

in),(EVG = , then there exists edge-intersecting cycles

dccc ,...,, 21 each with at most k edges where 1),(cyx ∈

and suppose iiii cvue ∈=),(and 1),(+∈= iiii cvue .

Clearly, there is a path
),,...,,,,...,,,,...,,(111111 bauvuuvuyxp ddd −−−= in

G starting from node y and ending at b along the edges

of dccc ,...,, 21 . Observe that any two neighboring edges on

the path p belong to a simple cycle with at most k edges

and thus .),(),(bayx vv ≈

Conversely, if there is a path
),....,,('),(),(),(yxcbba vvvp = from),(bav to),(yxv in *G ,

then any two neighboring nodes in 'p represent neighboring

edges on a cycle with at most k edges in G. One can use
these cycles to show that),(ba and),(yx are k -ladder

connected in G .
The correctness of the next algorithm immediately follows

from the above proposition.
Notation: The graph }{\ vG is the graph defined by

removing the node v from the graph G.

369

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

C. Methods
In this section we present two methods for graph

decomposition, using k -ladder connectivity analysis. In
section (III) we present a third k -ladder-based approach,
which includes an enhancement to the basic k -ladder
connectivity definition. The motivation for developing the
enhanced approach is explained at the review of the research
experiments.

1) Structured decomposition algorithm using G*
First we formalize the graph partitioning method, which

uses the basic algorithm for detecting the k -ladder
connectivity components. This method builds the G* graph
that is defined in the previous Section (II. 2).

Decomposition Algorithm via *G :
Input: undirected graph),(EVG = and an integer
 k > 0.
Output: the k -ladder components of G .

φφ ←← ** , EV

For every),(yx in E :

),(
**

yxvVV ∪→

For every),(vu in E :

If 1)deg(=u or 1)deg(=v ,
Continue to the next edge.

Run }){\(vGBFS using node u as a starting node and
compute

 The distance),(}{\ xud vG from u to every node x in

the graph }{\ vG .

This BFS should be carried out only up to breadth 2−k .
For every Ewv ∈),(:

If 2),(}{\ −≤ kwud vG

),(),(),(
**

wvvu vvEE ∪←

Run)(*GDFS to compute the connected components of
).,(*** EVG =

2) Optimized (heuristic) decomposition algorithm
The algorithm described above can be rather bulky if the

network is sufficiently large and dense. For faster
calculations, in case of simple k -ladder components, the
following algorithm can be used:

Input: undirected graph),(EVG = and an integer

 k > 0.
Output: the k -ladder components of G .
Create:
L1– list of nodes for "local BFS" (3);
L2– list of edges of a selected cycle;
L3 – the first list of the connected components (integer).

The size of the list is equal to current number of the
connected components. Each member (i) of the list points to
another member),(jij ≥ , which means that component i
was attached to j . In the beginning (i.e. when a new
component (member) is added) ji = .

For each edge),(nmk = associate variable lk pointing
to index of corresponding connected component in L3. Initial
value of each 1−=lk (i.e. non-associated).

L4 and L5 lists of indexes from L3.
Run)(GBFS starting from the some node u and compute

the distance),(wud in the graph G for every w . For every
frond edge),(wv in E put one node (with maximal d) in to
L1.

For every w from L1 do "local BFS":
Make)(GBFS starting from w (up to breadth

12/ +k for the even k and 2/)1(+k for odd k); in this BFS
we don't open nodes v, such that),(),(wudvu > ;

For each opened node the correspondent "father" node is
remembered;

Each frond edge),(nm is corresponding to a simple cycle
with at most k edges; to select this cycle do:

Clear L2 and add),(nm to L2;

mv =1 ;

while (wv ≠1)
{
 v2 = father (v1);
 add),(21 vv to L2;

 21 vv = ;
}

mv =1 ;

while (wv ≠1)
{
 v2 = father (v1);
 if (),(21 vv is already present in L2)

 delete),(21 vv from L2;
 else
 add),(21 vv to L2;

 21 vv = ;
}
After this procedure the list L2 contains all edges of the

selected cycle.
Associate each new selected cycle to one of the already

selected connected components or create a new component:
if 1−=lk for every edge from L2
 add a new component to L3;
 3()lk sizeof L= for every edge from L2
else
 for each pair of edges K1 and K2 from L2 do
 if 1 2 1 2(1& 1)lk lk lk lk= − ≠ − =

 if 1 2(1& 1)lk lk≠ − ≠ − unite connected

components 1lk and 2lk (as described below)

Uniting the connected components 1lk and 2lk :

Clear 4L and 2
5 4L b ac− .

