



Abstract—Software-Defined Networking (SDN) and Network

Functions Virtualization (NFV) are technologies for enabling

innovative network architectures. Nevertheless, a fundamental

problem in instantiation of Virtual Networks (VNs), performed

by NFV, is an optimal allocation of resources offered by one or

more SDN domain networks. The process of instantiation of VNs

is performed in several phases, including splitting and mapping

algorithms. For each one of these phases, researchers have

developed algorithms, being possible to obtain different results

combining them. This paper introduces a modular and flexible

graphical discrete event simulation tool for solving the complete

virtual resource allocation in SDN domain networks problem. A

Java-based tool has been developed to integrate existing and

future algorithms related to each phase of the process. The

simulator is a test-bed in which researchers can select the

appropriate algorithm in each phase and display the results in a

graphical form, while obtaining a performance evaluation of the

selected and proposed algorithms.

Index Terms—Network functions virtualization, network

modeling, optimization, software-defined networking.

I. INTRODUCTION

Traditional network architectures are ill-suited to meet the

requirements of today’s enterprises, carriers, and end users.

Thanks to a broad industry effort spearheaded by the Open

Networking Foundation (ONF), SDN is transforming the

network architecture. In the SDN architecture, the control and

data planes are decoupled. Network intelligence is centralized

in software-based SDN controllers, which maintain a global

view of the network. As a result, enterprises and carriers gain

unprecedented programmability, automation, and network

control, enabling them to build highly scalable, flexible

networks that readily adapt to changing business needs. The

ONF is a non-profit industry consortium that is leading the

advancement of SDN and standardizing critical elements of

the SDN architecture such as the OpenFlow
TM

 protocol,

which structures communication between the control and data

layers of supported network devices. OpenFlow is the first

standard interface designed specifically for SDN, providing

high-performance, granular traffic control across multiple

vendors’ network devices. OpenFlow-based SDN is currently

being rolled out in a variety of networking devices and

software, delivering substantial benefits to both enterprises

Manuscript received December 10, 2013; revised February 12, 2014.

This work has been supported by the Government of Spain through the

project TEC2010-20527-C02-01 and through a predoctoral FPI scholarship.

The authors are with Department of Telematics Engineering. Universitat

Politècnica de Catalunya. BarcelonaTech. Esteve Terradas, 7, 08860,

Castelldefels, Barcelona, Spain (e-mail: aurelioj.garcia@entel.upc.edu,

e-mail: cristina@entel.upc.edu, e-mail: yury.jimenez@entel.upc.edu).

and carriers.

NFV aims to transform the way that network operators

architect networks by evolving standard Information

Technology (IT) virtualization technology to consolidate

many network equipment types onto industry standard high

volume servers, switches and storage, which could be located

in Data centers, Network Nodes and in the end user premises.

It involves the implementation of network functions in

software that can run on a range of industry standard server

hardware, and that can be moved to, or instantiated in, various

locations in the network as required, without the need for

installation of new equipment. With NFV, SDN networking

adds a new layer named orchestration. The orchestrator has a

view of all the different platforms in the network and can

monitor the resource utilization (CPU, RAM and storage).

NFV is highly complementary to SDN, but not dependent

on it (or vice-versa). NFV can be implemented without a SDN

being required, although the two concepts and solutions can

be combined and potentially greater value accrued. NFV

goals can be achieved using non-SDN mechanisms, relying on

the techniques currently in use in many data centers. But

approaches relying on the separation of the control and data

forwarding planes as proposed by SDN can enhance

performance, simplify compatibility with existing

deployments, and facilitate operation and maintenance

procedures. NFV is able to support SDN by providing the

infrastructure upon which the SDN software can be run.

Furthermore, NFV aligns closely with the SDN objectives to

use commodity servers and switches.

In this paper we introduce a global simulator, which is a

graphical tool that facilitates development and simultaneous

checking of different types of algorithms to VNs instantiation.

The simulator models the functions of the orchestrator using

the global view of the network provided by the controllers.

