
  

  
Abstract—Dynamic and mechanistic models of an Electrical 

Submersible Pump (ESP) lifted oil field are frequently used for 
understanding the process dynamics and the interactions 
occurring between the oil wells under varying operating 
conditions. They are also used to calculate the total fluid 
produced from the oil field. In this article, uncertainty and 
sensitivity analysis of such a model is studied. If the model is 
used for control and optimization of an oil field, it is important 
to see if the output calculated using the mathematical model lies 
within a confidence interval under the presence of uncertainties. 
It is also important to understand which parameters have 
strong/weak influence on the model output. The uncertainty 
analysis is performed by using the Monte Carlo simulation 
method. Morris method of elementary effect is used for input 
factor screening. To quantify the effect of the input factors on 
the model output, a variance based method of sensitivity 
analysis is used. 
 

Index Terms—Model uncertainty, ESP lifted oil field, morris 
method, variance based sensitivity analysis  
 

I. INTRODUCTION 
ESP lifted oil field is a complex process. There are 

multiple oil wells working in parallel and are highly 
interacting. Each oil well consists of a multi-stage centrifugal 
pump driven by a three phase electric motor. A schematic of 
an ESP lifted oil field with four oil wells connected to the 
common production manifold is shown in Fig. 1. ESP is used 
to provide sufficient lift to raise the oil from the reservoir to 
the production manifold. The two booster pumps are used to 
transport the oil from the production manifold through the 
transportation pipeline to the separator. A dynamic model of 
this ESP lifted oil field developed by the authors at [2] is used 
for the uncertainty and sensitivity analysis in this paper. The 
model for the induction motor is developed using Krause's 
model and the pumps are modeled using the data provided by 
the manufacturer. The model representing the dynamics of an 
oil well is developed using the first principles methods. The 
oil well parameters are calculated based on the nominal 
operating conditions of the oil field when the process attains 
its steady state. The data from a real oil field are not made 
easily available and hence model validation could not be 
performed. The nominal operating conditions of the oil field 
were assumed as per the experts' suggestions received from 
Statoil Research Center, Porsgrunn, Norway. The details of 
the development of the model can be found at [2].  
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Fig. 1. Schematic of an ESP lifted oil field. 

(Courtesy of Statoil Research Center, Porsgrunn, Norway [1]) 
 
The model of the oil field is used for understanding the 

process dynamics and the interactions between the oil wells 
under varying operating conditions including the cases where 
certain wells are started up and/or shut down. Furthermore, 
the model is used for developing optimal control structures 
for the oil field. Control and optimization of the process is 
model based. If the mathematical model has uncertain 
parameters and variables, the results obtained by using the 
available model may contain uncertainty. For e.g. if the 
model is used for designing optimal control structure for 
maximizing total oil production from the oil field by using 
minimum energy, it becomes interesting to study how 
uncertain are the optimal values calculated by the model 
based optimizer and controller if an implementation of the 
model to a real oil field is considered. At the same time, the 
modeler or the model user is unsure of how sensitive the 
output variable is with respect to the changes or variability in 
the input variables and model parameters. Therefore, it is 
important to perform uncertainty and sensitivity analysis on 
the model of the ESP lifted oil field when it is used for 
estimation, control and optimization. In this paper, we 
discuss the use of Monte-Carlo simulation method for 
assessing the model uncertainty. For studying the model 
sensitivity to input factors, at first Morris' method of 
elementary effect is used for input factor screening. Later, a 
variance based sensitivity analysis is performed for 
quantifying the effect. All the simulations performed for the 
analysis of the model are based on MATLAB programming 
language. 

The objective of performing uncertainty and sensitivity 
analysis in the oil field model is to see if the output of the 
model under consideration lies within a confidence interval 
when the uncertain parameters of the model are varied. It is 

Uncertainty and Sensitivity Analysis for a Model of an 
Electric Submersible Pump Lifted Oil Field 

Roshan Sharma and Bjørn Glemmestad 

278

International Journal of Modeling and Optimization, Vol. 4, No. 4, August 2014

DOI: 10.7763/IJMO.2014.V4.386



  

also to find out which parameters have strong/weak influence 
on the model output. By understanding the influence of 
parameters on the output variable, which parameters have to 
be estimated with more accuracy is known. This can be used 
for ranking the parameters in order of importance to identify 
major contributors to the uncertainties in the predictions with 
a model. Analysis of models for uncertainty and sensitivity is 
of interest when the model taken into consideration is the 
result of a long and complex construction process and when 
the model is used for risk analysis (for example: for 
calculating the probability of the output from the process to 
exceed some threshold). 