Add 1lk to 4L ;

370

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

While (3 1 1[]L lk lk≠)

 1 3 1[];lk l lk=

 add 1lk to 4L ;

add 2lk to 5L

while (3 2 2[]L lk lk≠)

 2 3 2[];lk l lk=

 add 2lk to 5L ;

For each member k from 4L and 5L do:

3 4 1 2

3 5 1 2

[[]] min{ , }&

[[]] min{ , }

L L k lk lk

L L k lk lk

=

=

Renumbering and output of components

III. RESULTS
We have conducted a set of experiments in order to test the

ability of our methodology to partition various protein
networks. In this section we describe these experiments and
present and discuss their results.

In the first experiment we tested our k-ladder based
algorithm on an EN. The network partitioning was done as a
multi-step process: Step 1 includes preparations (or
pre-processing) of the network, in order to find the major
connectivity components and reduce the network’s size. In
the second step we compared bi-, tri- and then k-ladder
connected components-based decompositions to the outcome
of step 1. The k-ladder connectivity approach performed well
and produced satisfactory results.

We then tried the basic k-ladder algorithm on PPI
networks (which are denser). This experiment is described in
as follows:

The EN used in this experiment is described in [2], and

available at
http://www.genome.haifa.ac.il/~zfrenkel/DATABASES1/. It
is constructed from 112 prokaryotic proteomes (a total of
about 32×104 proteins) and contains 5.98*107 nodes (the
“orphan” fragments were not taken into account) and
4.79×108 edges. To reduce the network size we selected the
components which were connected at least in 80% sequence
identity level (called “threshold”). These components were
considered as super-nodes and all their external connections
were preserved. The distribution of such components is
described in [2]. This approach enables to dramatically
decrease the average density of the network. The new
reduced network contains 2.57×107 nodes (including the
super-nodes) and 3.63×107 edges. That means the density of
the network was decreased in more than five times by this
procedure. In addition, only nodes concerning to 3-core were
selected for further analysis. All nodes with degrees less than
three were repeatedly deleted until the amount of nodes
stopped changing. The resulting network contains 5.54×106
nodes and 1.87×107 edges. The largest connected component
contains 1.08×106 nodes (about 20% of the graph). The

second component contains only 2126 nodes (see Table I,
(1)). These two main components were selected for further
analysis.

B. Step 2: Bi-, Tri- and K-Ladder Connected Components
The two largest connected components obtained in the

previous step were selected for further partitioning. As
shown in Table I ((2)-(5)), the bi- and tri- connected
components-based methods were able to detect only
relatively small components, while the main part of graph
stays undivided. However, as may be directly observed in the
graph visualization done by Fruchterman-Reingold's
force-directed algorithm [13] using the 3D mode of the Pajek
visualization tool [14], this main part of graph is composed of
several clusters, that were not detected by the tri-connected
algorithm (Fig. 4A). In contrast, using the 3-ladder
connected components method allows to split it into compact
meaningful clusters (as seen in Fig. 4 B, C). It is very
important to note, that the partition obtained by
Ladder-with-an-a 3-Ladder connected components is
compatible with the biological functions of the
corresponding proteins (Fig. 5). As expected [5], the clusters
connected by many alternative connections have relatively
similar functions (in our case, different families of
transcriptional regulators), whereas better separated clusters
have more distinct functions.

(a)

(b)

(c)

Fig. 4. The Partitioning of the second largest component via selection of
tri-connected components (a), 4-ladder connected components (b) and

3-ladder connected components (c). Partitions are shown by different colors.

371

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

A. Step 1: EN Preprocessing

The code for the selection of bi-connected and
tri-connected components was taken from OGDF (Open
Graph Drawing Framework) - a self-contained C++ class
library, which can be found at
http://www.ogdf.net/doku.php.