The contribution of this paper is threefold. First, it presents a

simulator architecture oriented to modeling the VNs

instantiation process [1]-[6]. Second, the paper describes

networks modeling. Third, it explains the model used for

implementing existing algorithms, i.e., network splitting, and

node and link mapping algorithms [7]–[11]. This simulator is

available in [12].

A Modular Simulation Tool of an Orchestrator for

Allocating Virtual Resources in SDN

Aurelio Javier García, Cristina Cervelló-Pastor, and Yury Jiménez

88

The rest of this paper is organized as follows. Section II

presents the programming technologies used for the simulator

development, the simulator options, how networks are created

and incorporated in the simulator, how to run simulations and

the networks results. Section III explains the evaluation of

simulation. Section IV describes the programming structure

used for modeling networks, nodes and links. Section V

presents the network algorithms: network splitting and node

and link mapping. Section VI provides other works in this

DOI: 10.7763/IJMO.2014.V4.352

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

mailto:aurelioj.garcia@entel.upc.edu
mailto:cristina@entel.upc.edu
mailto:yury.jimenez@entel.upc.edu

II. SIMULATOR ARCHITECTURE, DESIGN AND OVERVIEW

A. Simulator Architecture

This tool is a modular graphical discrete event simulator for

allocation of virtual resources in SDN domain networks. The

SDN domain networks include SDN nodes, i.e. routers,

switches and servers, all managed by a controller. The

switches interconnect the servers with the routers, and the

routers interconnect the SDN domains as it is shown in Fig.

1.the servers provide services to end-users.

Fig. 1. Interconnection of SDN domains.

The tool models the operation of a system as a discrete

sequence of events in time, i.e., the start and end times of the

VN requests. At any instant of time the system receives VN

requests with a specific lifetime and serves them one by one.

Each VN request passes through three phases. Fig. 2 shows

these phases. In the Network Splitting phase, virtual nodes are

distributed over SDN domain networks by the criteria of

tenant cost of SDN resources, but not yet assigned to concrete

SDN domain nodes. In the Nodes Mapping phase, the virtual

nodes are finally assigned to the SDN domain nodes, and in

the Links Mapping phase the virtual nodes are interconnected

through SDN domain links according to the virtual links.

During the VN request lifetime, the selected SDN domain

resources are reserved. At the end of the VN request lifetime

these resources are released and can be reused for future VN

requests. During this process, a VN request is rejected if there

are not enough SDN resources.

Fig. 2. Phases of simulator for each VN request.

B. Simulator Design

Simulator is based on Java programming language and it

has been developed and tested using the Eclipse Integrated

Development Environment (IDE). The Graphical User

Interface (GUI) of our simulator has been implemented under

Swing. Swing classes (part of the Java
TM

 Foundation Classes

(JFC) software) implement a set of components for building

GUIs and adding rich graphics functionality and interactivity

to Java applications. Graphs are developed by Java Universal

Network/Graph Framework (JUNG) software library. It is a

software library that provides a common and extendible

language for the modeling, analysis, and visualization of data

that can be represented as a graph or network. Library CPLEX

has been used to solve the relaxed Mixed Integer

Programming (MIP) problem. The ObjectAid UML (Unified

Modeling Language) Explorer is an agile and lightweight

code visualization tool for the Eclipse IDE and it has been

used for representing the simulator class diagrams.

C. Simulator Overview

The main window of the simulator has three parts: a menu

bar on the top, tabs with tables of SDN and virtual networks

on the left, and tabs with graphics of SDN and virtual

networks on the right. Menu bar has four elements: Simulator,

SDN Networks, Virtual Networks and Simulation. Simulator

has two options: About and Exit. SDN networks and Virtual

Networks have three options: Open, Create and Save.

Simulation has the option Create.