A computational model is required to perform uncertainty 
and sensitivity analysis. In the appendix, a brief description 
of the ESP lifted oil field model and the final important 
equations are given. For a detailed and elaborated 
development and simulation of the model, refer to [2]. A 
computational model is a representation of some physical or 
other system of interest, first expressed mathematically and 
then implemented in the form of a computer program. In 
other words, it can be seen as a function of inputs that, when 
evaluated, produces output [3]. Let the model of the oil field 
be denoted by a function f  with k  input 
factors ( )kxxxxx ,...,,, 321= . The total oil produced from the 
field is considered to be the output ( )Y  of the model. 

( )kxxxxffY ,...,,,)( 321== x    (1)

The behavior of the model is investigated by 
computational experiments i.e. the output of the model is 
evaluated by simulating the model (with a computer) at 
different values of the input factors and some analysis on the 
simulated model output is performed. The model ( )f x  is 
considered to be deterministic. For a given X, the model 

( )f x can be used to evaluate Y  without error or in other 
words, two computations of Y  for the same input factors X 
should be the same [3]. 

The paper is organized as follows: In Section II, the details 
of the model uncertainty analysis of the oil field are explained. 
The various steps used for uncertainty analysis are presented 
and the simulation results are discussed. The sensitivity 
analysis is performed using the Morris' method (for input 
factor screening) and by using the variance based method as 
described in details in Section III followed by the discussion 
on the simulation results. Finally, the conclusion of the paper 
is given in Section IV.  

 

II. UNCERTAINTY ANALYSIS 
Uncertainty analysis evaluates the uncertainty in the model 

output for a known or assumed uncertainty in the model 
components (parameters, input variables) [4]. It can be used 
to answer the question “What is the uncertainty in the model 
output given the uncertainty in the input factors?” Input 
factors for uncertainty analysis are the model parameters or 
variables whose influence on the model output is to be 
investigated [4]. The input factors of models are not always 
known with a sufficient degree of certainty. The uncertainty 

in the model inputs may be due to variations occurring 
naturally or due to errors and uncertainties while measuring 
the input factors. The oil field model consists of four 
interacting oil wells connected in parallel to the common 
gathering manifold. For the oil field model, the input factors 
are: 

 
1) The Productivity Index values of each oil well denoted 

by iPI where i denotes the 
thi oil well. 

2) The reservoir pressure )( rP . 

3) The water cut )( iWC values of each oil well. 
 

These parameters and variables directly influence the 
model output and are thus considered as the input factors. 
There are a total of nine input factors taken into consideration 
for uncertainty analysis. The main objective to use the oil 
field model is to find the optimal working conditions for 
maximizing the profit obtained from the oil field. The profit 
from the oil field is directly dependent on the total amount of 
oil produced from the field. Thus, the model output of high 
interest for the analysis is the total amount of oil produced 
from the field. The uncertainty in the input factors should be 
defined. For the parameters of the oil field, the uncertainty 
range represents the set of possible values for an input factor. 
The uncertainty range for each input factor is defined as 
±10% of their respective nominal values. The nominal values 
of the input factors corresponds to the operating condition 
when the pump of each well is running at 60 Hz and the 
production choke valve of each well is 100% opened. The 
values of the input factors for nominal field operation as well 
their uncertainty ranges are listed in Table I. A continuous 
probability distribution is defined over each of these 
uncertainty ranges as described in Section II-A. For the 
uncertainty analysis the following steps are followed: 

1) Define the probability distribution of the input factors. 
2) Generate the input scenarios using random sampling. 
3) Calculate the total oil production for each input scenario 

using the oil field model. 
4) Analyze the model outputs. 

