
  

  
Abstract—The influence of temperature-dependent viscosity 

and Prandtl number on the steady, incompressible MHD 
boundary layer forced flow (of water) due to a point sink is 
investigated. The coupled non-linear partial differential 
equations governing the axisymmetric flow are 
non-dimensionalized into a system of non-linear ordinary 
differential equations by similarity transformations, and, later 
solved numerically using an implicit finite difference scheme 
along with quasilinearization technique. Computations are 
carried out to examine the effect of various parameters such as 
transverse magnetic field, temperature-dependent viscosity 
/Prandtl number on the flow field and heat transfer. From the 
results of the present study, it has been observed that the effect 
of magnetic and the variable thermo-physical parameters are 
considerable and they should to be taken into consideration in 
the flow and heat transfer problems, arising in engineering and 
technological applications. 
 

Index Terms—Implicit finite-difference scheme, laminar mhd 
boundary layer flow, point sink, quasilinearization, 
temperature dependent viscosity/prandtl number. 
 

I. INTRODUCTION 
 Effect of variable fluid parameters on the boundary layer 

flow and heat transfer is now attracting the attention of 
researchers owing to its application in technological fields. 
Indeed, temperature-dependent physical properties like 
viscosity and thermal conductivity of the fluid play a 
significant role in fluid mechanics [1]. Consequently, in 
recent years many studies have been made on the flows with 
temperature-dependent viscosity in different geometries and 
under various flow conditions [2]-[9]. Further, boundary 
layer problems involving magnetic field have become 
important in contemporary years, in view of the fact that 
magneto-hydrodynamic (MHD) flows have many major 
industrial and geothermal applications [10], [11]. 

Keeping in view the above, the aim of the present 
investigation is to examine the effects of variable viscosity 
and Prandtl number on a steady, axisymmetric boundary 
layer flow of a viscous, incompressible, electrically 
conducting fluid (water) inside a cone due to a point sink, in 
presence of transverse magnetic field fixed to the fluid. Both 
the fluid viscosity and Prandtl number are taken as inverse 
linear functions of temperature. It is remarked here that 
Prandtl number is a function of viscosity and as viscosity 
varies across boundary layer, the Prandtl number varies, too. 
Since the assumption of constant Prandtl number leads to 
unrealistic results when viscosity is a strong function of 
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temperature [12], [13], it is proposed to obtain results when 
both, viscosity and Prandtl number, are assumed to vary with 
temperature. 
 

TABLE I: VALUES OF THERMO-PHYSICAL PROPERTIES OF WATER AT 
DIFFERENT TEMPERATURES [15] 

Temperature
(T) (0C) 

Density
(ρ) 

(gr./cm3

) 

Specific 
heat(cp) 

(J × 
107/kg 

0K ) 

Thermal 
conducti
vity (k) 
(erg × 

105/cm.s
-0K ) 

Viscosit
y(μ) 
(gr. × 
10-2/ 
cm-s) 

Prandtl 
number

(Pr) 

0 1.00228 4.2176 0.5610 1.7930 13.48 
10 0.99970 4.1921 0.5800 1.3070 9.45 
20 0.99821 4.1818 0.5984 1.0060 7.03 
30 0.99565 4.1784 0.6154 0.7977 5.12 
40 0.99222 4.1785 0.6305 0.6532 4.32 
50 0.98803 4.1806 0.6435 0.5470 3.55 

 