SDN Networks. SDN networks can be inserted by default

having them embedded into the simulator; they can also be

inserted opening an excel file with the SDN networks

information (SDN Networks/Open); or they can be created

with the wizard (SDN Network/Create). The SDN networks

creation parameters are: the number of networks, the number

of routers, switches and servers, server operating systems

(Linux, Windows, Solaris or Android), CPU, RAM and

storage, their corresponding range of prices, available number

of virtual nodes in a node, link bandwidth and distance, and

his corresponding range of price. Once the SDN networks are

created, the results are showed by the simulator. The list with

the created SDN networks is on the left and the graphics on

the right. Clicking on one SDN network or on one tab on top,

its graphic is showed on the right. Right-clicking on one node

or link its color change to green and the information is

displayed. SDN networks can be saved in an excel file using

the option SDN Networks/Save on the menu bar.

Virtual Networks. VNs can be inserted into the simulator

by default, they can also be generated opening an excel file

with the virtual networks information (Virtual

Networks/Open) or created with the wizard (Virtual

Network/Create). The virtual networks creation parameters

are: the number of networks, the number of window time units,

the number of networks per window considering Poisson

arrivals, the average units of time with an exponential

distributed lifetime, the number of routers, switches and

servers, server operating systems (Linux, Windows, Solaris or

Android), CPU, RAM and storage, and link bandwidth. Once

the virtual networks are created the results are showed by the

simulator. The graphical details are similar to those explained

for SDN networks.

89

area. Finally we conclude in Section VII identifying future

simulator options and planning new algorithms formulation

for both splitting and mapping problems.

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

Fig. 3. Graphical results of simulation.

III. SIMULATION EVALUATION

The simulation is created clicking on the menu option

Simulation/Create. The existing simulation options are: the

SDN networks, the virtual networks, the inclusion or not of

virtual networks backup, the virtual network splitting

algorithm, and if the virtual network embedding is with

coordinated virtual node and link mapping or not. In case of

selecting with coordinated virtual node and link mapping, the

next option is the virtual network embedding algorithm and

the rounding virtual nodes mapping algorithm. On the other

hand, in case of selecting without coordinated virtual node

and link mapping, the next option is the virtual nodes mapping

algorithm. Finally, the process ends up selecting the virtual

link mapping algorithm and its cost metric, i.e., distance or

available bandwidth.

Once the options of the simulation are selected, it runs

automatically. A window with the results of our simulation is

displayed. This window is divided into three parts. On the top,

there are the selected options for the simulation; on the left,

the results for the SDN networks; and on the right, the results

for the virtual networks. On top of both networks results there

are two tabs: the graphical and the numerical networks results.

Each network can be selected by clicking on the

corresponding tab. Both results are presented instant by

instant. The time instant is showed on top of the graphic and

using the slider below it is possible to change the instant of

time. It is feasible to create and compare as many simulations

as you want.

SDN Networks Results. The graphical results of the SDN

networks show the allocation of SDN resources to virtual

resources at each instant of time. The grey color of the nodes

and links means that they have no virtual resources assigned.

The yellow color means that they contain virtual resources.

The red color means that their occupation is above 80%.

Finally, the green color means that they have been selected for

showing information about them. Selecting a node and

right-clicking on it, it is shown information of the SDN node

and of the virtual nodes allocated, if that is the case. The color

of node changes to green when the information of the SDN

node is pressed. The color of the node and the color of the

virtual node in the graphical results of the VNs change to

green color when the information of the virtual node is

pressed. The same happens with links.

Virtual Networks Results. The graphical results of the

virtual networks show the allocation of SDN resources to

virtual resources at each instant of time. In this case, the code

color is the following. The grey color of nodes and links

means that they are not assigned to SDN resources; the yellow

color means that they have been assigned; the green color

means that they have been selected to know information; and,

the blue color represents a link between two different SDN

networks. Selecting a node and right-clicking, the simulator

shows information about the virtual node and the SDN node

that have been assigned. When the information of a virtual

node or a SDN node are pressed, the node color changes to

90

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

green color and the color of SDN node in the graphical results

of the SDN networks results, changes to green also. Clicking

on All Virtual Network the color of all SDN nodes and links,

assigned to the virtual network, in the graphical results of the

SDN networks, they change to green. Selecting a virtual link

and right-clicking, the information of the virtual link is

showed. This information is more extensive than the others.