A. Define the Probability Distribution of the Input Factors 
Since the uncertainty range is equal in both the left and 

right directions from the nominal value, symmetric 
distribution is well suited for defining the probability 
distribution of the input factors.  The extreme values of the 
uncertainty ranges are less likely to occur than the middle 
values. Thus, among the symmetric distribution, Normal or 
Gaussian distribution is used with specified mean and 
standard deviation values.  A standard Gaussian distribution 
has a range [-∞  +∞] but the uncertainty ranges of the input 
factors are finite. Thus, the standard Gaussian distribution is 
truncated so that the values of the distribution are within the 
extreme bounds of the uncertainty ranges. For illustration, the 
probability distribution of the input factor iPI  is shown in 
Fig. 2. The mean and the standard deviation values used for 
creating the distribution of the input factors iPI  for each oil 
well are shown.  
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B. Generate the Input Scenarios Using Random Sampling 
Representative samples of the input factors are drawn from 

their truncated normal distributions by using random 
sampling. In fact by using MATLAB, the truncated Gaussian 
distribution for an input factor is at the first place generated 

by using random number generation. Fig. 2 is then drawn 
after the randomly distributed normal distributions are sorted 
in ascending manner. The random samples for the truncated 
Gaussian distribution are generated independently for each 
input factor. A total of 10000 input scenarios are generated. 

TABLE I: INPUT FACTORS FOR UNCERTAINTY ANALYSIS AND THEIR NOMINAL VALUES AND UNCERTAINTY RANGES 
input 
factors 

rP  1PI  2PI  3PI  4PI  1WC  2WC  3WC  4WC  
[bar] × 10-8 m5/Ns     

nominal values 220 0.55 0.9 0.41 0.64 0.2 0.3 0.35 0.15 
min 198 0.495 0.81 0.369 0.576 0.18 0.27 0.315 0.135 
max 242 0.605 0.99 0.451 0.704 0.22 0.33 0.385 0.165 
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(a) well 1. 
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(b) well 2. 

0.36 0.38 0.4 0.42 0.44 0.46
0

5

10

15

20

25

30
well 3

PI3 × 1e-8

pd
f

μ = 0.41
σ = 0.0137

 
(c) well 3. 
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(d) well 4. 

Fig. 2. Probability distribution functions of the input factor iPI  for each oil well. 

 
TABLE II: STATISTICS ON THE TOTAL OIL PRODUCTION FROM THE OIL FIELD IN SM3/DAY 

model 
output 

Mean Standard 
Deviation

Min Max 1st Quartile 3rd Quartile 

     

totqo  5638.3 196.9354 4961 6197.2 5508.4 5773.2 

 

C. Generate the Input Scenarios Using Random Sampling 
Representative samples of the input factors are drawn from 

their truncated normal distributions by using random 
sampling. In fact by using MATLAB, the truncated Gaussian 
distribution for an input factor is at the first place generated 
by using random number generation. Fig. 2 is then drawn 
after the randomly distributed normal distributions are sorted 
in ascending manner. The random samples for the truncated 
Gaussian distribution are generated independently for each 
input factor. A total of 10000 input scenarios are generated. 

D. Calculate the Total Oil Production for Each Input 
Scenario Using the Oil Field Model 
The model of the oil field is simulated 10000 times using 

one input scenario at a time to obtain 10000 corresponding 
values of the model output which is the total oil produced 

from the field )( totqo . The model of the oil field is dynamic 
and consists of ordinary differential equations (ODE) to be 
solved for each input scenario. The simulation is set up by 
providing sufficient time for the ODE solvers to ensure that 
the final value obtained is the steady state value. 

E. Analyze the Model Output 
After the simulation is completed for all the input 

scenarios, the model output can be analyzed by using 
statistical tools. The average total oil produced from the oil 
field is 5638.3 Sm3/day and the standard deviation of the 
output distribution is 196.9354 Sm3/day. Table II shows 
some statistics on the model output. 

The histogram of the output distribution with confidence 
intervals is shown in Fig. 3. Let us consider the output 
confidence interval to be in the range [5300  5900] Sm3/day. 
This range can be however defined and adjusted by the 
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operator depending on the requirements. The confidence that 
the total amount of oil produced from the oil field will lie 
inside this interval is 86.12%. When the ESP of each well is 
running at 60 Hz and when the production choke valve of 
each well is fully opened, there is only a 4.9% probability that 
the total oil produced from the oil field will be less than 5300 
Sm3/day for a ±10% uncertainty in the oil well model input 
factors. At the same time, the probability that the total oil 
production will be greater than 5900 Sm3/day is only 8.98%.  
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Fig. 3. Histogram plot of the total oil production from the oil field. 

 
In other words, the probability that the output value will 

deviate from its mean value of 5638.3 Sm3/day by 6% to its 
left (≈ 5% to its right) is 86.12%. 