II. MATHEMATICAL ANALYSIS 
Consider the steady, laminar axisymmetric flow of a 

viscous incompressible electrically conducting fluid (water) 
inside a cone at rest with a hole at the vertex of the cone in 
presence of uniform transverse magnetic field [See Fig. 1(a)]. 
In order to treat the boundary layer flow due to the presence 
of the hole, the hole is regarded as a three dimensional point 
sink [14]. The cone has been taken as semi infinite in length 
so that it can be regarded as independent of length r. A 
transverse magnetic field 0B  is applied in the z-direction 
normal to the cone surface and, it is assumed that the 
magnetic Reynolds number is small, so that the induced 
magnetic field can be neglected in comparison of applied 
magnetic field.The Hall effect and dissipation terms are 
neglected.The fluid properties are assumed to be isotropic 
and constant except for the fluid viscosity. The fluid is 
assumed to flow with moderate velocities, and the 
temperature difference between the surface of the cone and 
the free stream is small (< 400C). In the range of temperature 
(T) considered (i.e. 0-400C) the variation of both density (ρ) 
and specific heat (cp) of water with temperature, is less than 
1% (See Table I) and hence they are taken as constants. 
However, since the thermal conductivity (k) and viscosity (μ) 
[and hence Prandtl number (Pr)] variation with temperature is 
quite significant, the viscosity ( μ ) and Prandtl number are 
assumed to vary as an inverse linear function of temperature 
[5]: 
 

( )Tbb 21/1 +=μ                               (1) 

( )1 21/Pr c c T= +                            (2) 

 
where 
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1
53.41, 2.43, 0.068, and 0.0042 1 2b b c c= = = =     (3) 

 
The numerical data, used for these correlations, are taken 

from [15]. The relation (1) and (2) are reasonably good 
approximations for liquids such as water, particularly for 
small wall and ambient temperature differences. As the fluid 
is incompressible, the contribution of heating due to 
compression is very small and it has been neglected. Under 
the aforesaid assumptions, the governing equations for 
steady, forced convection flow using conservation of mass, 
momentum and energy can be written as 
 

0)()( =+ zr rwru                           (4) 

( ) uBupwuuu zzrzr
2

0
11 σρμρ −− −+−=+         (5) 

( )zzzr TwTuT μρ 11 Pr −−=+               (6) 
 
where  
 

=− −
rp1ρ ,, 22

0
1 rmUUBUUr −=+ − σρ m > 0.         (7) 

 
The boundary conditions are given by  
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            (8) 

 
Applying the following transformations to (4)-(6), we find 

that (4) is satisfied identically and (5) and (6) reduce, 
respectively, to self-similar equations given by 
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 ( ) ( ) ( ) 0114 2 =−+−+′−′′ FMFFfFN           (10) 

( )     GfGN 0Pr 1 =′−
′′−                  (11) 
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The transformed boundary conditions are: 
 

∞→==
===

η
η

asGF
atGF

0;1
01;0                 (12) 

Here, u and w are the radial and axial velocities in r and z 
–directions respectively; R is the radius of the cone 
( sin ),R r ϕ= ϕ is the semi vertical angle of the cone; T is 
the dimensional temperature; ψ and f are dimensional and 
dimensionless stream functions, respectively; F and G are the 
dimensionless velocity and temperature, respectively; p is the 
static pressure; σ  is the electrical conductivity; ν  is the 
kinematic viscosity; M is the non dimensional magnetic 
field parameter; m is the strength of the point sink; U is the 
reference velocity at the edge of the boundary layer and, is a 
function of m; the prime ( )' denotes derivatives with respect 
to η  while, the subscripts r and z denote derivatives with 
respect to r and z, respectively; and, the subscripts w  and ∞  
denote conditions at the wall and in the free stream, 
respectively. 

The skin friction coefficient can be expressed in form and 
the local heat transfer coefficient in the form of Nusselt 
number is given by 
 

( ) ( ) 0
2121

2
Re2

2
=

− ′== ηρ
τ

F
U

C r
w

f               (13) 

( )[ ] ( ) 0
2/121 )(Re2 =

−

∞
′−=

−
= ηG

TTk
rqNu r
w

w         (14) 

 

where ( ) ,wzw uμτ −= ( )wzw Tkq −=  and r
mRe
rν

⎛ ⎞= ⎜ ⎟
⎝ ⎠

. 

It may be remarked that the above boundary layer 
approximation is not valid in the immediate neighbourhood 
of the hole where, in any case, the main- stream flow cannot 
represent any actual flow through a hole of small but finite 
diameter [14].  