The numerical results of the virtual networks show a table

with the general allocation of SDN resources to virtual

resources at each instant of time. Fig. 3 shows the graphical

results of one simulation.

IV. NETWORK MODELING

A network consists of nodes and links and can be physical

(SDN) or virtual. Here is explained the model of physical and

virtual nodes, links and networks.

A. SDN and Virtual Nodes Modeling

Node class models a node and contains the main

characteristics of all nodes. The general attributes of a node

are: network name, node name, identifier number, time stamp,

type (Router, Switch or Server), operating system (Linux,

Windows, Android or Solaris), CPU, RAM and storage. The

main class is Node. SdnNode and VirtualNode extend Node.

Fig. 4 shows the node classes hierarchy.

Fig. 4. Hierarchy of the classes of a node.

Fig. 5. Hierarchy of the classes of a SDN node.

SDN Nodes. SdnNode class models a physical node and

contains the main characteristics of all SDN nodes together

with the Node class. One SDN node can host more than one

virtual node and they will use its CPU, RAM and storage. The

general attributes of a SDN node are: the available CPU, the

available RAM, the available storage, the maximum number

of virtual nodes that it can host, and the available number of

virtual nodes and virtual nodes that it can host. SdnRouter

models a SDN router, SdnSwitch models a SDN switch and

SdnServer models a SDN server. These classes extend

SdnNode. The difference between these three classes, apart

from the type, is that a server has storage resource while

routers and switches do not. Fig. 5 shows the hierarchy of the

classes of a SDN node.

Virtual Nodes. VirtualNode class models a virtual node and

contains the main characteristics of all virtual nodes together

with the Node class. One virtual node will be hosted in one

SDN node. A general attribute of virtual nodes is the SDN

node that hosts it. VirtualRouter models a virtual router,

VirtualSwitch models a virtual switch and VirtualServer

models a virtual server. These classes extend VirtualNode.

The difference between these three classes, apart from the

type, is that a server has storage resource while routers and

switches do not. Fig. 6 shows the hierarchy of the classes of a

virtual node.

Fig. 6. Hierarchy of the classes of a virtual node.

B. SDN and Virtual Links Modeling

Link class models a link and contains the main

characteristics of all links. The general attributes of a link are:

a network name of the link, a name, an identifier number, a

time stamp, the bandwidth and two connected nodes. The

main class is Link. SdnLink and VirtualLink extend Link.

SDN Links. SdnLink class models a SDN link and contains

the main characteristics which have all SDN links together

with the Link class. One SDN link can host more than one

virtual link and they will use its bandwidth. The general

attributes of a SDN link are: the available bandwidth, the

physical distance and the virtual links that it hosts.

Virtual Links. VirtualLink class models a virtual link and

contains the main characteristics which have all virtual links

together with the Link class. One virtual link will be hosted in

one or more SDN links. The general attribute of virtual links

is the SDN links that host the virtual link. Fig. 7 shows the

hierarchy of the classes of a virtual link.

Fig. 7. Hierarchy of the classes of a link.

C. SDN and Virtual Networks Modeling

Network class models a network and contains the main

characteristics that all networks have. The general attributes

of Network are: name, identifier number, a time stamp, state

(Accepted, Rejected, Available or Ready) and its graph. The

main class is Network. SdnNetwork and VirtualNetwork

extend Network.

SDN Networks. SdnNetwork class models a SDN network

and contains the main characteristics which have all SDN

networks together with Network class. One SDN network can

host more than one virtual network or a part of it, and they will

use its nodes and links.

