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Abstract—In this article, we provide a constraint 

programming based optimization model to determine the 

optimal production planning to maximize profit in a 

petrochemical industry. The proposed model despite its 

simplicity overcomes the limitations of the mixed integer linear 

programming model available in literature. The benefits of the 

proposed model are demonstrated on various instances of two 

case studies and it is shown that the proposed formulation 

enables an increase in the profit in the range of 0.58 to 3.68%. 

 
Index Terms—Combinatorial optimization, constraint 

programming, petrochemical industry, production planning. 

 

I. INTRODUCTION 

A petrochemical industry uses series of complex networks 

to convert feedstock such as oil and gas to produce primary 

petrochemicals such as methanol, ethylene, propylene, 

benzene, toluene, xylene, etc. These primary petrochemicals 

are subsequently converted into petrochemical intermediates 

and derivatives which are ultimately transformed into 

products used in the market. The petrochemical industry 

operates at very high production levels which is achieved 

either through the large scale of the individual equipment or 

through the large scale of the entire plant [1]. A variety of 

optimization models have been proposed for efficiently 

operating the petrochemical plants. These include efficient 

production planning [2], mergers and acquisitions [1], 

integration of refineries and petrochemical plants [3], 

capacity expansion [4], efficient spatial organization of 

petrochemical plants [5], efficient job scheduling [6], and 

optimal supply chain management [7]. 

In this article, we use Constraint Programming (CP), an 

optimization technique that has its origins in the Artificial 

Intelligence and Computer Science Community [8], for 

solving the production planning problem in an industry. A 

Mixed Integer Linear Programming (MILP) model has been 

proposed in literature [2] to determine efficient production 

plans to guide the petrochemical industry development in 

Saudi Arabia. However, this formulation restricts the 

productions to „artificial‟ levels thereby leading to suboptimal 

profit. In this article, we propose a CP based optimization 

formulation which overcomes the drawbacks of the MILP 

formulation in literature. The benefit of the proposed 

formulation has been demonstrated on eight different 

instances involving two distinct requirements. In the next 

 

 

section, we provide a brief description of CP and this is 

followed by the description of the problem statement. In the 

next section, we review the MILP formulation in literature 

and describe its limitations. In the subsequent section, we 

present a CP based optimization formulation to solve the 

production planning problem and subsequently demonstrate 

the applicability of this formulation on various instances of 

two scenarios. We conclude the article by discussing the 

developments in this article and present possible future work 

in this direction. 

 

II. CONSTRAINT PROGRAMMING 

CP was predominantly used to solve Constraint 

Satisfaction Problems (CSP) and has been extended to solve 

single [9], [10] and multi objective optimization problems 

[11]. CP has found widespread application in solving 

combinatorial optimization [12]-[14] such as Assignment 

Problems [15], Network Problems [16], [17], Production 

Planning/Scheduling, Personnel Allocation. The benefits of 

CP include the ease of modeling as it does not restrict the user 

like mathematical programming, guarantee of the optimality 

of the solution even for non linear discrete problems and the 

ease of determination of value added solutions such as 

realizations and K-best solutions. Moreover, unlike other AI 

based optimization algorithms such as Genetic Algorithms, 

Simulated Annealing, Teaching Learning Based Optimization, 

it does not require any set of parameters that need to be tuned. 

CP is an implicit, tree-based enumeration technique that 

intelligently uses the propagation of constraints to reduce the 

domain of the variables. Unlike optimization problems, the 

objective in CSP is to determine a feasible solution which is a 

set of singleton values for all the decision variables from its 

individual domains, while satisfying all the given constraints. 

