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Mathematical Modeling and Stability Analysis of the Brain
Tumor Glioblastoma Multiforme (GBM)

F. Bozkurt

Abstract—I n this paper, a brain tumor growth that is known
as Glioblastoma Multiforme (GBM) is modeled, which has two
sub-population; the sensitive tumor cell and theresistant tumor
cell. Within a single tumor of monoclonal origin, the sensitive
cell produces another population, the resistant cell population,
that has more resistance to the drug than the sensitive tumor
population. In this work, the local and global stability of the
positive equilibrium point of the constructed system was
investigated based on specific conditions. The boundedness
nature and the damped oscillation behavior of the solutions
wer e also analyzed. The obtained stability relations depend to
the growth rates of the tumor population and the drug
treatment, that was considered in the discussion part of this
work.

Index Terms—Difference equations, local stability, global
stability, damped oscillation.

[. INTRODUCTION

The most severe grade of astrocytic brain tumor
glioblastoma multiforme (GBM) is one of the deadliest forms
of human cancer [1]. Within a single tumor of monoclonal
origin, there can develop multiple sub-populations, each of
which may be characterized by different growth-rates and
treatment susceptibilities [2]-[5]. Mathematical approaches
to tumor treatment offer a perspective that current in vivo/in
vitro techniques cannot [6]-[7].

Mathematical approximation for population growth
involves in some biological situations nonlinear differential
equations. For an overlapping generation of a single species,
a model with a differential equation is preferred. If there is a
non-overlapping generation of a single species, then it is
convenient to construct a model with a difference equation.
For both time situations, continuous and discrete, there are
some population which need the properties of both
differential and difference equations, where the use of
piecewise constant arguments come into question. Some
works about constructing population dynamics in view of the
time step can be shown in [8]-[13], [14]-[25].

In this paper, two sub-population of a GBM, sensitive cells
and resistant cells, is modeled such as

% = px(t) + ryx(t)(Ry — ayx(t) — apx([t — 11))

—rx @yt — 11) - dyx(©x([e])
2 = 1y (O (Ry — By (©) — By ([t — 1))
+rx([EDy(E) — dy(@©y([eD)
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where ¢ > 0 the parameters a4, a3, 81, B2, Y1, 0, d1,d2, R1, Ry,
r; and 1, denote positive numbers and [t] denotes the
integer part of t € [0,00). p is the division rate of the
sensitive cells. Ry and R, are the capacities of the sensitive
(including negrotic part) and resistant cell, respectively. It
can be shown that ay,a,,; and B, are parameters to
construct logistic differential equations. y; is the converting
rate of sensitive cells to resistant cells. The parameters d; and
d, are their dead rate caused from drugs, respectively. In
Section II the local and global stability of the positive
equilibrium point of system (1) and the boundedness nature
of the positive solutions were investigated based on specific
conditions. The damped oscillation behavior of the solutions
was analyzed in Section III. Examples show the behavior of
the constructed model. The discussion part in Section V will
take in account the relation between the growth rate of the
tumors and the drug treatment.

II. LOoCAL AND GLOBAL ASYMPTOTIC STABILITY

In this section, the local and global stability analysis of the
positive critical point of system (1) was presented.

On an interval of the form t € [n,n+ 1) and taking
t = n + 1 one can write the solutions of (1) as

x(n+1) =xm) {p +nR —arx(n—1) —y;y(n — 1) — d;x(n)}
({p + R —aorix(n — 1) —y,y(n — 1) — (ayry +dy)x()}
exp(~{p + 1Ry — ayrx(n— 1) — yyy(n — 1) — dyx(m)}) + ayryx(m))
yn+1) =y - {nR, — Broy(n — 1) + y1x(n) — dy(n)}

({rzR; = Borey(n — 1) + y1x(n) — (Byrz + dp)y(m)}
cexp(—{r2R; — By y(n — 1) + y1x(n) — dpy(m)}) + Biry(n)) 7%,

(2)
where hereafter

{p +nrR —ayryx(n—1) —y;y(n—1) —d;x(n) # 0
1R, — Bor,y(n — 1) + y1x(n) — dyy(n) # 0. a)
3