It is also interesting to calculate the first and the third 
quartiles of the output distribution. The first quartile for the 
total oil production is 5508.4 Sm3/day and the third quartile is 
5773.2 Sm3/day. The probability that the output value will lie 
between the 1st and the 3rd quartile is 50% i.e. the modeler is 
sure that half of the output values will be in between 5508.4 
Sm3/day and 5773.2 Sm3/day. 

 

III. SENSITIVITY ANALYSIS 
In addition to the knowledge about how uncertain the 

output of a model will be, given an uncertainty in the input, it 
is also useful to see which parameter will have large/small 
influence on the model output.  Sensitivity analysis deals 
with evaluating how sensitive are the output of a model with 
respect to variability in the model input factors. In 
understanding the behavior of the model, it is useful to 
discover which inputs of the model are important and have a 
substantial influence on the outputs [3]. For the case of the oil 
field model, it is important to identify and screen the 
important input variables and parameters of the oil field that 
have significant effect  on the total oil production from the 
field. It is also necessary to quantify the effect of different 
sources of uncertainty in the oil field model inputs on the 
variability of the model output. 

The input factors that are considered for the uncertainty 
analysis are also used for the sensitivity analysis. In addition, 
the speed of the submersible pump )( ifr  and the production 
choke valve opening of each oil well )( iu are also taken into 
consideration. The nominal speed of the pump for each oil 
well is 60 Hz and the nominal production choke valve 

opening is 100% which is also its maximum opening. For 
sensitivity analysis, the uncertainty range for rP  is taken to 
be ±10% from its nominal value. The uncertainty range for 
the remaining input factors are taken to be ±20% from their 
respective nominal values. However, the uncertainty range 
for the production choke valve opening is taken to be within 
-20% from its nominal value to its maximum opening 
because the production choke valve cannot be opened by 
more than 100%. Table III lists the nominal values and their 
uncertainty ranges for all the inputs factors taken into 
consideration for the sensitivity analysis. 

Local sensitivity analysis is based on the local derivative 
of the output of Y with respect to X. It only gives information 
about the behavior of Y around given value of X. The interest 
lies on global sensitivity analysis that explores the full input 
factor space because the purpose of the analysis is to study 
the effect of uncertainty of several input factors on the model 
output. In this paper, two widely used methods of global 
sensitivity analysis are considered. They are: i) The 
elementary effect method (also known as Morris method) ii) 
The variance based sensitivity analysis. 

A. Morris’ Method of Elementary Effect 
Morris’ method for computational experiment is used for 

input factor screening. The input factors are ranked in the 
order of their importance [3]. But the sensitivity measure 
using Morris' method is only qualitative and they are not 
quantified (how much a given factor is more important than 
others) [5]. It is based on setting up computational 
experiments that are composed of individually randomized 
one-factor-at-a-time designs in the input variables and 
parameters. The data analyses can be based on examination 
of changes in the output that is unambiguously attributed to 
changes in the individual inputs so called elementary effects 
[3]. In other words, Morris' method is the same as calculating 
one-at-a-time local sensitivity criteria for a lot of different 
input scenarios. The input scenarios are created by varying 
the input factors in their whole range of uncertainty domains. 
Thus Morris method provides global sensitivity analysis. 

Each input factor is defined by uniform probability 
distribution within its uncertainty domain. For calculating the 
influence of an input factor on the model output, random 
sampling of the input factors from their uniform probability 
distribution is performed independently. We have considered 
1000 different input scenarios for each input factors. 

Let the input factors ),,,,( iiiir ufrWCPIP for the oil field 
model be represented by a vector 

1 2( , , ..., ), 1, 2, 3, ... , .kX x x x i k= =  Let the total oil 
produced from the oil field be represented by 

)....,,,...,,,( 121 kii xxxxxf + The input factor X is scaled to 
take on  values in the interval [0, 1] and the sampling domain 
is a k dimensional p level unit hypercube. According to 
Morris, the elementary effect of the ith input factor can be 
calculated as, 

1 2 1

1 2 1

( , , ..., , , ..., )( )