In the initial phase, CP uses the constraints to eliminate as 

many infeasible combinations as possible by propagating the 

constraints. If it happens that a feasible solution is discovered 

in this phase, the procedure is terminated. However, it is very 

rare that this phase would lead to a feasible solution. Under 

such circumstances, a non deterministic choice is made on any 

of the decision variables i.e., a decision variable is fixed to 

one of the possible values from its domain. This procedure is 

referred to as choice point in CP literature. Subsequently, the 

constraints are propagated to reduce the domain of the other 

variables based on this choice point. If all the variables 

become singleton, the choice point is said to have led to a 

„success‟ as a feasible solution is achieved. However, if the 

choice point leads to a situation where in the domain of at 

least one of the variables becomes empty, it is said to have led 

to a „failure‟ and hence a revision of the choice point is 
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necessary. It can be noted that at times, the selection of a 

single choice point is not sufficient and in such cases, a series 

of choice points are made till a failure or success is achieved. 

In case of failure, the latest choice point can be revised. Thus 

the selection of choice point and constraint propagation is 

carried repeatedly till a feasible solution is obtained.  

CP solves optimization problems by transforming it into a 

constraint satisfaction problem by converting the objective 

function into a constraint with an appropriate bound. With the 

discovery of every feasible solution, the bound of the 

objective constraint is revised so as to determine an improved 

solution. This process is continued till the search space is 

completely explored or the problem becomes infeasible. The 

last updated bound corresponds to the globally optimal 

solution of the optimization problem. A detailed explanation 

on various aspects can be obtained from literature [8].  

The drawbacks of CP include lack of use of relaxations and 

other geometrical properties of the problem to guide its search 

to the optimal solution. This at times makes CP 

computationally expensive for certain problems as it very 

often requires considerable computational resources to 

confirm the optimality of the solution. Many of the software 

restrict the use of CP to discrete variables and enforce various 

limitations on the use of continuous variables. Recent trends 

to overcome these drawbacks include the development of 

hybrid algorithms [18-20] which harness the complimentary 

benefits of CP and mathematical programming techniques. 
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Fig. 1. Schematic of CP algorithm. 

 

III. PROBLEM DESCRIPTION 

The production planning problem is combinatorial in 

nature and involves deciding the quantities of I products that 

need to be produced from a given set of J  processes so as to 

maximize the profit. Each of the process is assumed to 

produce only one product while some of the processes can 

produce the same product by using a specified amount of raw 

material. Each of these processes can be operated at low, 

medium or high level based on the amount of production. The 

production and investment cost of each of the processes 

depends on the amount of product (thus the production levels) 

that is produced form a particular process. The petrochemical 

industry has limited investment budget and has limited supply 

of raw materials thereby restricting the amount of products 

that can be produced. The production cost and investment 

cost are usually modeled as piecewise linear functions 

between the production levels as shown in Fig. 1.  

 

 
Fig. 2. Production and Investment cost varies nonlinearly  

with respect to capacity of production levels. 

 

In addition to the constraints discussed above, sometimes a 

constraint is enforced that no product should be produced by 

more than one process. This requirement is known as the 

„unique process requirement‟. Table I and Table II shows an 

example of one such problem wherein 54 processes are 

available which can be operated at three different levels and 

can produce a maximum of 24 products. Without loss of 

generality, we have used this data for demonstrating the 

results of this work. In Table I, TN  denotes the name of the 

product whereas SN indicates the name of the process. The 

notations 
jl , 

jm  and 
jh  represent the units of production of 

the corresponding products in the low level, medium level and 

high level production capacity. The amount of raw material 

R1 and R2 required by the processes for producing per unit of 

the product is given by 
1jb and

2jb . The per unit sale price of 

the product is given by 
jE . As can be seen from Table I, 

Product F can be produced from six different processes 

(Process 10 to Process 15) and each of these processes have a 

different raw material requirement, production cost and 

investment cost that vary with the three different levels of 

production. If the unique processes requirement is not 

included, this product may be produced by more than one 

process of the six possible processes whereas if the unique 

process requirement is included, the Product F is to be 

produced by only one of the six processes. It should be 

obvious that the inclusion of this constraint can lead to the 

reduction in profit. Some of the products in the Table I such as 

Process 19 – 24, have zero requirement of raw material R1 and 

R2. It should be noted that these products use some other raw 

materials which do not have an upper limit in the availability. 
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If upper limits on these raw materials exist, they too would 

have to be accommodated in the model formulation. 