To investigate more about the behavior of (1) we continue
the analysis, since (2) is a system of difference equations.
Computations reveal that the positive equilibrium points of (2)
is

(@ + 1R (dy + i1y + f212) — 1Ry y1
(dy + apry + ayr)(dy + Bory + Birz) + ¥4

u=(>?,37)=<

(4)

2Ry (d1+apri+air)+(P+11R)Y1 )
(dy+azry+airy)(da+ B2z +P1r2)+YE
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(p+71R1)(d2+B172+B2T2)
2R

where y; < . Hereafter, let

{A = p + T'lRl - (azrl + dl)f - )/13_] > 0 (5)
B = TZRZ - (,321”2 + dz))_/ + ylf > 0.
Linearizing (2) about y, we obtain
_ (ditagry)exp(=4)-dy — v1(1-exp(-B))
1= air B2
— az (exp(=4)-1) v, = (B1r2tda)exp(=B)—d; (6)
a Bir2
u, = Vl(exz(l;f)*l) v, = ﬁz(expﬁ(—B)—l)
1
where
14 - (ul + ‘U3)A3 + (u1173 - 174_ - uz)/’{z
+(u1174_ + u2U3 - u4_171)l + u2174_ = 0. (7)

is the characteristic equation of (2).

Theorem 2.1. Let (X,y) be the equilibrium point of (2)
azB2d1—a1 B dq
ajBr+aipy <h< ’

d &l o g o at@)B g
an azBz L appp-aipy o

where a, > a; and LT
a; P2

and assume that the conditions

( 22112+ BariTa+P1rad1+d1dy )<

a1 fariretag Barirztazfiriratazfariretdid;

<ln(oc1ﬂ1r1rz+a2ﬂ2r1r2+a1r1d2 +ﬂ1r2d1+d1d2)
02B,r1r;+0aB, rir+a ridy+dsd;

®)

Then the positive equilibrium point of (2) is locally
asymptotically stable.

Proof. By the Jury Condition (or Schur-Cohn criteria, see
[26]) we get that the positive equilibrium point of system (2)
is locally asymptotically stable if

(@p1) =1-(u +v3) + Wvs — v, —up) +
(u1V4 + u2173 - u4171) + u2v4_ > 0

() (CD*p(=1) =1+ (ug +v3) + (U1V3 — Vs — Up)
—(UqVg + UpV3 — UV ) + UV, > 0

(©) lupuy| < 1
Hold. From (a) and (b), we can write
1+ uv; +uyv, > v, + u,. )

Using (6) in (9), we have

14+ <(d1 +ayry)e™ — d1> ((51& +dy)e ® — dz)

ary B,r2

n (az(e*"—l)) (ﬁz(e’B—l)) S Ba(e7P-1) n az(e*A—l)_

ay By By a

(10)

By ordering and computing (10), we obtain

1 ( Azf2r1T2+a1 Barira+B1r2d1+ddy )<
a1 farireta farira+azf1rirataz farire+dids

an

<1n(a1ﬁ17"17‘2+a2ﬁ2T1T2+0!1T1d2 +ﬁ17'2d1+d1d2>
azB,1r1ry+ 2B Tt r1da+d 1 d;

d d da
1 L, >
az+aq ar—aq

where 1; < 2_and a, > a;.
1

B2+pB

Considering (c), we have

az(l—e) Ba(1-e?)
ay B

<1 (12)

where A>0 and B>0. In view of (11), we can write

Bira(dy — (az + a)ry) _B
<l-e
BTy + arforiry + firady + did,

B1r2(d1—(az—a1)11)

: (13)
Q1B 1T+ a2B,rrata1r1do+p r2d 1 +ddo
Using (13) in (12), we obtain
a,p,(1—e™™(1 —eF)
ap1
aB212(d1—(az—ay)r)(1-e*) <1 (14)

a1 (a1, r1rp+az T arrida+f,rods +ddy)
which lead us to the inequality

azBora(dy — (@ — ay)ry) _
a(apinty + axfonimy + airid, + Bimady + didy)

azf212(d1—(az—a1)r1) —A
a1 (a1, r1rptazfyrirtasridy+B,rds +d1dy)

This is simplify such as

a1y + ayfporir, +
P12 (dy — (az — a)ry) — oy (ali"[j(lizlf Blrzz(ﬁz-l-l (121d2>

ayBory(dy — (@ — ay)ry)e™. (15)
Since
a1B1 (ay+az)B1
azP2 <4< azf2-a1P1
And 2558
a; ” B’
where
azfodi—a1B1 dq
asBa+aipy <n< az+ay’

The left side of the inequality (15) will be negative. This
completes the proof.