( , , ..., , , ..., )

i i k
i

i i k

f x x x x xEE X

f x x x x x

+

+

+ Δ=
Δ

−
Δ

   (2)
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TABLE III: INPUT FACTORS FOR SENSITIVITY ANALYSIS AND THEIR NOMINAL VALUES AND UNCERTAINTY RANGES 
Input Nominal Value Range Input Nominal Value Range 
factor   factor   

rP  220 [198  242] 1WC  0.2 [0.16  0.24] 

1PI  0.55 e-8 [0.44  0.66] e-8 2WC  0.3 [0.24  0.36] 

2PI  0.9 e-8 [0.72  1.08]e-8 3WC  0.35 [0.28  0.42] 

3PI  0.41 e-8 [0.328  0.492]e-8 4WC  0.15 [0.12  0.18] 

4PI  0.64 e-8 [0.512  0.768]e-8 ifr  60 [48  72] 

   iu  100 [80  100] 
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Fig. 4. Mean and standard deviation of the elementary effect of input factors. 
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Fig. 5. Total sensitivity index of the input factors of the oil well model. 

where Δ+ix  is the perturbed value of ix  and Δ is a 
predefined multiple of )1(1 −p . Each ix  can take a value 
between 0 and .1 Δ−  The elementary effect ( )iEE X  for 
each ith input factor is calculated for several randomly 
selected values of  X  Morris suggested that the number of 
runs r  is proportional to .k  A sampling strategy developed 
by Morris is used to create random samples of X from the 
input factor sampling domain. Details of the plans for 
independent random sampling can be found at [3]. To 
compute r  elementary effects of all the k  input factors, in 
the simplest form rk2  model evaluations are needed. f  has 
to be evaluated twice, once at the selected values and once 
after increasing ix  by .Δ  However, with Morris’ 
randomized one at a time sampling method, only )1( +kr  
model evaluations are needed. For the case of oil field model, 

17,4 == kp  and 30=r  have been used. 
The mean and the standard deviation of the r  elementary 

effects of each input factors are calculated. If the mean of the 
elementary effects is relatively large and the standard 
deviation is relatively small, the effect of ix  on Y  is “mildly 
nonlinear”. If the mean is relatively small and the standard 
deviation is relatively large, then the effect of ix  on Y  is 
“strongly nonlinear” [5]. In general, a large measure of the 
central tendency i.e. mean of the elementary effects indicates 
an input with an important (overall) influence on the output. 
A high measure of spread (standard deviation) of ( )iEE X  
may indicate an input factor which is highly interacting with 
another input factor. It may also indicate that the effect of the 
input factor is non-linear [3]. 

The plot of mean and the standard deviation of the 
elementary effects of each input factor are shown in Fig. 4(a). 
It can be seen that the input factors of the oil well model can 
be distinguished into three major groups. Group 1 which is 
the pressure of the reservoir has the highest mean and the 
highest standard deviation. This means that it is the most 
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influential input factor. A large value of its mean indicates 
that reservoir pressure has the most important effect on the 
production of the oil from the field. All the oil wells of the 
field are assumed to be connected to the same reservoir (with 
same reservoir pressure for each oil well). Thus any changes 
or uncertainty in the reservoir pressure is affecting all the 
wells of the field simultaneously. This is indicated by a large 
value of its standard deviation which suggests that it is highly 
interacting with other input factors. 

The operating speed of the pumps of each oil wells fall 
under group 2 which have the second highest mean and the 
standard deviation values. The effect of the speed of the 
pumps on the total oil production is lower than that of the 
reservoir pressure but higher than the remaining input factors. 
They show comparatively more interactions or nonlinear 
effect than input factors falling under group 3. So the speed 
of the pumps can have significant influence on the amount of 
fluid being pumped from the oil wells. Furthermore, from the 
simulations results of the mathematical model of the oil field 
as described in [2], it can be seen that if the speed of the pump 
of an oil well is changed, it not only affects its own pumping 
rate but also significantly affects all the remaining oil wells of 
the field (in terms of flow rates and pressures). For an 
example, an increase in the speed of the pump of one oil well 
increases the production of oil from that well but at the same 
time the production of oil from the remaining oil wells are 
slightly reduced [2]. This interaction may be justified by their 
relatively higher standard deviation values as can be seen in 
Fig. 4(a). For the purpose of control and optimization of the 
operation of the oil field, the speed of the pumps is the input 
variables that are manipulated or varied. 