Virtual Networks. VirtualNetwork class models a virtual

network and contains the main characteristics of the virtual

networks together with the Network class. One virtual

91

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

network will be hosted in one or, in parts, in more than one

SDN networks. General attributes of virtual networks are: the

start and end dates, the name of SDN networks that host the

virtual network, subnetworks forming the virtual network, the

mapping of virtual nodes in SDN nodes, the mapping of

virtual links in SDN links and the flag of accepted or denied

virtual network.

Fig. 8 shows the hierarchy of the classes of a network.

Fig. 8. Hierarchy of the classes of a network.

V. NETWORK, NODES AND LINKS ALGORITHMS

Once we have the SDN and virtual networks selected, the

next step is the selection of the algorithms for the simulation.

The process by which a VN request is allocated into various

network infrastructures is performed in three steps. Fig. 9

shows the required steps for the selection of the algorithms.

Fig. 9. Steps for the selection of the algorithms.

In Network Splitting the result is a virtual network divided

into multiple virtual networks that were assigned to different

network infrastructures. This step can be performed in two

ways, with heuristic or exact algorithms [8]. The next step,

Nodes Mapping, selects the best SDN nodes for the virtual

nodes of the virtual subnetworks of the first step. This step can

be done in two ways, with or without coordinated node and

link mapping. In case of with coordinated node and link

mapping it uses MIP formulation [13] to solve the embedding

problem. Since solving an MIP is known to be NP-Hard [13],

it relaxes the integer program to obtain a linear programming

formulation that can be solved in polynomial time. Library

CPLEX has been used to solve the relaxed MIP problem. It

uses deterministic and randomized rounding techniques on

the solution of the linear program to approximate the values of

the binary variables in the original MIP [7]. In case of without

coordinated node and link mapping it assigns virtual nodes

using some greedy heuristics, e.g. assigns virtual nodes with

higher processing requirements to SDN nodes with more

available resources [9],[10]. In the final step, Links Mapping,

once all the virtual nodes have been mapped, we embed

virtual links onto SDN paths using shortest path algorithms [9]

in case of unsplittable flows, or using multi-commodity flow

algorithms [10], [14] in case of splittable flows.

A. Network Splitting Algorithms

A network splitting algorithm divides a virtual network in

subnetworks for different network infrastructures optimally.

The implemented network splitting algorithms [8] are: Exact,

Recursive Random Permutations and Iterated Local Search.

The main class is SplittingAlgorithm and models the main

characteristics of the network splitting algorithms. Exact,

IteratedLocalSearch and RecursiveRandomPermutations

extend SplittingAlgorithm. The method run of

SplittingAlgorithm is called by the simulation for runnig the

algorithm and returns the subnetworks. Inside this method

there is a call to the method bestNodesMapping that is empty

in SplittingAlgorithm but differently implemented in Exact,

IteratedLocalSearch and RecursiveRandomPermutations.

This method returns the best mapping of virtual nodes for

doing the network splitting. Fig. 10. Shows the hierarchy of

the classes of the networks splitting algorithms.

Fig. 10. Hierarchy of the classes of the network splitting algorithms.

B. Nodes Mapping Algorithms

Once we have the network split, the next step (step 2 in Fig.

9) is to allocate virtual nodes to SDN nodes. It can be done in

two ways, with or without coordinated node and link mapping.

The main class is NodesMappingAlgorithm and models the

main characteristics of the nodes mapping algorithms. This

class has the method run() not implemented. This method has

two input parameters: a virtual network and a SDN network,

and the output are the nodes mapping. Fig. 11 shows the

hierarchy of the classes of the nodes mapping algorithms.

Without Coordinated Node and Link Mapping. Greedy

node mapping algorithm extends NodesMappingAlgorithm

(Fig. 11.) and implements its method run with greedy

heuristics [9], [10].

With Coordinated Node and Link Mapping. The main class

is Rounding, and extends NodesMappingAlgorithm.