Theorem 2.2. Let {(x(n), y(n))}n-, be a positive solution
of (2). Assume that for n=0, 1,... the conditions

arx(n) <p+nR, —arx(n—1)
—11y(n—1) —dyx(n)
Biry(n) < 1Ry — Bory(n— 1)
+71x(n) — dy(n)

(16)

Holds. The following statements are true.
All positive solutions of (2) are in the interval

x(n) € (O, M)

air

And

y(n) € (0‘ “1R27”17”2+Y1(17+T1R1))_

a;firir

The solution of system (2) increase monotonic.
Theorem 2.3. Let system (2) be
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F(x(n),y(m),x(n—1),y(n— 1)) =
x(n+1) = f(x(n),y(n),x(n — 1),y(n — 1))

b gG),ym), x(n -1, ym—-1) 17

where the first order partial derivatives of the functions f and
g regard to x and y are continuous in/ c R*and f, g:V C
(R™)* - I c R*. Furthermore assume that

arx(n) <p+nR, —arx(n—1)

-7 y(n—1) —dyx(n) (18)
And
piry(n) < 1R, — fory(n — 1) + y1x(n)
—d,y(n), (19)

That 2a; > ay, > aq, 2, > f, > f; and y; < d;. If

aqrix(n) A-aqrix(n)
1-a,r1x(n) <4< ln( a;r1Ax(n) )’ (20)
And
B1r2y(n) <B<In (B—ﬁlrzy(n)) @1
1=p,ry(m) B,raBy(m)

where 1; > ﬂ,

ay

(17) has no 2-cycle in I.
Proof. For some

d 1 1
T, > B—i, x(n) < -y and y(n) < T then

s(2) = (x(1), (1), x(0),(0)),

{s(s) = (x(2),y(2),x(1),y(1)) @)
r(2) = (x(1),y(1),x(0),(0)),
\r(3) = (x(2),y(2), x(1), y(1)),
Ajy-cycle will be hold the condition
52 = £(53)) = f (F(x(D), (1), x(0), y(0)) ) 3

r(2) = g(r(3)) = g (9(x(1), (1), x(0), y(0))).

s(3)
(2)

A+2dx #0 and [

ox r

of
(1 + a)dx * 0,

7(3)
@ 1+

In this case, we must have [
s(3) of r(3)
fs(Z) (A +35,)dy #0 fr(z)

g—i)dy # 0. This lead us to the following cases:

The partial derivative of f(x(n),y(n),x(n —1),y(n —
1)) regard to x(n), x(n-1), y(n) and y(n-1) will give the
following results:

For the partial derivative of function f regard to x(n), we
get

1
((A —ayrx(n))e4 + alrlx(n))z
x {(A - ayryx(n))eAx(n) 2ayr, — dy)
+(A - ayryx(n))e™ ((A —ayryx(n))e ™ — dle(n))

+0(1r1(x(n))2(0c1r1 —dy) + (A - ayryx(n))Ae™
+(ay1y +dy)Ax(n)e 4},

of
1+ ax(n) —

(24)

) dy .
Since r; > ==, if
451

259

(A= ayryx(n))e™ — d; Ax(n) > 0, 25)
Then 1 + %(fn) > 0. The inequality (25) leads to the
condition
arix(n) A-ayr1x(n)
1-dqx(n) <A< 11‘1( d,Ax(n) )' (26)

where x(n) < di. Showing the partial derivative of function f
1

regard to x(n-1), give that 1 + ax(arf—l) >0, if
ajrix(n)(az-aq) oA
az <A<In (alrlx(n)(az—al)) (27)
And
ayrix(n) A—a;yrix(n)
1—a,rix(n) <4< 11’1( ayriAx(n) )' (28)

where 2a, > a, > o, and x(n) < ﬁ Considering both (27) and
(28), since a, > a;, we get

a;rix(n)(ay — ay) a;rx(n)