C. PPI Network Clustering
The yeast PPI network used in this paper is described in

[15]. Application of the k-ladder algorithm, described above
in its basic form, to this network was unable to decompose

the main part of the graph and more than 9,000 nodes from
the 12,000 are remaining in one cluster. For this task, several
types of connectivity structures were tested, such as "cycle of
cycles". We chose to use an extreme case of this connectivity
definition, where the connected elements of the ‘ladder’ are
considered cliques of a certain selected size, and the
condition for their connection is the existence of a chosen
amount of common nodes. Such an approach was suggested
in [16] as percolation of cliques [16], [17].

TABLE I: RESULTS OF PARTITION (ORDERED BY SIZE). SIZES ONLY OF THE FIRST 10 LARGEST COMPONENTS ARE SHOWN

 (1) (2) (3) (4) (5) (6) (7)
1 1.07724E6 609091 433976 1586 1574 6403 561
2 2126 1750 1707 133 122 5861 347
3 2017 1740 1664 83 84 5555 116
4 1928 1557 1646 64 65 3423 103
5 1895 1555 1591 55 41 3131 96
6 1846 1517 1550 21 21 3058 93
7 1829 1405 1541 19 19 3054 75
8 1713 1390 1496 18 18 3021 64
9 1671 1380 1496 15 16 2963 47
10 1612 1379 1493 13 13 2954 41

(1) – connected components of the primary graph after "pre-clustering" and filtering;
(2), (3) – bi- and tri-connected components of the largest component of (1);
(4), (5) – bi- and tri-connected components of the second largest component of (1);
(6), (7) – 3-ladder connected components of the first two largest components of (1);

TABLE II: DECOMPOSITION OF THE PRE-PROCEEDED YEAST PPI NETWORK USING 3-LADDER CONNECTIVITY ALGORITHM

Threshold Cluster order number (ranged by size)
1 2 3 4 5 6 7 8 9 10

50 64 61 40 27 20 18 16 16 15 14
60 147 134 64 55 45 34 28 27 26 24
70 285 283 119 93 60 58 47 46 35 29
75 798 297 117 64 47 37 35 30 28 26
80 1409 166 48 42 41 40 31 30 25 24

A drawback of the “cliques” method is a very high level of

overlapping of the clusters that makes it difficult to
accurately interpret the results. In an attempt to overcome this
drawback, we enhanced the basic percolation method by
adding another step: each detected cluster is deleted from the
network. This modification contributes to reduction of the
cluster overlapping level, as well as gradually simplifying the
graph complexity. This method produced better results (data
not shown). Nevertheless, the weakness of this approach lies
in the fact that the graph partitioning and reduction process
(i.e. cluster deletion) is dependent on the details of the
particular clustering algorithm which leads to unstable
results.

In an attempt to stir away from this weakness we tried
several other possibilities. For example, we tried to clean the
noise by using the Jacquard index. I.e. for each edge if the
amount of common neighbors of these nodes is less than
some selected threshold, the edge was deleted. This approach
does not work for PPIN: even for very high threshold, (more
than 80 common nodes) the network was decomposed into
multiple single nodes and one dense connected component,
which was also a single k-ladder connected component (data
not shown).

These results led us to the thought that, possibly, the
definition of noise as bad connected nodes was wrong. We
suggest that, in contrast, the noise in the network comes from
nodes with very high affinity to many other nodes.

Accordingly, in the clustering process we removed all nodes
with a connectivity degree larger than a selected threshold.
The derived graph was decomposed by the k-ladder
connectivity algorithm. The results are presented in Table II.
Definitely, the correctness of this suggestion should be
thoroughly investigated; however, its helpfulness for
clustering is apparent.

Fig. 5. 3-ladder connected components are in a good correspondence with
belonging different biological functions of proteins. Only some of clusters

are described:
1. Malonyl-CoA-acyl-carrier-protein; 2. MTA/SAH nucleosidase; 3.
Succinyl-CoA synthetase beta; 4. Aldehyde dehydrogenase 5.
Phosphomannomutase 6. Molybdenum cofactor 7. Isocitrate lyase 8.
Transcriptional regulator, LysR family; 9. Transcriptional regulator, ArsR
family; 10. Transcriptional regulator, AsnC family; 11. Transcriptional
regulator, MarR family; 12. Transcriptional regulator, CrP family; 13. BirA
bifunctional protein; 14. Transcriptional regulator, GntR family; 15.
Transcriptional regulator, GntR family; 16. Transcriptional regulator, LysR
family; 17. Sigma-54-dependent transcriptional regulator.