 

III. RESULTS AND DISCUSSION 
The system of ordinary differential equations (10) and (11) 

along with the boundary conditions (12) using the relations 
(13)-(14) has been solved numerically using an implicit finite 
difference scheme along with quasilinearization technique. 
Since the method is described for ordinary differential 
equations [16], [17], its description is omitted here for the 
sake of brevity.  
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Fig. 1. (a) Flow model and co-ordinate system (b) Comparison of velocity (F) 

profiles with those of Roseanhead [14].  
 
The skin friction parameter ( ) 0=′ ηF has been computed, 

for air (Pr = 0.7) with constant fluid properties (N =1) when 
for 0=M , and compared with those of [14], and it is found 
to be 2.2758 as compared to 2.273 given in [14]. Also, 
pertinent velocity profiles (F) depicted in Fig. 1(b) reveal 
excellent agreement with [14], validating the accuracy of the 
numerical method used.  
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Fig. 2. Effect of magnetic field (M) on (a) skin friction and (b) heat transfer 
coefficients. 

 
The variation of skin friction [ ( ) 21Re rfC ] and heat 

transfer coefficients [ 1 2( )rNu Re − ] with magnetic field 

parameter ( )M in the presence of variable fluid properties 
[T∞ =18.7oC, ΔTw= 10.0] and constant fluid properties [N = 1 
and Pr = 7.0] is shown in Fig. 2. It is observed from these 
figures that both, [ ( ) 1 2

f rC Re ] and [ 1 2( )rNu Re − ] 

increase with the increase of M . However, for a fixed value 
of ( )0≠M , the effect of temperature-dependent 

viscosity/Prandtl number is to decrease [ ( ) 1 2
f rC Re ] and 

to increase [ 21)(Re −
rNu ]. In fact, the percentage of decrease 

in [ ( ) 1 2
f rC Re ], at 5.0=M  is 32.23% [Fig. 2(a)]. On the 

other hand, the percentage of increase in [ 1 2( )rNu Re − ] is 
about 3.00 % (Fig. 2(b)). The relevant velocity (F) and 
temperature (G) profiles for constant and variable fluid 
properties are displayed in Fig. 3. It is seen that the velocity 
profiles increase (Fig. 3(a)) and temperature profiles decrease 
(Fig. 3(b)) owing to the significant role of temperature- 
dependent viscosity/Prandtl number inside the laminar 
momentum and thermal boundary layer. 
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Fig. 3. Effect of magnetic field (M) on (a) velocity and (b) temperature 

profiles. 
 

 
To see the effect of difference in the temperature (ΔTw) 

between the wall and fluid, which actually causes the 
variation of viscosity and Prandtl number with temperature 
across the boundary layer, the skin friction [ ( ) 1 2

f rC Re ] 

and heat transfer [ 1 2( )rNu Re − ] coefficients have been 

plotted against ΔTw and shown in Fig. 4. Since T∞ =18.7oC, 
the maximum value of ΔTw taken is 10oC so as to keep the 
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temperature within the allowed value (< 40oC), during 
numerical computations. In this figure we observe that 
[ ( ) 1 2

f rC Re ] decreases while, 21)(Re −
rNu increases with 

the increase of ΔTw, irrespective of whether 0=M  or 
0≠M . Further, it is found that the magnetic field effect 

( 0≠M ) reduces the heat transfer [ 1 2( )rNu Re − ] at ΔTw =0 

and increases the same, when ΔTw goes beyond 8oC, exposing 
the supremacy of temperature-dependent viscosity/Prandtl 
number. 
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Fig. 4. Effect of (ΔTw) on (a) skin friction and (b) heat transfer coefficients. 

 

IV. CONCLUSIONS 
Under the assumption of temperature-dependent viscosity/ 

Prandtl number, the steady MHD laminar water boundary 
layer flow due to a point sink is numerically investigated. The 
computed results show that the flow field and thermal 
characteristics are significantly affected by the 
temperature-dependent and Prandtl number, in the presence 
of a transverse magnetic field. From the present study it is 
concluded that when the viscosity and Prandtl number of a 
fluid is sensitive to temperature variations it is important to 
consider the effect of temperature-dependent 
viscosity/Prandtl number, otherwise substantial errors may 
occur in the calculations of skin friction factor and heat 
transfer rate at the wall. 
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