Finally, the group which has relatively lower means and 
the standard deviation values is group 3 with consists of 
water cuts, productivity indices and production choke valve 
openings as the input factors. The exploded view of the input 
factors of group 3 is shown in Fig. 4(b). The water cut values 
have negative mean which shows that its effect on the total 
oil production is inversely proportional. An increase in the 
value of water cut of an oil well means a reduction in the 
production of crude oil from the well as given by the relation, 

lo qWCq )1( −=    (3)

Here lq  is the multiphase fluid being pumped from the oil 
well. The production choke valves opening of the oil wells 
and their productivity index values have lower mean and are 
less sensitive on the production of oil from the field.  
Compared to the speed of the pumps and the water cut values, 
they also have lower standard deviation values. So the 
production choke valves and the productivity index values do 
not have larger interacting and nonlinear effect on the output 
from the oil field. In [6]-[8], it has been shown that for 
production maximization, the choke valves should be always 
fully opened. During the operation, for most of the time, the 
production choke valves are fully opened. They are only used 
when wells have to be shut down or only sometimes used for 
fluid flow rate control by slightly choking the valve [8]. The 
Productivity Index (PI) values of the oil wells also have 
relatively larger mean but almost equal standard deviation 
when compared to the production choke valve openings. 

They affect the production of oil from the field more than the 
production choke valve opening but less than water cut 
values. Their lower standard deviation values indicate that 
they are non-interacting and the effect is not nonlinear. 

From Fig. 4, it can be stated that the estimation of the 
reservoir pressure should be performed with highest 
importance. The speed of the pumps should also be measured 
with higher accuracy if it is to be used for the purpose of 
control and optimization as has been done in [6]-[8].  

 
TABLE IV: SENSITIVITY INDICES FOR THE INPUT FACTORS OF THE OIL WELL 

MODEL 

input iS  TiS  input iS  TiS  
factor   factor   

rP  0.4839 0.4864 1fr  0.1352 0.1358 

1PI  0.0035 0.0042 2fr  0.0997 0.1000 

2PI  0.0008 0.0012 3fr  0.0912 0.0923 

3PI  0.0037 0.0043 4fr  0.1467 0.1492 

4PI  0.0030 0.0036 1u  0.0001 0.0016 

1WC  0.0012 0.0038 2u  0.0010 0.0014 

2WC  0.0086 0.0096 3u  0.0007 0.0008 

3WC  0.0072 0.0090 4u  0.0011 0.0020 

4WC  0.0016 0.0023    

B. Variance Based Method of Sensitivity Analysis 
The Morris’ method described in Section III-A only 

qualitatively identifies the influence of the model input 
factors on the output. To quantify the effect of the input 
factors on the model output, variance based global sensitivity 
analysis methods can be used. Let us consider the model 

)...,,,( 21 kxxxfY =  where 1x  to kx  be k  independent 
input factors. The input factor space is assumed to be a 
k -dimensional unit hypercube. The method is based on full 
decomposition of the variance of Y  into terms depending on 
the factors and their interactions as detailed in [9]. 

∑∑∑
>

+++=
i ij

kij
i

i VVVYV ...12...)(    (4)

Here, )(YV  is the unconditional variance of the output 
and is written as [10], 

)())|(())|(()(
~~

YVXYVEXYEVYV iXXiXX iiii
=+=   

(5)
Comparing (4) and (5), ))|((

~ iXXi XYEVV
ii

=  measures 

the first order or main effect of iX  on the model output. iX ~  
denotes all the factors but .iX  The second term of (5) is 
called the residual. )|(

~ iX XYE
i

 indicates that the mean of 

Y  is taken over all possible values of iX ~  by keeping iX  
fixed and ))|((

~ iXX XYEV
ii

 is the expected reduction in 

variance if iX  is fixed. By normalizing the first order effect 
by ),(YV  the first order sensitivity coefficient )( iS  is 
written as [11], 

)(
))|((

~

YV
XYEV

S iXX
i

ii=    (6)

The first order effect measures the additive effect of iX  
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on the model output. The interactions between the input 
factors are not taken into consideration. The sum of the first 
order indices of a linear model is one. The oil field model is 
nonlinear and it is of interest to take into account the 
interactions and the total effect of input factors on the model 
output.  We are focused on measuring the total sensitivity 
index which includes the first and the higher order effects of 
factor iX . It can be calculated as [12], 

)(
))|((

~

YV
XYVE

S iXX
Ti

ii=    (7)

The term on the numerator of (7) is the expected variance 
that would be left if all the factors could be fixed except 

.iX There are numerous literature on the formulation of the 
estimators to estimate ))|((

~ iXX XYEV
ii

 and 

))|((
~ iXX XYVE

ii
 for the calculation of iS  and TiS  

respectively as can be found in [9], [11], [13]-[15]. In this 
paper, the estimators formulated in [11] are used. The )(YV  
and TiS  are computed or approximated with Monte Carlo 
simulations. 

