

246

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

1
Abstract—This paper highlights the requirements a model

needs to fulfill to match human user expectations. We introduce
higraph-based formalism for system modeling. Due to the
hierarchical and compositional nature of higraghs,
representations based on higraphs can capture all the relevant
aspects of the system to model. A system modeling language,
arKItect is also introduced. We show how this language is based
on the proposed formalism.

Index Terms—Higraph-based formalism, system modeling,
system engineering framework, tool.

I. INTRODUCTION

Since the introduction of System Engineering in industry
model-based development has been adopted more or less in
development of complex systems. A model has a clear
purpose: to help designing the system of interest. However,
when developing complex systems two main problems arise:
1) The need to address all the aspects of the system of interest
(to design and develop) [1]. 2) The need to share the
knowledge between people involved in the process [2]. To
match these needs, model-based system engineering is
necessary. However, the need of a model-based approach
induces new issues:

• Trustworthiness: how close the model is to the reality?
• Understandability: is the model perceived and understood

the same way by people?
• Usefulness: does the model help to get the desired

results?

Besides, with the emergence of model-based system
engineering methodologies, a framework has been proposed
for better understanding. As illustrated in Fig. 1, a
terminology is defined:

• Process: sequence of tasks aiming to achieve a particular
objective. Process defines what is to be done without
defining how each activity has to be performed.

• Method: specifies how to perform each task.
• Tool: helps to accomplish of how. It usually supports a

language that helps applying the method.
• Methodology: is defined “as a collection of related

processes, methods, and tools”. In model driven context,

Manuscript received January 1, 2014; revised March 3, 2014.
The authors are with Computer and System Department, ENSTA

ParisTech, 828 Boulevard des Maréchaux, 91120 Palaiseau, France (e-mail:
hycham.abou-taleb@ensta-paristech.fr)

MBSE can be defined as a collection of process, tools and
methods help to harmonize system engineering
discipline.

• Environment: consists of external conditions, systems, or
factors that have an influence on systems, actors. The
purpose of environment is to put in practice the use of
tools and methods of a project.

Fig. 1. System engineering framework [3].

Therefore, the system modeling language and the
associated tool is extremely critical to address issues raised
above. This paper presents a new system modeling tool and
proposes a corresponding higraph-based formalism. It finally
discusses in what extent the proposed solution addresses the
mentioned issues.

This paper is organized as follows: Section II gives the
mathematical definition of higraph model and introduces the
underlying semantics; Section III presents the tool
arKItectand proposes a corresponding higraph-based
formalism; Section IV discusses if itcan be used in complex
systems development.

II. HIGRAPH SEMANTICS

A. The Hierarchy Issue
Graphs have been naturally used to represent and model

problems since the emergence of computer science.
Graph-based models give a visual and intuitive
representation, as well as with required accuracy. They are
well-suited means to describe in a natural way all kind of
systems, where nodes describe system entities and edges
describe relations between them [4]. However, when it comes
to representing complex systems, the absence of hierarchy [5]
is certainly one of the main issuesin graph-based
representations.

Since systems are inherently complex, to obtain a model

A Higraph-Based Formalism for System Modelling
Language ArKItect

Hycham Aboutaleb and Bruno Monsuez

DOI: 10.7763/IJMO.2014.V4.381

247

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

that is trustworthy, understandable, and useful, it is necessary
to architecture the complexity. As it is described in [6], there
is a form of organized complexity in systems. To handle large
amounts of data, it is often useful to have a classification or
an order. One effective way to classify a set of elements is to
use a hierarchical organization of this set of elements,
introducing sometimes new order relations among the
elements. With the hierarchy, in addition to be able to handle
elements together, it becomes possible to handle subsets of
elements together. There are two ways how to organize
hierarchically a set: grouping and encapsulation.

• Grouping: It is possible to group items based on similar
properties or characteristics.

• Encapsulation: It is possible to encapsulate many
elements within a single element of a higher level and
then consider only the properties of this element when an
analysis is performed.

Consequently, we can indentify two types of models
hierarchies. On one hand, there is the generalization, i.e.
hierarchy of types. The word type refers generally to a
representation that gathers main properties of objects that
have common characteristics [7]. One type allows to group
elements with common characteristics. The mechanism of
sub-typing induces a hierarchy: an entity type T2, derived
from type T1 has at least all the properties of an entity type T1.

On the other hand, there is aggregation. The word
aggregation refers generally to a representation that gathers
elements into another higher-level element to hide them
when necessary.

