
Abstract—This paper proposes a full-order state observer 

design of nonlinear control systems approximated by piecewise 

bilinear (PB) models. We construct PB model of nonlinear 

control systems. The approximated system is found to be fully 

parametric. The input-output (I/O) feedback linearization is 

applied to stabilize PB control systems. The design method is 

capable of designing the state observer and the servo controller 

of nonlinear systems separately. Although the controller is 

simpler than the conventional I/O feedback linearization 

controller, the control performance based on PB model is the 

same as the conventional one. We present the PB modeling 

combined with the conventional feedback linearization as a 

very powerful tool for the analysis and synthesis of nonlinear 

control systems. An illustrative example confirms the 

feasibility of our proposals. 

 
Index Terms—Nonlinear control, piecewise bilinear model, 

input-output linearization, state observer. 

 

I. INTRODUCTION  

Piecewise linear (PL) systems which are fully parametric 

have been intensively studied in connection with nonlinear 

systems [1]-[4]. We are interested in the parametric 

piecewise approximation of nonlinear control systems based 

on the original idea of PL approximation. The PL 

approximation has general approximation capability for 

nonlinear functions with a given precision. However, it is 

difficult to handle some PL system such as simplexes in the 

rectangular coordinate system.  

To overcome this difficulty, one of the authors suggested 

to use the piecewise bilinear (PB) approximation [5]. We 

note that a bilinear function as a basis of PB approximation 

is, as a nonlinear function, the second simplest one after a 

linear function. The model has the following features. 1) 

The PB model is derived from fuzzy if-then rules with 

singleton consequents. 2) It is built on piecewise hypercubes 

partitioned in the state space. 3) It has general 

approximation capability for nonlinear systems. 4) It is a 

piecewise nonlinear model, the second simplest after a PL 

model. 5) It is continuous and fully parametric. So far we 

have shown the necessary and sufficient conditions for the 

stability of PB systems with respect to Lyapunov functions 

in the two dimensional case [6], [7] where membership 

functions are fully taken into account. We derived the 

stabilizing conditions [8], [9] based on the feedback 
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linearization, where [8] applies the input-output 

linearization and [9]-[10] applies the full-state linearization. 

In the feedback linearization, we design a state feedback 

controller which transforms a nonlinear system into an 

equivalent linear system.  

This paper proposes a full-order state observer of PB 

control system to estimate the coordinate transformation z. 

This design method is capable of designing the state 

observer and the controller of nonlinear systems separately. 

The full-order state observer can be designed for all the PB 

control systems since the feedback linearized system is 

observable. Although the controller and observer are simpler 

than the conventional I/O feedback linearization controller, 

the performance based on PB model is equivalent to the 

conventional one.  

This paper is organized as follows. Section II presents the 

canonical form of PB models. Section III presents PB 

controllers for nonlinear plants with PB modeling and I/O 

linearization. Section IV proposes a design method of 

observer-based PB controller. Section V shows an example 

demonstrating the feasibility of the proposed methods, and 

Section VI gives conclusions.  

 

II. CANONICAL FORM OF PB MODELS  

A. Open-Loop Systems  

In this section, we introduce the PB models suggested in 

[5]. We deal with the two dimensional case without loss of 

generality. Define a vector ( , )d    and a rectangle R
 

in the two-dimensional space as, respectively,  
 

 1 2( , ) ( ), ( )
T

d d d     

1 1 2 2[ ( ), ( 1)] [ ( ), ( 1)]R d d d d          (1) 

 

  and   are integers: ,    where 

1 1( ) ( 1)d d   ,
2 2( ) ( 1)d d   and 

1 2(0,0) ( (0), (0)) .Td d d  The superscript T denotes 

transpose operation. For x R , the PB system is 

expressed as   
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where 
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and 2 2( ) [0,1]j x  . In the above, we assume (0,0) 0f   

and (0,0) 0d   to guarantee 0x   for 0x  .   

A key point in the system is that the state variable x  is 

also expressed by a convex combination of ( , )d i j  with 

respect to 1 1( )i x  and 2 2( )j x  just as in the case of x . 

As is seen in Eq. (3), x  is located inside R
 which is a 

rectangle: a hypercube in general. That is, the expression of 

x  is polytopic with four vertices 
1( )d  , 

1( 1)d   , 
2 ( )d   

and 
2 ( 1)d   . The model of ( )x f x  is built on a 

rectangle including x  in the state space and it is also poly 

topic with four vertices ( , )f   , ( 1, )f   , ( , 1)f     

and ( 1, 1)f    .We call this form of the canonical 

model (2) parametric expression.  

Representing x  with x  in Eqs. (2) and (3), we can 

obtain the state space expression of the model which is 

found to be bilinear (bi-affine) [5]. Therefore, the derived 

PB model has simple nonlinearity. In the case of the PL 

approximation, a PL model is built on simplexes partitioned 

in the state space, triangles in the two dimensional case. 