Deterministic and Randomized extend RoundingAlgorithm

(Fig. 11.). This class has a different method run(), neither

implemented. This method has four input parameters: a

virtual network, a SDN network, x and f variables; and the

output is the mapping of the nodes. The variables x are binary

set to 1 if there is traffic flow on the virtual links via SDN

links. The f variables are the amount of traffic for the virtual

links routed over the SDN links. x and f variables are the result

of a linear program, obtained by the class

EmbeddingAlgorithm. This is the step 2.1. Embedding in Fig.

9. The implemented network embedding algorithms are

Networked Cloud Mapping (NCM) [11] and Virtual Network

92

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

Embedding (ViNE) [7]. The main class is

EmbeddingAlgorithm. NCM and Vine extends it. The method

run of this class is called by the simulation for running the

algorithm and sets the x and f values. Inside this method there

is a call to the method minimize, which is empty in

EmbeddingAlgorithm but implemented in NCM and ViNE.

This method minimizes the cost of embedding a virtual

network in a SDN network. Fig. 12 shows the classes

hierarchy of the network embedding algorithms.

Fig. 11. Hierarchy of the classes of the nodes mapping algorithms.

Fig. 12. Hierarchy of the classes of the network embedding algorithms.

Fig. 13. Hierarchy of the classes of the links mapping algorithms.

Once we have the x and f values, the next step in Fig. 9 is

2.2, performed by RoundingAlgorithm, in Fig. 11. This

algorithm is responsible for obtaining integer values and with

these values assigns virtual nodes to network infrastructures.

The method run() of RoundingAlgorithm is called by the

simulation for running the algorithm and returns the nodes

mapping. This method is empty in RoundingAlgorithm but

implemented in Deterministic and Randomized.

C. Links Mapping Algorithms

Once we have the nodes mapping, the next step is to

incorporate virtual links to SDN links, i.e., step 3 in Fig. 9. It

can be done in two ways, for unsplittable flows or splittable

flows. The main class is LinksMappingAlgorithm and models

the main characteristics of the links mapping algorithms. This

class has the method run() not implemented. This method has

three input parameters: a virtual network, a SDN network and

the nodes mapping, and as output parameter, the links

mapping. The class ShortPath implements the shortest

distance path algorithm (Dijkstra’s algorithm) for cases of

unsplittable flows [9]. The class MultiCommodityFlow

implements multi-commodity flow algorithm for the case of

splittable flows [10], [14].

VI. RELATED WORK

Georgia Tech Internetwork Topology Models (GT-ITM)

[15] is a distribution that contains code to generate graphs that

model the topological structure of internetworks [16]. In

Performance results of [8] the proposed exact embedding

algorithm is developed using C++ with the CPLEX library

and the GT-ITM tool [15] is used to randomly generate

physical topology and VN requests. In [7], the authors

implement a discrete event simulator to evaluate the

performance of algorithms [17] and the physical network

topologies are randomly generated using the GT-ITM tool

[15]. In [9] and [10] a discrete event simulator is implemented

to evaluate the performance of algorithms and the physical

network topologies are randomly generated using the

GT-ITM tool [15].

In the simulator presented in this paper, the generation of

SDN and virtual networks and algorithms are developed

inside the same structure, in different blocks, enabling a total

coordination between all phases of the virtual resource

allocation in physical networks problem, allowing measuring

the algorithms performance.

Network virtualization can enable multiple researchers to

evaluate new network protocols simultaneously on a shared

experimental facility like [18] and [19]. Planet-Lab [18] is a

group of computers available as a test-bed for computer

networking and distributed systems research. It was

established in 2002 and in June 2010 it was composed of 1090

nodes at 507 sites worldwide. Planet-Lab experiences have

become critical in the formulation of the US National Science

Foundation’s Global Environment for Network Innovations

(GENI) initiative [19]. GENI, a virtual laboratory for

exploring Future Internet at scale, creates major opportunities

to understand, innovate and transform global networks and

their interactions with society. Dynamic and adaptive, GENI

opens up new areas of research at the frontiers of network

science and engineering, and increases the opportunity for

significant socio-economic impact. In our simulator the VN

embedding algorithms can be tested previously in a local

form.