The higher-level element that encapsulates its contained
elements has properties that are the emerging properties at
this level due to the contained elements. Other names like
nested hierarchy or container hierarchy are also common.
Encapsulation decreases the complexity of the system model
[8].

Finally, the hierarchy has an additional advantage:
depending on the selected level, it is possible to observe
different points of view.

B. Higraph
A higraph is a graph extended to include notions of depth

and orthogonality and was introduced by Harel in [9], [10]. In
other words:

Higraph = Graph + Depth + Orthogonality

Definition (Higraph).
• A higraph is a quadruble);;;(Π= ρEBH where:
• B is the set of blobs (or nodes);
• E is the set of edges.
• ρ is the hierarchy function. It assigns to each blob Bb∈

its set of sub-blobs ρ (b).
• Π is the orthogonality (or partitioning function) defined

as BBB ×→Π 2: , associating with each blob Bb∈
some equivalence relation Π(b) on the set of sub-blobs,
ρ(b).

By its definition, the depth, shown by a higraph, is defined
by the enclosure of one node within another. Thus, it is
possible to develop a higraph from a tree.

III. ARKITECT

A. Overview
ArKItect is a software language for the representation and

design of systems, designed to assist users in the
implementation of the key processes of Systems Engineering.
It offers a support to the activities of requirement
management, functional analysis and system decomposition,
risk analysis, cost management, project management.It is a
graphical multi-scale tool for defining Diagram Domains
Specific Languages (DSL) and using them in different
applicative domains. ArKItect Diagram Domain Specific
Language is made up of three layers: D2, D1 and D0 layer (Fig.
2) [11]

Fig. 2. ArKItectmodelling pyramid.

• At the D2 level, the Type Diagram describes the
properties of the objects types that are used in the model.
It also describes the relationship between these objects
types (hierarchy).

• At the D1 level, a Tree View Diagram describes the model
elements to be displayed with their layout properties. This
description respects the relationships defined by the Type
Diagram.

• At the D0 level, we have diagrams expected by end-users
in their modeler.

Given the application domain and the size of the project,
the environment needed for development and the way people
work can vary a lot. Therefore, arKItect is a framework to
develop system development tools and the three levels, D2,
D1 and D0 are supported by the framework together with a
user administration tool allowing granting a variety of access
rights to the different users. ArKItect is founded on an
evolution of the object model supporting a different approach
to flows representation and handling. It is a relational object
model because flows between objects are first class citizens.
The theoretical added value of this object model is that all the
DSL are built upon very few features, in comparison to UML
or other derived languages. Of course, the more diagrams are
added; the more difficult it is to master a DSL.

248

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

B. Mathematical Foundations

1) Basic Elements
In arKitect, only three elements exist: Object, Flow,

Attribute.
Object: The basic entity in arKItect is called an object.

Each object can also have one or several named data fields,
called attributes. An object is unequivocally defined by its
name and type. Thus, there can be two objects of different
types with the same name while it is not possible to have two
different objects that share the same name and type. However,
it is possible to have several representations of the same
object: a single object can thus appear at different nodes in
the model, in different diagrams, or in different treeviews.
However, the object in question remains always the same. In
particular, its name and properties remain the same, and if the
treeviews use the same filter, the visible children are identical
(Fig. 3). While some of different object representations stem
from the fact that the project can be filtered in different
manners, some of them are created by multiple object
references. In arKItect, it is possible to create several
references to the same object. From a mathematical point of
view, an object is a higraph; it can contain another object, a
flow or an attribute. It may also be shared by others, i.e. it
may have several parents. An object is defined by its type, its
name, and has graphical properties (shape, color, borderline).

Fig. 3. Example of objects in arKItect

Definition (Flow).
A flow is an element composed of 2 higraphs G and H,

and an edge between them such that:

• G is the tail.
• H is the head.
• ρ (G) = ρ (H).
• Π(G) = Π (H).

To connect two objects in arKItect, one of them shall
contain the flow producing object (the tail) and the other
one shall contain the flow consuming object (the head).

Therefore, a flow is defined by the location of its
producing and consumming objects.

• Attribute: In arKItect, objects can have additional
semantic properties called attributes. An attribute is a
higraph with no depth; thus it can contain no other
element. The mathematical definition of an attribute is:

Definition (Attribute).
An attribute is a higraph G such that: .0)(=Gρ

2) D2: Type Matrix
D2 level represents the Type Matrix: it is the description

model of modeling language. This level contains the types of
elements necessary to use the modeling language, as well as
the hierarchical relations between them.