 
TABLE I: PRODUCTION LEVELS OF PROCESSES 

TN  
SN  1jb  

2jb  
jE  

jl   
jm  

jh  

A 

1 0 3 3 35 44 91 

2 0 2 5 38 55 93 

3 0 2 6 13 69 84 

B 
4 0 3 5 38 51 73 

5 0 2 7 29 58 77 

C 
6 0 5 6 13 47 98 

7 0 1 5 18 63 75 

D 8 0 1 3 26 48 95 

E 9 0 1 6 39 56 87 

F 

10 0 4 2 39 61 10

0 11 0 3 4 14 67 73 

12 0 4 2 40 69 84 

13 0 1 4 39 57 74 

14 0 5 7 25 45 99 

15 0 4 2 34 45 71 

G 
16 0 2 7 14 48 94 

17 0 4 5 23 66 95 

H 18 0 1 7 38 48 97 

I 
19 0 0 5 34 65 73 

20 0 0 4 39 48 82 

J 
21 0 0 2 30 68 78 

22 0 0 6 11 51 95 

K 

23 0 0 5 36 46 83 

24 0 0 5 38 48 98 

25 1 0 2 31 59 76 

L 26 1 0 4 33 55 78 

M 27 1 0 3 33 51 75 

N 

28 1 0 4 22 65 75 

29 4 0 2 30 58 97 

30 1 0 5 15 57 88 

O 

31 5 0 3 31 68 87 

32 4 0 5 10 49 75 

33 4 0 6 18 63 96 

P 34 3 0 4 11 63 89 

Q 

35 0 0 3 13 52 81 

36 0 0 7 35 58 86 

37 0 0 4 31 43 83 

R 

38 0 0 6 19 42 73 

39 0 0 2 39 56 78 

40 0 0 2 11 64 74 

S 
41 0 0 5 23 69 76 

42 0 0 7 21 44 78 

T 

43 0 0 2 33 58 83 

44 0 0 4 34 55 72 

45 0 0 6 15 41 98 

U 

46 4 0 7 25 51 99 

47 3 0 3 23 45 85 

48 3 0 7 30 64 85 

49 2 0 4 31 50 81 

V 
50 0 0 7 33 56 98 

51 0 0 2 18 45 82 

W 52 0 0 2 31 59 74 

X 
53 0 0 4 30 48 94 

54 0 0 2 15 60 82 

 

This problem has been previously modeled as a MILP but 

this formulation enforces that either the production from a 

process is between 
jl  and 

jm  or between 
jm  and 

jh  thereby 

preventing production using multiple levels. This MILP 

formulation also restricts the production of a product to 

jh which leads to suboptimal solutions as an „artificial‟ limit 

is implemented on a highly profitable product.  
 