VII. CONCLUSION AND FUTURE WORK

SDN and NFV are a promising way to de-ossify the current

Internet by providing a shared platform for a variety of new

network services and architectures.

A major challenge in building the diversified Internet is to

perform efficient and on-demand VN assignment.

In this paper, we have developed a modular and flexible

graphical discrete event simulation tool for solving the

complete virtual resource allocation in SDN networks

problem. This Java-based tool has been developed to

integrate existing and future algorithms related to each phase

of the process. The simulator is a test-bed in which

researchers can select the appropriate algorithm in each phase

and display the results in a graphical form, while obtaining a

93

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

94

performance evaluation of the selected and proposed

algorithms.

We have evaluated the performance of the proposed tool

through experiments and our findings are summarized as

follows:

1) The benefits of subdividing the virtual resource

allocation problem in different phases or parts are the

independent evaluation of each one. We can do

research on one part without needing to change other

parts of the simulator.

2) Different approaches of one part can coexist in the

simulator and can be selected in order to evaluate and

make a systematic comparison between them.

3) Another advantage of the proposed tool is that

networks, algorithms and the graphical part have been

developed in the same extended language

programming (Java).

4) The proposed tool, in the graphical part, shows all

assigned resources in each instant of time for

performing an exhaustive evaluation. The results are

shown in graphical and numerical form.

Future work will consist in improving the simulator adding

new features like to save and to open simulations, to obtain

numerical graphs from numerical results and to perform a

large number of simulations oriented to numerical results

without graphical results.

Moreover, we also plan to explore new algorithms

formulation for both splitting and mapping problems.

REFERENCES

[1] N. Niebert, I. E. Khayat, S. Baucke, R. Keller, R. Rembarz, and J.

Sachs, “Network virtualization: a viable path towards the future

internet,” Springer Wireless Personal Communications, pp. 511–520,

March 2008.

[2] A. Haider, R. Potter, and A. Nakao, “Challenges in resource allocation

in network virtualization,” ITC Specialist Seminar on Network

Virtualization, May 2009.

[3] L. Peterson, S. Shenkar, and J. Turner, “Overcoming the internet

impasse through virtualization,” IEEE Computer, vol. 38, no. 4, pp.

34–41, 2005.

[4] J. Turner and D. Taylor, “Diversifying the Internet,” in Proc. the IEEE

Global Telecommunications Conference (GLOBECOM’05), vol. 2,

2005.

[5] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford, “In

VINI veritas: Realistic and controlled network experimentation,” in

Proc. SIGCOMM, pp. 3-14, 2006.

[6] N. Feamster, L. Gao, and J. Rexford, “How to lease the Internet in your

spare time,” ACM SIGCOMM Computer Communication Review, vol.

37, no. 1, pp. 61-64, 2007.

[7] M. Chowdhury, M. R. Rahman, and R. Boutaba, “ViNEYard: Virtual

network embedding algorithms with coordinated node and link

mapping,” Networking, IEEE/ACM Transactions, vol. 20, no. 1, pp.

206–219, Feb. 2012.

[8] I. Houidi, W. Louati, W. B. Ameur, and D. Zeghlache, “Virtual

network provisioning across multiple substrate network,” Computer

Networks, vol. 55, no. 2, pp. 1011–1023, 2011.

[9] Y. Zhu, M. H. Ammar, “Algorithms for assigning substrate network

resources to virtual network components,” in Proc. IEEE International

Conference on Computer Communications (Infocom’06), pp. 1–12,

Apr. 2006.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: substrate support for path splitting and migration,” ACM

Sigcomm Computer Communication Review, vol. 38, no. 2, pp. 17–29,

Apr. 2008.

[11] C. Papagianni, A. Leivadeas, S. Papavassiliou, V. Maglaris, C. C.