372

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

IV. DISCUSSION
In this article we have described the development of a new

network partitioning method based on the k-cycles graph
connectivity approach. We formally defined a unique
structure named K-Ladder connectivity. We have
demonstrated that the K-Ladder-based algorithm was able to
achieve the main goal, which is to successfully select the
groups of functionally related proteins in the EN. In addition,
the algorithm has proven to be able to process scalable
networks. If needed, the algorithm may be easily
implemented in a way that enables processing the whole
network as a collection of segments thus, loading of the full
network into the memory is not required. This is critically
important for extremely large graphs such as EN.

Additional investigation is required in order to further
develop this method for the use with denser networks.
Although several possibilities were discussed, the practical
significance of these modifications, of the basic K-Ladder
algorithm, is yet uncertain. While these modifications
consider much more complicated elements than a simple
cycle (e.g. cliques), the advantage of the basic algorithm in
speed and scalability are dramatically lost. For example,
processing according to the clique percolation approach [16],
[17] takes several hours for clustering, while the basic
k-ladder approach takes only about a minute.

Another problem of the application of k-ladder
connectivity clustering to dense networks is the possibility of
high overlapping between the resulting clusters.

Although in the initial K-ladder approach there is a
possibility for a node to belong to several clusters, the
meaning of a connecting edge is unique. This is not the case
when the unit is more complicated than cycle and connection
rule requires more than just a common edge. For example, for
the discussed above realization of this approach, where the
connected elements of the "ladder" are cliques of a certain
size, and the condition of their connection is the existence of
a certain (sufficiently large) amount of common nodes, the
overlapping between the selected clusters can be very high.

In some attempts to overcome these limitations, we have
shown that pre-processing of the network which includes
cleaning of noise by deleting poor or, oppositely, good
connected nodes can potentially be fruitful. But, a biological
meaning of the obtained clusters desires additional analysis.

As a final point we note that, as with all other clustering
approaches, the applicability of the methods described above
to other networks, different from the EN, is strongly
dependent on the particular nature of the clusters, as well as
on the network organization.

V. CONCLUSIONS
In this work we described a new powerful method for

clustering of large Protein Evolutionary Networks. This new
approach has proven to be very effective for clustering of the
EN, producing a large number of meaningful small clusters.
The algorithm was able to detect the clusters corresponding
to different functional groups of proteins.

Several possibilities to the application of this method to
other network, in particular, PPIs (protein-protein interaction
networks), were also explored. The applicability of the

proposed approaches to those networks requires additional
analysis.

ACKNOWLEDGMENT
The authors are grateful to Miki Dabush and Svetlana

Kolodiy for help in preliminary calculations.

REFERENCES
[1] J. Wang, M. Li, Y. Deng, and Y. Pan, "Recent advances in clustering

methods for protein interaction networks," Bmc Genomics, vol. 11,
2010.

[2] Z. M. Frenkel and E. N. Trifonov, "Evolutionary networks in the
formatted protein sequence space," Journal of Computational Biology,
vol. 14, pp. 1044-1057, Oct. 2007.

[3] Z. M. Frenkel and E. N. Trifonov, "Walking through the protein
sequence space: Towards new generation of the homology modeling,"
Proteins-Structure Function and Bioinformatics, vol. 67, pp. 271-284,
May 2007.

[4] Z. M. Frenkel and E. N. Trifonov, "Walking through protein sequence
space," Journal of Theoretical Biology, vol. 244, pp. 77-80, Jan. 2007.

[5] Z. M. Frenkel, Z. M. Frenkel, E. N. Trifonov, and S. Snir, "Structural
relatedness via flow networks in protein sequence space," Journal of
Theoretical Biology, vol. 260, pp. 438-444, Oct. 2009.

[6] Y. Sobolevsky, Z. M. Frenkel, and E. N. Trifonov, "Combinations of
ancestral modules in proteins," Journal of Molecular Evolution, Vol.
65, pp. 640-650, Dec. 2007.

[7] Z. M. Frenkel and E. N. Trifonov, "From protein sequence space to
elementary protein modules," Gene, vol. 408, pp. 64-71, Jan. 2008.

[8] C. Walshaw and M. Cross, "Mesh partitioning: A multilevel balancing
and refinement algorithm," SIAM Journal on Scientific Computing, vol.
22, pp. 63-80, 2000.