TABLE II: PRODUCTION AND INVESTMENT COSTS 

TN  SN  jCl   
jCm  

jCh  
jVl   

jVm  
jVh  

A 

1 85 103 244 135 162 350 

2 91 125 239 144 195 347 

3 41 153 198 69 237 297 

B 
4 91 117 183 144 183 271 

5 73 131 188 117 204 280 

C 
6 41 109 262 69 171 375 

7 51 141 177 84 219 267 

D 8 67 111 252 108 174 362 

E 9 93 127 220 147 198 322 

F 

10 93 137 254 147 213 369 

11 43 149 167 72 231 255 

12 95 153 198 150 237 297 

13 93 129 180 147 201 269 

14 65 105 267 105 165 381 

15 83 105 183 132 165 269 

G 
16 43 111 249 72 174 358 

17 61 147 234 99 228 344 

H 18 91 111 258 144 174 370 

I 
19 83 145 169 132 225 257 

20 93 111 213 147 174 310 

J 
21 75 151 181 120 234 274 

22 37 117 249 63 183 359 

K 

23 87 107 218 138 168 316 

24 91 111 261 144 174 374 

25 77 133 184 123 207 275 

L 26 81 125 194 129 195 287 

M 27 81 117 189 129 183 279 

N 

28 59 145 175 96 225 265 

29 75 131 248 120 204 360 

30 45 129 222 75 201 325 

O 

31 77 151 208 123 234 310 

32 35 113 191 60 177 281 

33 51 141 240 84 219 351 

P 34 37 141 219 63 219 323 

Q 

35 41 119 206 69 186 302 

36 85 131 215 135 204 316 

37 77 101 221 123 159 319 

R 

38 53 99 192 87 156 280 

39 93 127 193 147 198 286 

40 37 143 173 63 222 262 

S 
41 61 153 174 99 237 265 

42 57 103 205 93 162 298 

T 

43 81 131 206 129 204 304 

44 83 125 176 132 195 263 

45 45 97 268 75 153 381 

U 

46 65 117 261 105 183 375 

47 61 105 225 99 165 325 

48 75 143 206 120 222 306 

49 77 115 208 123 180 304 

V 
50 81 127 253 129 198 366 

51 51 105 216 84 165 313 

W 52 77 133 178 123 207 267 

X 
53 75 111 249 120 174 358 

54 45 135 201 75 210 298 

 

IV. CONSTRAINT PROGRAMMING FORMULATION 

In this section, we propose a CP formulation for the 

production planning problem described in the previous 

section. As can be seen in Fig. 2, there is a straight line 
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governing the production cost between 
jl  and 

jm and another 

straight line between 
jm and 

jh . Each of these two lines can 

be represented in the slope-intercept form. In the formulation 

below, 
jPCmhM and C jPCmh denote the values of slope and 

intercept respectively for the line 

connecting
jm and

jh whereas
jPClmM  and C jPClm denote 

the values of slope and intercept respectively for the line 

connecting 
jl  and

jm . Similar to the lines for production cost, 

there are two other lines governing the investment cost 

between the intervals of  ,j jl m  and  ,j jm h  for the 

thj process. In the formulation below, 
jIClmM  and 

C jIClm will denote the value of slope and intercept 

respectively for the investment cost line connecting 
jl and   

jm whereas 
jICmhM  and 

jICmhC will denote the value of the 

slope and intercept respectively for the investment cost line 

connecting 
jm and

jh . The parameter 
ijP  is a binary 

parameter with a value of 1 if the thi product is produced from 

the thj process. 

1

Maximize: Profit
J

j j j

j

E X PC


   (1)

 . 1,2,...,min 1,j js t Jzlm xlm j    (2)

  1,2,...,min 1,j j Jzmh xmh j    (3)

  1, 2,...,0 || &j j j j jXlm Xlm Xlm Jjl m    (4)

  1, 2,...,0 || &j j j j jXmh Xmh Xmh Jjm h    (5)

     C
j j j j j

PCmh PCmhM Xmh zmh PCmh  (6)

     C
j j j j j

ICmh ICmhM Xmh zmh ICmh   (7)

     C
j j j j j

PClm PClmM Xlm zlm PClm   (8)

     C
j j j j j

IClm IClmM Xlm zlm IClm   (9)

j j jX Xmh Xmh    (10)

j j jC Clm CmhP P P    (11)

j j jC Clm CmhI I I    (12)

1

, 1,2,...,
J

jt j t

j

b X R t T


     (13)

1

J

j

j

IC B


   (14)

1

1,2,..,
J

ij j i
j

P X D i I


    (15) 

In the above formulation, 
jzlm  is a binary variable that will 

be 1 if 0jxlm  and 0 otherwise. Similarly 
jzmh is a binary 

variable that will be 1 if 0jXmh  and 0 otherwise. 

jXlm denotes the amount of product produced from a 

production level between 
jl  and 

jm whereas 
jxmh denotes 

the amount of product produced from a production level 

between 
jm and 

jh . It can be thus seen that a product can be 

simultaneously produced from all the possible levels. 