The metamodel in arKItect, also called Type Matrix is a
higraph (or a hierarchy of higraphs) where there is no edge
(Fig. 4). An element in the Type Matrix is a higraph and it can
be shared between other higraphs (i.e. other elements of the
Type Matrix). These elements can be objects, flows or
attributes. All elements in these higraphs have the same type
from a higraph point of view, i.e. they are all considered of
the type “node”.

Definition (Type Matrix).
A type matrix);;;(Π= ρEBT is a higraph where:

• 0=E ;
•).()(, xxBx ρ=Π∈∀

An element in the Type Matrix is said to be refined if it
contains other elements. Thus, at the Type Matrix level, only
one transformation can be applied: Type Refinement.

Definition (Type Refinement).
Let T1 and T2 be two type higraphs.

A type T1 is said to be refined by a type T2 if T1 contains T2,
i.e.)(12 TT ρ∈ .

On Figure 4 on one hand"Type_1" is refined by
"Type_2" and "Type_1" (itself),and on the other hand
"Type_2" is refined by "Type_1" and "Type_2" (itself).
3) D1: Tree Views
D1 level represents the Tree Views: it defines the set of

views that are used for system modeling. This level contains
the set of diagrams expected to be used by engineers. The
Tree View in arKItect is a subset of the Type Matrix, i.e. it is
a higraph (or a hierarchy of higraphs) where there is no edge
and this higraph is included in the Type Matrix higraph (as
illustrated in Fig. 5).

Definition (Tree View).
Let T be a higraph representing the Type Matrix.
Viis a Tree View such that:
• Vi is a higraph;
• TVi ⊂
Usually we have: iVT ∪=
The Tree Views are obtained by filtering the Type Matrix.

Thus, there exists a filtering function. At the Tree Views level,

Flow: In arKItect, flows are considered as objects. Flows
also have some special graphical properties not applicable to
standard objects. They are composed of 2 higraphs and an
edge between them. These two higraphs are similar in
everything (contain the same elements and have the same
decomposition), except the fact that one is the tail and the
other is the head. As a flow is an object, it has all the same
characteristics: it can have children and every action
available to an object is also available to a flow. Thus, a flow
may contain an object, another flow or an attribute. The
mathematical definition of a flow is:

249

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

one transformation can be applied: Filtering. The Tree Views
are obtained by filtering the Type Matrix.

Fig.4. Example of ArKItect Type Matrix.

Definition (Filtering)
A filter function is a function VTf →: , where T is the

Type Matrix and V is a Tree View, which either preserves
nodes in the higraph or removes them.
Thus:

• TV ⊂
•)()(TV ρρ ⊂

4) D0: Model
D0 level represents the Model: it is the set of diagrams that

represent the system. This level contains the set of diagrams
used by engineers. The Model in arKItect is a rooted higraph,
i.e. a higraph with a unique top-level element, called root,
that contains objects, flows and attributes. An example
illustrated in Fig. 6 where objects of different types have
different colors. A model shall respect the type matrix. Thus,
all elements have a decomposition that shall match their
corresponding type decomposition. At the Model level, the
following transformations can be applied:

a) Generalization
Definition (Generalization)
Let MΠ be a Type Matrix higraph.
Let M be a Model higraph.
Let Π→ MMg : a morphism that associates to each

element (object, flow, attribute) x of the Model higraphM to
its type, with MΠ, the Model Type higraph.
We have:

• ;)(, Π∈∈∀ MxgMx
•));(())((, xgxgMx ρρ ⊂∈∀
•).()((, txgMt t ρ⊂Π∈∀ Π

b) Model refinement
Definition (Model Refinement)

Let M be a Model higraph. Let MΠ be the associated Type
Matrix; Let Π→ MMg : the morphism that associates to
each element (object, flow, attribute) of the Model higraph to
its type. Let x, y be two model nodes. An element x is said to
be refined by an element y if x contains y, i.e.:

•)(xy ρ∈
•))(()(xgyg ρ∈

Fig. 5. Example of ArKItecttree view.

Fig. 6. Example of a model.

c) Aggregation
Definition (Aggregation)
Let M be a Model higraph.
Let x be a model node.
Let yi be model nodes such that)(xy ρ∈ .
The aggregation function fagg maps a set of elements yi to a

single element x:
MMfagg →: such that xyyf xagg =),...,()(1 ρ .