Note that any three points in the three dimensional space are 

spanned with an affine plane: 
1 2y a bx cx   . A PL 

model is continuous. It is, however, difficult to handle 

simplexes in the rectangular coordinate system. 

Also we can see that any four points in the three 

dimensional space can be spanned with a bi-affine plane: 

1 2 1 2y a bx cx dx x    . In contract to a PL model, a PB 

model as such is built on rectangles with the four vertices, 

on hypercubes in a general dimensional space, partitioned in 

the state space; it well matches the rectangular coordinate 

system. Therefore, PB models would be applicable to 

control purpose.  

B. Closed-Loop Systems 

We consider a two-dimensional nonlinear control system. 

( ) ( ) ( )

( ).

o o

o
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  (4) 

The PB model (5) can be constructed from the nonlinear 

system (4). 
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The modeling procedure in the region R
 is as follows.  

Algorithm 2.1: Piecewise bilinear modeling procedure  

1) Assign vertices ( , )d i j  for 
1 1( )x d  ,

1( 1)d   , 

2 2 ( )x d  , 
2 ( 1)d    of the state vector x , then 

the state space is partitioned into piecewise regions, 

see also Fig. 1.  

2) Compute the vertices ( , )f i j , ( , )g i j  and ( , )h i j  

in Eqs. (6), by substituting the values of 
1 1( )x d  , 

1( 1)d    and 
2 2 ( )x d  , 

2 ( 1)d    into original 

nonlinear functions 
of , 

og  and 
oh  in the system 

(4). Fig. 1 illustrates 
1( )f x  and x R . 

 
Fig. 1. Piecewise region (

1( )f x , x R ). 

 

The overall PB model can be obtained automatically 

when all the vertices are assigned. Note that ( )f x , ( )g x  

and ( )h x  in the PB model coincide with those in the 

original system at the vertices of all the regions.  

 

III. DESIGN OF PB CONTROLLERS FOR NONLINEAR MODELS 

WITH PB MODELING AND I/O LINEARIZATION 

This section deals with the I/O linearization of nonlinear 

control systems approximated with PB models. We consider, 

in particular, nonlinear systems and show their I/O 

linearization based on PB models in detail. We also show 

that in the case of PB systems, the I/O linearization (the 

feedback linearization in general) may be applicable to a 

global region by avoiding the restrictions of the 

conventional linearization of nonlinear control system: the 

restriction concerning the relative degree. First we give a 

brief introduction to the I/O linearization of PB models [9], 

[10]. Due to lack of space, we use 1

1

i  and 2

2

i  in 

1

1 1( )
i

x  and 2

2 2( )
i

x  in this section. 

A. I/O linearization 

Consider the PB model (5) in the previous section. The 

derivative y  is given by 

 ( ) ( ) ( ) ( ) ,f g

h
y f x g x u L h x L h x u

x


   


  

where 
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Once again, if ( ) 0g fL L h x  , then (2) 2 ( )fy L h x  is 

independent of u . Repeating this process, we see that if 

( )h x  satisfies  

( ) 0,  i

g fL L h x   0,1, 2,  ,i     

1 ( ) 0g fL L h x   
.

 

 
( ) 1( ) ( ) .f g fy L h x L L h x u     

 

The foregoing equation shows clearly that the system is 

input-output linearizable, since the state feedback control 

 
1( ( ) ) / ( )f g fu L h x v L L h x     

 

reduces the input-output map to ( )y v  , which is a chain 

of   integrators. In this case, the integer   is called the 

relative degree of the system. 

If 1 ( ) 0g f tL L h x  , the relative degree cannot be defined 

at 
tx x . In some cases the relative degree can be defined 

at the point because we can adjust a partition of the state 

space for PB modeling so that 1 ( ) 0g f tL L h x  . 

Definition 3.1: The nonlinear system is said to have 

relative degree  , 1 n  , in a region 
0D D  if  
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The input-output linearized system can be formulated as 
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Note that all the PB models (5) are transformed into the 

linear system (10). Therefore it is easy to design the 

stabilizing controller and analyze the stability of the PB 

systems.  

According to the relative degree, three cases of linearized 

systems (10) must be considered. 

Relative degree: n   

In this case, the state vector of the input-output linearized 

122

If ( ) 0gL h x  , then ( )fy L h x is independent of u . 

We continue to calculate the second derivative of y , 

denoted by (2)y and then we obtain

then u does not appear in the equations of y , 

.

y , ... , ( 1)y  and appears in the equation of ( )y  with a 

nonzero coefficient:
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system is  
1( ( ), ( ), , ( ))T

f fz h x L h x L h x   
 

The state vector z  is necessary to be a diffeomorphism.  