[9] S. Fortunato, "Community detection in graphs," Physics
Reports-Review Section of Physics Letters, vol. 486, pp. 75-174, Feb.
2010.

[10] S. E. Schaeffer, "Graph clustering," Computer Science Review, vol. 1,
pp. 27-64, 2007.

[11] R. Tarjan, "Depth- first search and linear graph algorithms," in Proc.
IEEE Conf Rec 1971 12th Annu Symp on Switching & Automata Theor,
pp. 114-121, 1971.

[12] J. E. Hopcroft and R. E. Tarjan, "Finding the Triconnected Components
of a Graph. Technical report," CS Dept., Cornell University, Ithaca,
N.Y., 1972.

[13] T. M. J. Fruchterman and E. M. Reingold, "Graph drawing by
force-directed replacement," Software-Practice and Experience, vol.
21, pp. 1129-1164, Nov. 1991.

[14] V. Batagelj and A. Mrvar, "Pajek - Analysis and visualization of large
networks," Graph Drawing, 2002, pp. 477-478.

[15] N. Levtov, S. Amberkar, Z. M. Frenkel, L. Kaderali, and Z. Volkovich,
"Detecting Non-Uniform Clusters in Large-Scale Interaction Graphs,"
Journal of Computational Biology, vol. 21, pp. 173-183, Feb. 2014.

[16] G. Palla, A.-L. Barabasi, and T. Vicsek, "Quantifying social group
evolution," Nature, vol. 446, pp. 664-667, Apr. 2007.

[17] J.M. Kumpula, M. Kivela, K. Kaski, and J. Saramaki, "Sequential
algorithm for fast clique percolation," Physical Review, vol. 78, Aug.
2008.

Avi Soffer is a lecturer at Ort Braude College,
Karmiel, Israel. He was born in 1957 in Israel. He
received his B.Sc. in computer science from the
Hebrew University of Jerusalem, Israel in 1986; He
received his M.Sc. in software engineering from
University of Maryland, College Park, USA in 1997;
He received his Ph.D. in information systems
engineering from the Technion – Israel Institute of

Reshma Nibhani is a post-doctoral research scientist at
Genome Diversity Center, Institute of Evolution, and
University of Haifa, Israel. She was born in 1982 in
Gorakhpur, U.P, and India. Dr. Nibhani received her
Ph.D. degree in bioinformaticsform Center of
Bioinformatics, Institute of Interdisciplinary Studies,
University of Allahabad, U.P, and India. Her current
research interests include sequence biology,

computational biology, biophysics, protein modularity and early molecular
evolution, protein structure prediction, protein folding.

373

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

Technology in 2008. His research is focused on application of machine
learning and data mining techniques in systems and software engineering,
software testing, integration, and maintenance.

Ahuva Mu'alem is currently a lecturer at Ort Braude
College. Before joining Ort Braude she was a post-doc
fellow at the Social and Information Sciences
Laboratory (SISL) at Caltech. She completed her Ph.D.
at the Hebrew University of Jerusalem under the
supervision of Prof. Noam Nisan. Her research is
focused on computational aspects of mechanism
design, in particular theoretical study and performance
evaluation of auctions, scheduling and pricing policies

for grid and cloud computing. She was born in Petah-Tikva, Israel in 1965.

Zakharia Frenkel is working as a senior lecturer at
the Software Engineering Department of ORT Braude
College, Karmiel, Israel. He is also a research fellow at
the Institute of Evolution, University of Haifa, Israel.
He was born in 1976 in St.-Petersburg, Russia. Dr.
Frenkel received his Ph. D. degree in physics and
mathematics in 2003 form Physics and Mechanics
Faculty, St. Petersburg State Polytechnical University.
His current research interests include data mining,

biophysics and bioinformatics.

374

International Journal of Modeling and Optimization, Vol. 4, No. 5, October 2014

Zeev (Vladimir) Volkovich is working as a full
professor, the head of M.Sc. program in software
engineering at the Software Engineering Department
of ORT Braude College, Karmiel, Israel. He was born
in 1953 in Tashkent (former USSR). Dr. Volkovich
received his Ph.D. degree in probability theory in
1982. His current research interests include data
mining, pattern recognition and clustering algorithms.
He published 2 books and about 50 papers in referred

international journals.