<A

oy 1—a,rx(n)
A-aqrix(n) aA
< 11‘1( a,r Ax(n) ) <In (airlx(n)(az—al))' (29)

The partial derivative of function f regard to y(n) leads to

1+i

=1 > 0. At last, we can write
dy(n)

T !
dy(n—1) ((A —ayryx(n))e 4 + alrlx(n))z
x{(A - ayryx(n))e™4 ((A —ayryx(n))e ™ — yle(n))

+a1r1(x(n))2(a1r1 - 1) +(A - a1r1x(n))

e A x(M)Rayr —y1) +yiAx(m)e ™). (30)
Since x(n) < Land > e
Y1 20y
anx(m A-airix()
1-y,x(n) <A< ln( y14x(n) )’ GD
of

Then we get 1 +

and (31), we obtain

pIE— > (. Taking in view (26), (29)

alﬁ"(") 0‘1r1x(") alﬁ"(")

1- ylx(n) 1—dix(n) 1—a,rx(n)
<n (A—alrlx(n))< In (A ) <in (A—alrlx(n)

ayr1Ax(n) ¥, Ax(n)
di "N
where y; < dq, 1 > > and x(n) <
2 2

<A

)

<1<
dy

_alrlx(")

dqAx(n)

(32)

1
azry

1

78

The partial Derivative of g(x(n),y(n),x(n —1),y(n —
1))regard to x(n), x(n-1), y(n) and y(n-1) will give the
following results: For

a
g Blrz(Y(n))z(ﬂlrz —dy) + (B - 317’2}’("))

ey
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e By(n)(2Byr, — dy) + (B - ,317'2}’(71))9_3
((B = Biray(m)e™ = duBy(m)) + (a7, + dy)e P By(n)
+B(B - B1TZJ’(71))€_B ,
if

Biray(m)
1-dpy(n)

B—pB112y(n)

<B< ln( 2By ()

)

d 1 .
where r, > ﬁ—z and y(n) < - then one can obtain
1 2

(33)

1+a—()>0

Considering

+ % = (B - 317'2)/(71)) e”?
((B - Blrzy(n))e_B - ﬁz’”zBY(n))
+Bir2y()?* (B — B2) + Bor2e P By(n)
+(B - BerV(n))e_BY(n)Tz (2B, — B2,

We obtain that since 28; > B, > B, and y(n) < B%, i
172

(B2—B1)B1r2y(nm) B2B
— =t < B<Inl—F""—A—— 4
B2 svsn ((Bz—Bl)Blrzy(n)) G4
And
B1ry(n) B-p11r2y(n)
ey < B < ( Bar2By(n) ) (35)
Then 1 + 3 ( 5> 0. Considering both (34) and (35), since

B, > By, we obtam

(B2 — B1) B2y (n) < Biry(n)
iy P
—pir2y(n 2
<in( Bar2By(0) )<In ((ﬁz—ﬁl)ﬁlrzy(m - 3
Showing similarly 1 + a_() and 1+ ﬁ one can see

that both are always positive. Considering at last (33) and

(36), we get

Birzy(m) )
<

1—32r2y((n) : B j)l)“(
In B—-p11ry(n ,

d;By(n)
Zand y(n) < — <=
ﬁ1

B1r2y(n)
1-dpy(n)

B-B1my(n)
p2r2By(n)

here r: >—>
WASIE T2 =% 7 5,

Some additional assumptions of (18) are needed to verify
global asymptotic stability for the positive equilibrium point
x, ).

fand g are continuous functions.

p+nR, a,Ryriry, +y1(p + 1Ry

x 10,
) ( a Bt
p+nR,
- (05
o
) % (0 ayRyry1y + 1 (p +11Ry)
' ayBimt;

f: (O,

an

p+mnR,

g: (0,

an

260

a Ry, +yv1(p + 11Ry)

a Bt

@ |

Corollary 2.1. Let (%, ¥) be a positive equilibrium point
of system (2). Suppose that Theorem 2.1-Theorem 2.3 hold.
Then the positive equilibrium point of system (2) is globally
asymptotically stable.

III. OSCILLATION

In this section is the damped oscillation behavior of the
solutions of system (2) was considered.