Equation (4) ensures that 
jXlm is either 0 or between 

jl and 

jm where the production and investment cost values can be 

determined while Equation (5) ensures 0jXmh  that is either 

0 or is between 
jm and 

jh . As shown in Equation (10), 
jX  

denotes the total amount of product that is produced from the 
thj  process. 

jPClm  and 
jIClm  indicate the production cost 

and investment cost required for producing 
jXlm  and are 

given by Equation (8) and Equation (9) respectively. 

Similarly, 
jPCmh  and 

jICmh indicate the production and 

investment cost required to produce 
jXmh and are given by 

Equation (6) and Equation (7) respectively. The total 

production and investment cost of the thj  process are given 

by 
jPC  and 

jIC respectively and are determined by Equation 

(11) and Equation (12) respectively. Equation (14) ensures 

that the total investment cost is below the investment budget 

whereas Equation (13) ensures that the raw materials required 

for the production of is not greater than the amount of the 

particular raw material that is available. Equation (15) is used 

to ensure that the total production of the thi  product from all 

the processes is less than the demand of the thi product. This 

constraint is implemented as in literature and can be easily 

modified according to the specific needs of the user. For 

example, if there is a penalty incurred if a demand is not 

satisfied, it may be more appropriate to ensure that the 

production is more than the demand. The domain of 
jXlm  is 

restricted to integers in  0, jm  whereas the domain of 
jXmh  

is restricted to integers in  0, jh  . In case of unique process 

requirement, the following two constraints are added to the 

above CP model 

          1,2,...,min 1,j jZ JX j       (16)

1

1 1,2,..,
J

ij j
j

ZP i I


       (17) 

Thus the proposed model involves 3J  integer decision 

variables corresponding to ,j jXlm Xmh and 
jX  and 3J  

binary decision variables corresponding to ,j jzlm zmh and 
jZ . 

It can be seen that the above formulation is easy to build and 

understand. It uses the Boolean „or‟ constraints denoted by 

the symbol || and the Boolean „and‟ constraints denoted by the 

symbol &. Such constraints can easily be accommodated due 

to the highly expressive modeling power of CP and are 

available in many of the CP based solvers. It is easy to note 

that the above formulation accurately determines the 

production cost and investment cost between the interval 

 ,j jl m  and  ,j jm h  using the corresponding line that 

governs it. Moreover in this proposed formulation, if 

profitable, the thj  process can produce a product quantity 

greater than 
jh , due to the incorporation of 

jXlm  and
jXmh . 

It should be noted that, if desired, the above special 

constraints could be possibly converted using discrete 

variables into the conventional inequalities of the form  , = 

and  to obtain a MILP formulation. However such a strategy 

including its computational complexity is beyond the scope of 

this work. Though the above formulation is postulated for the 
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production planning in a petrochemical industry, it can also be 

used in the production planning of any multi-level production 

processes. Also, it can also be realized that the above 

formulation can be easily extend to accommodate more than 

three levels of production capacity. 

 

   

In this section, we demonstrate the benefits of the proposed 

CP formulation on two scenarios with each involving four 

different instances. Instance 1 to Instance 4 comprises 

Scenario I and it enforces the unique process requirement 

whereas Instance 5 to 8 comprises Scenario II and does not 

enforce the unique process requirement. The four instances in 

each case study differ in the amount of investment budget that 

is available for the investment. Both the raw materials in all 

that the eight instances are assumed to be 50 units. 