This function is used to represent an object as a black box,
i.e. without its children elements.

d) Decomposition
Definition (Decomposition)
Let M be a Model higraph.

250

International Journal of Modeling and Optimization, Vol. 4, No. 3, June 2014

Let x be a model node.
Let yi be model nodes such that)(xy ρ∈ .
The aggregation function fdec maps a single element x to a

set of elements yi:

MMfdec →: such that { })(1,...,)(xdec yyxf ρ= .

This function is used to represent an object as a glass box,
i.e. with its children elements. Its corresponding inverse
function is the aggregation function.

IV. DISCUSSION

The well-organized single typed hierarchy of diagrams
permits holistic understanding of the system and its
environment effortlessly, while concurrently showing several
aspects of the system. The model is easily navigable thanks
to the single hierarchy of diagrams, supporting fully
hierarchical organization of information.

Besides, the model permits to organize hierarchically
information and to have the black box/glass box view
according to the user need.

Although arKItect is fundamentally a sound tool for
modeling due to its graphical (in a mathematical sense)
nature and flexibility, there is one significant drawback: the
complex process of arranging the nodes and edges in a visual
layout that maximizes communication of information to an
end-user. The problem can be difficult, even in a small sized
model, and becomes critical in a large scale (industrial)
system. In a large system of many components, behaviors,
and domains, there most likely exists an incredible amount of
overlap among the nodes and edges that make up a model of
such a system.

Finally, as a language, arKItect is intended to model
general-purpose complex systems. Thus it is very flexible.
On another hand, this flexibility shall be controlled: defining
a metamodel is not an easy task and usually requires very
experienced specialists.

REFERENCES

[1] H. D. Jørgensen, “Interactive process models,” PhD thesis, Norwegian
University of Science and Technology Trondheim, Norway, 2004.

[2] M. S. Avnet,“Socio-cognitive analysis of engineering systems design:
shared knowledge, process, and product,” PhD thesis, MIT, USA,
2009.

[3] J. N. Martin, Systems Engineering Guidebook: A Process for
Developing Systems and Products, CRC Press, Inc.: Boca Raton, FL,
1996.

[4] L. Lambers, “Certifying rule-based models using graph
transformation,” PhD thesis, Technical University of Berlin, Germany,
2009.

[5] F. Drewes, B. Hoffman, and D. Plump, “Hierarchical graph
transformation,” Journal of Computer and System Sciences, vol. 64, no.
2, pp. 449–283,2002.

[6] H. A. Simon, “The architecture of complexity,” in Proc. the American
Philosophical Society, vol. 106, no. 6, pp. 467–482, 1962.

[7] L. Cardelli and P. Wegner, “On understanding types, data abstraction,
and polymorphism,” ACM Comput. Surv, vol. 17, no. 4, pp. 471–522,
1985.

[8] V. Ahl and T. F. H. Allen, Hierarchy Theory - A Vision, Vocabulary,
and Epistemology, Columbia University Press, 1996.

[9] D. Harel, “Statecharts: A visual formalism for complex systems,”
Science of Computer Programming, vol. 8, no. 5, pp. 231–274, 1987.

[10] D. Harel, “On visual formalisms,” Communications of the ACM, vol.
31, no. 5, pp. 514–530, 1988.

[11] B. Langlois, D. Exertier, and G. Devda, “Toward families of qvtdsl and
tool,” in Proc. 6th OOPSLA Workshop on Domain-Specific Modeling
DSM’06, pp. 87–97, 2006.

Hycham Aboutaleb is a PhD student in the electronics
and computer engineering Department at ENSTA
Paristech, France. He has a MSc in System Engineering
from Ecole Polytechnique, France and a BSc in
electronics and communications engineering from Cairo
University, Egypt. He worked as a system engineer at
Knowledge Inside where he participated in the

implementation of system engineering processes with several companies and
in the development of system engineering software tools. His current
research areas include design methodologies and tools, system engineering,
safety and dependability engineering, optimization and complexity
reduction, and quality control.

Bruno Monsuez graduated in 1989 from Ecole
Polytechnique. He received his PhD in computer
science from the Ecole Polytechnique in 1994. He is
now the director of the electronics and computer
engineering Department at ENSTA-Paristech. His
current research interests are focused on developing
and enhancing hierarchical compositional

mathematical models that can be used to represent hardware and software
components of complex embedded systems as well as formal verification
techniques that allow a cojoint verification of functional and non-functional
properties of the software as well as of the hardware on which the software
is expected to run.