Let r be the number of simulations and k  the number of 
input factors. We consider two independent sampling 
matrices A  and B  each of size ).,( kr  In order to generate 
samples of kXXX ,...,, 21  as uniformly as possible over the 
unit hypercube, Sobols’ quasi-random sequences are used 
[16]. Matrices A  and B  can be generated from Sobols’ 
quasi random sequence of size )2,( kr  such that A  is the left 
half of the sequence and B  is the right half of it. k  Number 
of third matrices kiA i

B ,...,2,1,)( =  are created where all 
columns are from A  except the ith column which is from 
matrix .B  We then have the triplet ,A  B  and )(i

BA  that will 
be used to calculate the sensitivity indices. At first, the )(YV  
can be calculated as, 
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The estimates of ))|((
~ iXX XYEV

ii
 and 

))|((
~ iXX XYVE

ii
 for the calculation of iS  and TiS  

according to [11] are respectively, 
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 (10) 

The total sensitivity index can be found using (7) and (10). 
To compute the model output Y  for matrices A  and ,B  r2  

simulations are required. To calculate Y  for )(i
BA  for all the 

input factors, rk  simulations are needed. The total number 
of model computation becomes ).2( +kr  for the case of oil 
field model with 10000=r  and 17=k (input factors), a total 
of 190,000 model computations are needed. Table IV shows 

the first order and the total sensitivity indices of all the 17 
input factors of the oil field. The total sensitivity indices have 
slightly higher value than their corresponding first order 
sensitivity indices for all the input factors. For easier 
representation and comparison, the bar diagram of the total 
sensitivity indices is shown in Fig. 5. 

The total sensitivity indices are clearly separated into three 
categories by the heights of the vertical bars (like in the case 
with Morris elementary method). The total sensitivity index 
for the reservoir pressure is 0.4864 and is the largest of all the 
input factors. The total sensitivity indices for the speed of the 
pumps are the second largest ranging from 0.0923 to 0.1492. 
The remaining input factors have relatively smaller values of 
the total sensitivity indices. The production of the oil from 
the field is most sensitive to the reservoir pressure and least 
sensitive to the production choke valve openings. 

 

IV. CONCLUSION 
In this paper, the study of the uncertainty and the 

sensitivity analysis of the model of an ESP lifted oil field are 
performed using Monte Carlo simulation methods. From the 
uncertainty analysis, it was seen that a confidence interval of 
86.12% can be achieved with a ±10% uncertainty in the input 
factors. Among the input factors, the reservoir pressure is the 
most sensitive and important factor. It should be estimated 
with highest accuracy. The speed of the pumps also has a 
significant influence on the total oil production from the field. 
The speed of the pumps of each oil well should also be 
measured with sufficient accuracy. Two different methods of 
sensitivity analysis showed the same results for the model of 
the oil field. Morris screening method based on the 
calculation of elementary effect requires far less model 
computations than the variance based method. For the model 
of the oil field taken into consideration, it is sufficient to use 
Morris method for sensitivity analysis.  

 

APPENDIX 

Mathematical Model Of The Esp Lifted Oil Field. 
The ESP lifted oil field consists of modeling the electric 

submersible pump, electric motor, booster pump and 
different sections of the oil well including the riser pipe, 
gathering manifold and transportation lines. Detailed 
modeling and simulation of the oil field can be found in 
another article written by the authors at [2]. In this paper, 
only the final equations of the model of the oil field have 
been rewritten as also explained in the papers by the author at 
[6] and [17]. The superscript i  and j  denote the ith oil well 
and the jth transportation pipeline.  