 
TABLE III: OPTIMAL PROFIT AND RESOURCE UTILIZATION 

  Item CP MILP 
% Profit 

Increase 

S
ce

n
ar

io
 I

 

(U
n

iq
u

e 
P

ro
ce

ss
 R

eq
u

ir
em

en
t)

 

1 

B ($) 500 500 

0.58 
R1 (units/yr) 0 0 

R2 ( units /yr) 0 48 

Profit ($/yr) 642 638.3 

2 

B ($) 650 650 

2.38 
R1 ( units /yr) 0 0 

R2 ( units /yr) 0 48.2 

Profit ($/yr) 859 839 

3 

B ($) 750 750 

0.81 
R1 ( units /yr) 0 0 

R2 ( units /yr) 0 48 

Profit ($/yr) 990 982 

4 

B ($) 798 800 

3.68 
R1 (units/yr) 0 0 

R2 (units/yr) 0 48 

Profit ($/yr) 1070 1032 

S
ce

n
ar

io
 I

I 

(N
o

 U
n

iq
u

e 
P

ro
ce

ss
 R

eq
u

ir
em

en
t)

 5 

B ($) 500 500 

0.58 
R1 (units/yr) 0 0 

R2 (units/yr) 0 48 

Profit ($/yr) 642 638.3 

6 

B ($) 650 650 

2.38 
R1 (units/yr) 0 0 

R2 (units/yr) 0 48 

Profit ($/yr) 859 839 

7 

B ($) 750 750 

0.81 
R1 (units/yr) 0 0 

R2 (units/yr) 0 48 

Profit ($/yr) 990 982 

8 

B ($) 798 800 

3.68 
R1 (units/yr) 0 0 

R2 (units/yr) 0 48 

Profit ($/yr) 1070 1032 

 

The results reported in this section were obtained using the 

default settings of IBM ILOG CPLEX Optimization Studio 

on a Processor Intel i5-2400 CPU @ 3.1 GHz.  IBM ILOG 

CPLEX Optimization Studio allows the use of decision 

variables and decision expressions. To better utilize the 

computational resources, Equation (4)-(5), (13)-(17) are 

treated as constraints and are included in the “subject to” part 

of the model while Equation (2)-(3), (6)-(12)  are considered 

as decision expressions. 

Table III details the comparison of profit obtained using CP 

and the MILP formulation. It also provides the amount of raw 

materials and the amount of investment budget that is utilized 

in the corresponding production plan. In all the eight 

instances, it can be seen that CP is able to provide a better 

objective than the MILP formulation in literature. The 

increase in profit percentage ranges from 0.58 to 3.68. This 

increment in profit is due to the fact that the CP formulation 

permits higher production of a profitable product whereas the 

MILP formulation restricts the production of a profitable 

product to be less than or equal to 
jh . This can be seen from 

the production plan provided in Table IV for all the eight 

instances. From Table IV, for Instance 1, it can be seen that 

the Process 36 is selected to produce 139 units of Product Q 

using both 
jxlm and 

jxmh   production levels. However from 

Table I, it can be seen that the value of 
jh for Process 36 is 86 

and thus the MILP formulation cannot produce more than 86 

units. This leads to suboptimal solution being provided by the 

MILP formulation in literature. 
 

TABLE IV: PRODUCTION PLAN FOR OPTIMAL PROFIT 

  

Proposed CP Formulation 
 MILP 

Formulation 

TN

 

SN

  

jxlm

  

jxmh

 

jX

 

TN

 

SN

  
jX   

S
ce

n
ar

io
 I

 

(U
n

iq
u

e 
P

ro
ce

ss
 R

eq
u

ir
em

en
t)