Relative degree: n    

There is unobservable state ( n -   dimensions).  It is 

necessary to consider the zero dynamics of the unobservable 

state  . The state vector z  is        necessary to be a 

diffeomorphism.  

 

 ,
T

z   ,   , n   , 

1 2( , ) ( , ) ( , )v          .  

(0, )   is characterized by zero dynamics.  

In the case of ( ) 0i

g fL L h x  , i , the proposed approach 

cannot be applied.  

When the relative degree n  , the input-output 

linearizing controller is ( ) ( )u x x v   , where 

 
1 1( ) ( ) / ( ), ( ) 1/ ( ).f g f g fx L h x L L h x x L L h x       . 

 

In the following, we assume the relative degree is n  

(full). The stabilizing linear controller v F   of the 

linearized system (10) can be obtained so that the transfer 

function 1( )G C sI A B   is Hurwitz.  

The linearizing controller can be characterized as the 

LUT (Look-Up-Table) controller, where the LUT-controller 

is widely used for industrial applications, in particular, for 

vehicle control because of simplicity and also visibility as a 

nonlinear controller. In the case of the LUT-controller, 

control inputs are calculated by interpolation based on the 

table. When bilinear piecewise interpolation is adopted, the 

LUT-controller is found to be exactly the PB system.  

 

IV. OBSERVER-BASED PB CONTROLLER 

We propose an observer-based PB controller to estimate 

the coordinate transformation z  by using the error of 

ˆy y . In this paper, we construct a full-order state observer 

for PB control system as shown in Fig. 2. In this figure, T  

and 1/ S  show the coordinate transformation and the 

integrator. F  is the feedback gain, K  is the observer 

gains, and r  ( 0r  ) is the set point signal. Due to lack of 

space, we only discuss the nonlinear system with the relative 

degree n  . The following approach can be also applied 

to the nonlinear systems with n  . We consider the 

linearized system using PB models.  

 

,z Az Bv

y Cz

 





    (12) 

 

The full-order state observer system is of a following 

form. 

ˆˆ ˆ ( ),

ˆ ˆ,

z Az Bv K y y

y Cz

    





     (13) 

 

where the controller 

ˆ.v Fz     (14) 

The closed loop system including the systems (12) and 

(13) is obtained as 

 

ˆˆ

z A BF z

KC A BF KC zz

    
          



  

 

The following closed loop system can be obtained by 

using a coordinate transformation ˆe z z   and the 

similarity transformation.  

 

0

z A BF BF z

e A KC e

     
    

    




 

 

We can design the feedback gain F  and observer gain 

K  separately. This is based on the separation principle. In 

general, one selects the poles of A KC  on the left side of 

the poles of A BF . Finally, the observer-based PB 

controller is obtain as 

1

ˆ( )
( ) ( )

( )

f

g f

L h x Fz
u x x v

L L h x




 



 
    

 

 
Fig. 2. Full-order state observer of PB control system. 

 

V. NUMERICAL EXAMPLES 

Consider the nonlinear system 

 

2

1 2 2

3

3 3

2

1 3

1

1

2 0
1

( ) ( ) 0 ,
3

1

( ) .

o o

o

x x x

x f x g u x x x u

x x

y h x x

  
    

   
                    

 
  


 (15) 

 

The conventional I/O feedback linearization controller is 

designed as  

3

2 2

( ) 1
( )

( ) ( )

o

o o o o

f o

g f o g f o

L h x
u x v

L L h x L L h x


  , 
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where 

 

1 2

3

1 2 3

3

2

2

2 3

2 2

2 3

( ) ( ) (1 ) ( )

(1 )( 1 ) ( ),

( ) (1 )( 1 ),

( ) ( ), ( ), ( ) .

o

o o

f o o o

o

g f o

T

o o o o

L h x f x x f x

x x f x

L L h x x x

f x f x f x f x

  

   

   



 

The linearized controller cannot be applied to stabilize the 

nonlinear system (15) at 
2 1x    and 

3 1x    since 

2 ( ) 0
o og f oL L h x  at these points. Therefore, the linearizable 

region is restricted to 
2 [ 1, )x     and 

3 [ 1,1]x   . Divide 

the state space of the nonlinear system (15) as 

1 { 3, 1.5, ,3}x     , 
2 { 2, 1.2,0,1.2,2}x     and 

3 { 2, 1.2,0,1.2,2}x    , then the PB model is  constructed 

as  

 1 2 3

1

0
( ) ( ) ( ), ( ), ( ) ,

1

( ) .