Pastor, and A. Monje. “On the optimal allocation of virtual resources in

cloud computing networks,” IEEE Transactions on Computer, special

section on Optimizing the Cloud, vol. 62, no. 6, pp. 1060–1071, June

2013.

[12] Simulator. [Online]. Available: http://147.83.118.145/Simulator.zip

[13] A. Schrijver, Theory of linear and integer programming, New York

NY, USA: John Wiley & Sons, Inc., 1986.

[14] W. Szeto, Y. Iraqi, and R. Boutaba, “A multi-commodity flow based

approach to virtual network resource allocation,” in Proc. the IEEE

Global Telecommunications Conference (GLOBECOM03), vol. 6, pp.

3004-3008, 2003.

[15] GT-ITM. [Online]. Available:

http://www.cc.gatech.edu/projects/gtitm/

[16] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an

internetwork,” in Proc. IEEE International Conference on Computer

Communications (Infocom’ 96), vol. 2, pp. 594–602 1996.

[17] ViNE-Yard. [Online]. Available:

http://www.mosharaf.com/ViNE-Yard.tar.gz

[18] Planet-Lab. [Online]. Available: http://www.planet-lab.org/

[19] GENI. [Online]. Available: http://www.geni.net/

Aurelio Javier García received his degree in

telematics engineering from the Cartagena School of

telecommunications engineering (ETSIT),

Universidad Politécnica de Cartagena (UPCT),

Murcia, Spain. He is a member of bampla research

group (design and evaluation of broadband networks

and services), where he develops his PhD thesis with

cristina cervelló-pastor as supervisor. His research

interests focus on routing algorithms, network

resources management, sofware-define network (SDN), network functions

virtualization (NFV), network discovery protocols and virtualization.

Cristina Cervelló-Pastor received her MSc degree

in telecom engineering and Ph.D degree in

telecommunication engineering, both from the

Barcelona School of telecommunications

engineering (ETSETB), Universitat Politècnica de

Catalunya (UPC), Barcelona, Spain. She is an

associated professor in the Department of Telematics

Engineering of UPC (ENTEL), and currently, she is

the head of this Department. She had also been the

director’s assistant, the head of castelldefels section and the academic

secretary of ENTEL. She is part of the research group on modelling and

evaluation of broadband networks (BAMPLA). Her research trajectory has

been centered on the field of routing in high speed networks, resource

management, virtualization, and quality of service and the development of

new protocols in optical networks. She has been involved in diverse national

and European projects (NOVI, FEDERICA, ATDMA, A@DAN, Euro-NGI,

Euro-FGI, EURO-NF) being responsible of various public and private

funding R&D projects. She has been member of the technological committee

of i2CAT during more than nine years. She has been reviewer of the

Programa Iberoamericano de Ciencia y Tecnología para el Desarrollo

(CYTED) and reviewer of several journals and conferences. She has also

contributed to the reviews of the XXXIII COIT for their awards in the best

Master Thesis and PhD Thesis. In parallel, she has published diverse papers

in National and International Journals and Conferences and she has

supervised two thesis in the field of routing and contention resolution in high

speed networks. She has also several patents in the area of OBS networks.

Currently she is supervising two additional theses in the field of management

and optimal resource assignment in software defined networks.

Yury Jiménez received her MSc degree in

telecommunications engineering from the National

University of Colombia. Since 2012 she is a PhD

student in the Universitat Politècnica de Catalunya

(UPC) at Barcelona (Spain) through a scholarship

provided by the Catalonian Government. She is a

member of bampla research group (design and

evaluation of broadband networks and services),

where she develops her PhD thesis. Her research

interests focus on routing algorithms, network resources management,

software-define network (SDN), network discovery protocols and

virtualization.

or’s formal photo

International Journal of Modeling and Optimization, Vol. 4, No. 2, April 2014

http://147.83.118.145/Simulator.zip
http://www.cc.gatech.edu/projects/gtitm/
http://www.mosharaf.com/ViNE-Yard.tar.gz
http://www.planet-lab.org/
http://www.geni.net/