 
1 

Q 36 58 81 139 H 18 48 

     Q 36 35 

     V 50 53.7 

2 

Q 36 58 60 118 H 18 
48.1

6 

V 50 0 65 65 Q 36 
76.3

4 

     V 50 56 

3 

Q 36 58 58 116 H 18 48 

V 50 38 56 94 Q 36 61 

     S 42 44 

     V 50 56 

4 

Q 36 56 58 114 H 18 48 

V 50 56 56 112 Q 36 73.5 

     S 42 44 

     V 50 56 

S
ce

n
ar

io
 I

I 

(N
o

 U
n

iq
u

e 
P

ro
ce

ss
 R

eq
u

ir
em

en
t)

 

5 

Q 36 58 81 139 H 18 48 

     Q 36 35 

     V 50 53.7 

6 

Q 36 58 61 119 H 18 48 

V 50 0 64 64 Q 36 58 

     V 50 74.5 

7 

Q 36 52 58 110 H 18 48 

S 42 0 44 44 Q 36 61 

V 50 0 56 56 S 42 44 

     V 50 56 

8 

Q 36 58 58 116 H 18 48 

V 50 54 56 110 Q 36 73.5 

     S 42 44 

     V 50 56 

 

From Table IV for Instance 1, it can be seen that there are 

two units of Process 36 which are used to produce 139 units of 

Product Q since a single unit of 
jh  cannot produce more than 

86. The complete budget of $500 in this case is utilized and 

hence there is neither additional production of Product Q nor 

the production of any other product. For all the eight instances 

in Table IV, it can be observed that Product Q is produced 

from Process 36. A careful analysis of the data in Table I and 

Table II shows that the profit per unit of Product Q is higher 

and it does not depend on either raw material R1 or R2 which 

are available in limited quantities. Thus the only restriction on 

the amount of Product Q that can be produced is due to the 

investment budget. The MILP formulation restricts the 
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amount of Product Q that can be produced to 
jh whereas the 

CP formulation restricts the amount of Product Q that can be 

produced to  j jm h  which leads to higher profit.  

 

 
Fig. 3. Computational performance of CP for scenario I. 

 
Fig. 4. Computational performance of CP for scenario II. 

 

It can be seen that the profit in Instance 1 and Instance 5 

provided by the CP formulation are identical and the 

production plans are also identical. However, for Instance 2 

and Instance 6, the profit provided by CP is identical but the 

production plans are not identical. Thus, these two production 

plans can be considered as realizations or multiple solutions 

as they have identical objective function value but have 

different sets of decision variables. Similarly, the CP 

solutions given in Instance 3 and Instance 7 are realizations 

similar to those between Instance 4 and Instance 8. However, 

the MILP solutions in Instance 4 and Instance 8 are identical 

solutions similar to the pair of solutions in Instance 3 and 

Instance 7. The computational performance of all the eight 

instances is shown in Fig. 3 and Fig. 4. It can be seen that CP 

is able to quickly determine the feasible solutions. The values 

reported in Table II correspond to the solutions determined by 

CP after 3600 seconds. It was observed that these solutions 

were obtained much earlier but there is no further 

improvement in the solutions provided by CP. As mentioned 

earlier, this is a drawback of CP that it is computationally 

intensive, particularly to ensure global optimality. However, 

it should be noted that this is a design problem and it is not 

prohibitive to spend some computational effort to determine 

the profitable solutions. Moreover as the objective of this 

work is to provide an alternate formulation overcoming the 

drawbacks of the formulation in literature, additional 

techniques to direct the search and significantly improve the 

computational time are not explored in this article and will be 

a subject of future work. 

 

VI. CONCLUSIONS 

In this article, we have proposed a constraint programming 

based model for determining the optimal production planning 

in a petrochemical industry. The proposed formulation 

overcomes the limitations of the MILP formulation in the 

literature and leads to better solutions. Future work can 

include incorporation of appropriate cuts and developing a 

hybrid strategy to reduce the computational efforts required 

by the proposed model. Additionally, other objectives that 

affect the petrochemical industries can be accommodated to 

determine efficient production plans in the midst of 

conflicting objectives. 
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