Theorem 3.1. Let {(x(n),y(n))}-, be a positive
solution of system (2). Assume that

arnx(2n—-1) —y,y@2n—1) —
x(2n—1)) (37)

x(2n)
= Bory(2n — 1) + y,x(2n) —

arx(2n) <p +nR, —
dyx(2n) < ln(
And

piry(2n) < 1R,

dyy(2n) < In (y(%;)”) (38)
Hold, where r; > d— and r, > —=.If
x(2n) <x <x(2n-1)
And
y(@n) <y <y(@2n-1) (39)

Then the solution of (2) has damped oscillations.

i
160

|
120

80 100

t
Fig. 1. Local stability of the solutions of system (2.2).

140 180 200

IV. EXAMPLE

The values of the parameters of (2.2) are as selected as
given in [9] and in view the obtained results. p=0.192 give

the division rate of the sensitive cells. R; = 0.42 X 38%/3 =
4.704 Is the carrying capacity of the negrotic and sensitive
cells together, R, = 0.11 X 38%/3 = 1.232 give the carrying
capacity of the resistant tumor population. The mutation rate
of the sensitive cells to resistant cells is in the interval
[1075,1072] . In [9] the parameters for the resistant
population is given as ff; = 0.05 and 5, = 0.2. The same
parameters are used for the resistant tumor population. The
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sensitive tumor cells have population rates in the interval
[0.5,0.95], which lead to select @; = 0.51 and @, = 0.555.
The causes of drug treatment to the sensitive and resistant
cells are selected as d; = 0.6 and d, = 0.006, respectively.
Both populations have different population rates. In this
example a relation between both population are constricted
such as 7 = r; and (1.05) X r = 1. Fig. 1 and Fig. 2 show
the behavior of the sensitive and resistant tumor cells in view
of the conditions of Theorem 2.1. The mutation rate is
selected y; = 0.01.

x(t) and y(t)

j
200

1
180

i
0 20 120 140 160

Fig. 2. Unstable behavior of the solutions of system (2.2).

To verify the conditions in Theorem 2.3, the parameter 3,
is selected as f; = 0.15 and r =r; = 0.08. The global
behavior of the tumor population can be shown in Fig. 3.

20 40 60 80 100

t

120 140 160 180 200

Fig. 3. Global asymptotic stability of the solution of system (2.2).

x(t) and y(t)

1 i i i i ] ] ] i i j
0 120 140 160 180 200

Fig. 4. Damped oscillation behavior of the solutions of system (2.2).

In view of Theorem 3.1, the growth rate is selected as
r =1, = 1.09 and §; = 0.05. The obtained behavior can be
shown in Fig. 4.
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Fig. 5 and Fig. 6 show the bicurcation diagram of the

tumor population where the mutation rate changed. The red

and the blue graph sembolize the sensitive cells

population (x(t)) and the resistant cells population (y(t)),
respectively.

x(n+1)fx(n) and y(n+1)/y(n)

13

1.1

1.2

0

! VAT e
1.25 135 14 145

r

L L
1 1.05 1.15 15

Fig. 5. Bifurcation diagram of the solutions of system (2.2).

w -

=)

x{n+13x(n) and y{n+1)/y(n)

!
1.35

12

0

L L
126 13
r

L L L
1 105 11 115 145 15

Fig. 6. Bifurcation diagram of the solutions of system (2.2).

V. CONCLUSION

To consider the model in (1), its solution (2) has been
studied as a difference equation system. In section 2, the local
and global asymptotic stability of the positive equilibrium
point of system (2) was studied in Theorem 2.1-Theorem 2.3
and Corollary 2.1. Theorem 3.1 gives information of the
damped oscillation behavior of system (2). It can be shown
that with the mutation rate y; = 0.00001 after a certain
population rate a resistant tumor population occurs over the
wall of the sensitive cells. Furthermore, if the mutation rate is
y1 = 0.01, then the resistant tumor population will cover the
sensitive tumor cells. It is interesting to see that for the local
and global stability a relation between the growth rates and
the drug treatment is obtained.

This work shows investigations of the behavior of the
tumor growth GBM. Future works will include studies about
the stability of GBM in view of the density.
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