T
x f x gu x f x f x f x u

y h x x

  
     

  


 


 

where 

 

  

 

 
TABLE I: PB MODELS 

 
 

 

2

3 1
1

1

1 1 1 2
2 3

1 2 2 3

2 1 2

2 3

( )
( ) ( )

( ) ( ) ( ) ( )
( ) ( ),

( ) ( )
( ) ,

f

g f

f x
L h x f x

x

f x f x f x f x
f x f x

x x x x

f x f x
L L h x

x x

 
  

 

   
 

   

 


 

 

 

 

Note that 
1 1 1( ) /f x x  ,

1 1 2( ) /f x x   and 
2 1 2( ) /f x x   in 

the stabilizing controller (16) are constant parameters. The 

stabilizing controller is represented as a bilinear function. 

Therefore the controller is characterized as the LUT 

controller.  

From the original 
1( )f x  and 

2 ( )f x , we can derive 
 

 

 

 

If 
2 21 1/ 2( ( ) ( 1)) 0d d      and 

2 2

3 3 3 31 1/ 3( ( ) ( ) ( 1) ( 1) ) 0d d d d          , then 

2 ( ) 0g fL L h x  . These conditions are satisfied by the current 

partition of the state space. Therefore, the PB model is 

found to be globally feedback linearizable. Fig. 3 shows a 

simulation result of the initial condition (0) (1,1.5,1)Tx  , 

where it is seen that 
3x  exceeds 1 : note that the original 

linearization region is 
31 1x   . 

 
Fig. 3. Control responses using the PB controller. 

 

We apply the observer design method to this nonlinear 

system. We select the poles of A KC  on the left side of 

the poles of A BF , then the feedback gain is calculated as 

(2.12,5.27,2.79)F   and observer gain is calculated as 

(33.0,362,1320)TK  . Fig. 4 shows a simulation result of 

the initial condition (0) (1,1.5,1)Tx  , where it is also seen 
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f1(x) =

σ+1
∑

i=σ

τ+1
∑

j=τ

ωi
1(x1)ω

j
2(x2)f1(i, j, ·),

f2(x) =

υ+1
∑

k=υ

ωk
3 (x3)f2(·, ·, k),

f3(x) =

σ+1
∑

υ+1
∑

ωi
1(x1)ω

k
3 (x3)f3(i, ·, k).

Here, f1(i, j, ·) means that it is independent of k

and also about f2(·, ·, k) and f3(i, ·, k).

∂f1(x)

∂x1
= (f1(σ + 1, ·, ·)− f1(σ, ·, ·))/d1(∆σ),

∂f1(x)

∂x2
= (f1(·, τ + 1, ·)− f1(·, τ, ·))/d2(∆τ ),

∂f2(x)

∂x3
= (f2(·, ·, υ + 1)− f2(·, ·, υ))/d3(∆υ).

f1(·, τ + 1, ·)− f1(·, τ, ·)

=[1 + 1/2(d2(τ) + d2(τ + 1))](d2(τ + 1)− d2(τ)),

f2(·, ·, υ + 1)− f2(·, ·, υ)

=[−1 + 1/3(d3(υ)
2 + d3(υ)d3(υ + 1) + d3(υ + 1)2)]

× (d3(υ + 1)− d3(υ)).
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Table I shows the PB models of 
1( )f x ,

2 ( )f x and 

3 ( )f x . We design the stabilizing controller: 

3

2 2

( ) 1
( ) ,

( ) ( )

f

g f g f

L h x
u x v

L L h x L L h x


  (16)

where

 

1 1
1 1 1 2

1 2

2.12, 5.27, 2.79 ,

( ) ( )
, ( ), ( ) ( ) ,

T

v Fz z

f x f x
z x f x f x f x

x x

   

  
  

  



that 
3x  exceeds 1 : note that the original linearization 

region is 
31 1x   . Fig. 5 shows the estimated state 

trajectories of PB control with the state observer.  

Note that the observer-based PB controller is simpler than 

the conventional feedback linearization one. Since the 

nonlinear terms of the controller (16) are not the original 

nonlinear terms (e.g., 2

1x , 2

2x  and 3

3x ) and  the PB 

controller is represented as an LUT one. However the 

control performance based on PB model is the same as the 

conventional one. 

 
Fig. 4. State responses using the observer-based PB controller. 

 

 
Fig. 5. Estimated state trajectories using the observer-based PB 

controller. 

 

VI. CONCLUSION 

This paper has proposed a full-order state observer design 

of nonlinear control systems approximated by piecewise 

bilinear (PB) models. We have constructed PB model of 

nonlinear control systems. The approximated system is 

found to be fully parametric. The input-output (I/O) 

feedback linearization has been applied to stabilize PB 

control systems. The design method is capable of designing 

the state observer and the servo controller of nonlinear 

systems separately. Although the PB controller is simpler 

than the conventional I/O feedback linearization controller, 

the control performance based on PB model is the same as 

the conventional one. We have presented the PB modeling 

combined with the conventional feedback linearization as a 

very powerful tool for the analysis and synthesis of 

nonlinear control systems. An illustrative example has 

confirmed the feasibility of our proposals. 
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