)(
2

)2(
le TT

J
P

dt
fd −=π  (11) 

A. Motor Model 
The rotor shaft of the electric motor is coupled with the 

ESP. The rotation of the motor shaft will provide the 
rotational speed )( f  to the ESP. For a given oil well, the 
speed of the pump can be written as, 
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Here, 2=P is the number of poles of the induction motor, 
J  is the moment of inertia of the rotor shaft and lT  is the 
load torque. The electric torque )( eT  is given by, 

)(1
22

3 e
ds

e
qs

e
qs

e
ds

b
e ii

w
PT ψψ −=  (12) 

Here, Hzwb 60=  is the base speed. Krause's model [18] 

is used to calculate the d-axis flux linkage in stator ),( e
dsψ  

q-axis flux linkage in stator ),( e
qsψ  q-axis current in stator 

)( e
qsi  and d-axis current in stator ).( e

dsi  

B. ESP Model 
Pump 538-11000 provided by Premier Pumping Solutions  

 [19] is used for each oil well. The manufacturer provides 
data only for a single stage of ESP when it is pumping water. 
Hydraulic Institute Model [20] for viscosity correction is 
used to correct the pump characteristics for pumping a 
viscous fluid from the reservoir. For a multi-stage ESP, the 
head characteristics )),(( fQH i

esp  of the ith ESP after the 

viscosity correction at any speed f  is written as a third order 
polynomial as, 
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i

ii
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esp +++=

(13)

Here, iii aaa 310 ...,,,  are the polynomial coefficients for the 
base frequency Hzf 600 =  and )( fQ  is the fluid flow rate 
through the ESP. The Brake Horse Power (BHP) 
characteristic )),(( fQBHPi

esp  of the ith ESP after the 
viscosity correction at any given frequency f  written as a 
fourth order polynomial, 
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(14) 

Here, iii aaa 410 ˆ...,,ˆ,ˆ  are the polynomial coefficients for the 

base frequency .600 Hzf =  The minimum ))(( min fQi  and 

the maximum ))(( max fQi  viscous fluid flow rate through the 
ESP for any given frequency f  can be calculated as, 

i
f

ii
f

i Q
f
ffQQ

f
ffQ max,

0
maxmin,

0
min 00

)()( ==  (15) 

Here, i
fQ min,0

 and i
fQ max,0

 are the minimum and 

maximum flow rates through ESP pumping viscous fluid at 
.0f  The head generated and the BHP consumed by the pump 

for different speeds can be calculated using the Affinity laws 
[21], [22].  

C. Well Model 
Four oil wells each connected to the common production 

manifold are considered. The differential equations 

representing the dynamics of each ith oil wells are, 
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Here, trcrl qqqq ,,,  are the average fluid flow rates 
through a well, from the reservoir into the tubing, through the 
production choke valve and through the transportation 
pipeline respectively. rrtt LALA ,,,  are the cross sectional 
areas and lengths of tubing in section I and II (see Fig. 1) 
respectively. mmtrtr LALA ,,,  are the cross sectional areas 
and lengths of the transportation pipeline and the gathering 
manifold respectively. smanwhwf PPPP ,,,  are the bottom 

hole, well head, gathering manifold and separator pressures. 
bpesp HH ,  are the head produced by the ESP and the booster 

pumps. trl ρρ ,  are the densities of fluid flowing through the 

well and the transportation line. tr
f

t
f

r
f PPP ΔΔΔ ,,  are the 

pressure losses due to friction in Section I and II of the tubing 
and in the transportation pipeline. i

rf  is the speed of the 

pump, β  is the bulk modulus of the reservoir fluid and in
manq  

is the total fluid (including the injected water) flowing into 
the gathering manifold. 

i
rq  can be expressed using the Productivity Index (PI) 

model [22] and reservoir pressure rP  as, 

)( i
wfr

ii
r PPPIq −=  (21) 

cq  can be expressed using the standard flow equation 
ANSI/ISA S75.01 developed by Instrument Society of 
America [23] as, 
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Here, )103600( 5
66 NN =  with .3.276 =N  The valve 

characteristics as a function of its opening ))(( i
v uC  is 

modeled by three linear equations by fitting the data supplied 
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by the choke supplier as, 
The pressure loss due to friction is calculated using 

Darcy-Weisbach formula [24] as, 

h

D
f D

vLfP
2

2ρ=Δ  (24) 

Here, ρ  is the density of fluid flowing through the 
pipeline, hD  is the hydraulic diameter of the pipe and v  is 
the velocity of the fluid. The Darcy friction factor Df  can be 
evaluated using Serghide's explicit approximation to 
Coolebrook-white equation [25]. 
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