
 
 

 

  
Abstract—Multi-scale material modeling was used to 

investigate the role of nanotubes specifications on the nonlinear 
tensile behavior of nanocomposites. Particularly, the effect of 
diameter, chirality and volume fraction of nonlinearly modeled 
SWCNTs is studied on their composites. Multi-scale modeling is 
applied to assemble various RVEs composed of different 
SWCNTs embedded in polymer. Nanotubes are modeled in 
continuum mechanics based on their atomic structures in the 
case of space frame structures. Elements in this structure are 
defined in such a way to resemble carbon bonds characteristics 
in molecular mechanics. Polymer portion of RVE is modeled as 
a linear elastic continuum material, regarding the modeling 
convenience. Attained stress-strain curves of modeled 
nanocomposites revealed that using Armchair SWCNTs in 
RVEs rather than Zigzags makes nanocomposites tougher in 
tensile loading. Also diameter of CNT has an inverse effect on 
the stress-strain curves level. Using CNTs with lower diameter 
in RVEs, regardless of the chirality and CNTs type, make 
nanocomposites more strengthen in tension. Furthermore, the 
effect of diameter is more obvious in higher volume fraction of 
CNTs.    
 

Index Terms—Carbon nanotubes, Multi-scale modeling, 
Nanocomposites, Tensile behavior.   
 

I. INTRODUCTION 
Following the discovery of carbon nanotubes (CNTs) [1], 

many efforts are being dedicated to utilize their extraordinary 
specifications in routine applications. Investigations in 
mechanical engineering in order to compose advanced 
materials prepared nanocomposites emersion in recent years. 
CNTs that recognized as low density, high stiffness and high 
strength materials are extremely attracted the attention of 
scientist as proper reinforcing agents in nanocomposites [2]. 

Qian [3], Andrews [4], Kearns [5] and their coworkers are 
the primaries in performing experiments to study the effect of 
inserting CNTs in polymers. The considerable point is that in 
nanocomposites there are many different design factors that 
influence its final mechanical behaviors. General behavior of 
polymer, volume fraction (VF) of CNT, chirality and 
diameter of CNT, dispersion and orientation of CNTs in 
nanocomposites are the main parameters. Thus, there is a 
useful need to clarify the effect of CNTs addition in polymers 
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by the aid of modeling and simulations. 
Frankland et al. [6] applied molecular dynamics to study 

the tensile behavior of nanotube reinforced polymers. They 
presented longitudinal and transverse stress-strain relation of 
just one representative volume element (RVE) of these 
nanocomposites. 

Multi-scale modeling is identified a versatile tool in 
simulation of materials that consist of different size scale 
components. This technique is more powerful in 
nanomechanics in which the mechanical behavior of material 
is extremely dominated by nanoscale phases. 

Odegard et al. [7] introduced a multi-scale model which is 
based on the equivalent continuum modeling technique for 
nano-structured materials. In their work the elastic 
parameters of model was obtained through same loading 
conditions in both continuum model in finite element and 
discrete model in molecular mechanics. 

Li and Chou [8] applied a multi-scale method to analyze 
the stress distributions in nanotube/polymer composites 
under tension. They combined the molecular structural 
mechanics approach i.e. their previous technique in 
single-walled carbon nanotubes (SWCNTs) modeling [9] 
with the continuum finite element method (FEM) to form a 
RVE of nanocomposites.  

Tserpes et al. [10] proposed a multi-scale RVE to model 
the tensile behavior of CNT reinforced composites. CNTs 
behavior in RVE was taken from a frame structure that was 
assembled with nonlinear beam elements. 

The significant point that has never paid attention chiefly, 
was the effect of CNTs variables on the tensile behavior of 
nanocomposites in modeling investigations. These variables 
are the amount and the kind (chirality and diameter) of 
SWCNTs that have been inserted into the RVEs. 

In present study, the effect of volume fraction, diameter 
and chirality of SWCNTs on the tensile behavior of their 
nanocomposites is investigated via multi-scale modeling. To 
reach this scope, several RVEs including diverse range and 
amount of SWCNTs are prepared. 

SWCNTs are modeled considering their atomic structure 
in space frame structures. Beam elements are defined in the 
structure based on carbon bond characteristics in molecular 
mechanics. Then, the structure is inserted to a cubic 
continuum medium as polymer to form a RVE. All modeling 
procedure and analysis are done in ABAQUS finite element 
software [11]. 

 

II. SINGLE-WALLED CARBON NANOTUBES (SWCNT) 
STRUCTURE  

A SWCNT can be viewed as a rolled graphene sheet to 
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nonlinearity of beam elements in CNT, the analysis is 
allowed to have nonlinear results in general. Normal stress is 
calculated based on total reaction forces in the fixed 
extremity and obtained from software outputs.  

The results are converged successfully and verified with 
molecular mechanics modeling. Fig. 4 demonstrates the 
verification of results by comparing the stress-strain curve of 
a RVE that is assembled the same as in [6] with the reference 
curve.  

 

V. RESULTS AND DISCUSSION 
Twelve RVEs consisting two Armchair CNTs (12,12), 

(17,17) and two Zigzags (20,0), (30,0), each one in 4, 8 and 
12 percent VF are analyzed in separate stepwise procedures. 
Its noticeable that (12,12) and (20,0) CNTs are two different 
kinds CNTs with nearly equal diameter length (9.4 Å). The 
same way is valid for two other mentioned CNTs in diameter 
length of about 23.25 Å. The volume fraction of CNT in 
RVEs is 8% unless specified otherwise in studying the effect 
of VF on tensile behavior part. 

According to the nonlinear tensile behavior of nanotubes, 
secant moduli of RVEs are also derived from the results in 
order to investigate the nonlinearity of their tensile behavior. 
The secant modulus ESEC is defined at a given value of strain ߝҧ as follows [5]: 

ε
σεσ )0()( −=SECE                             (11) 

The Effect of CNT Diameter on tensile behavior of RVE 
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Fig 5. The effect of Armchair CNT diameter on the RVE tensile behavior. 

In order to investigate the effect of embedded CNT 
diameter on tensile behavior of nanocomposites, Armchair 
and Zigzag CNTs were compared separately. Fig. 5 shows 
the stress-strain curves of RVEs including Armchair CNTs in 

different diameters (both in same volume fraction). On the 
other side, Fig. 6 shows the same curves for inserted Zigzag 
CNTs in RVEs. It illustrates that using CNTs with lower 
diameter in RVEs will strengthen the nanocomposites in 
tension. A similar behavior also observed in Zigzag CNTs. 

 
Fig 6. The effect of Zigzag CNT diameter on the RVE tensile behavior. 

By a simple comparison between these stress-strain 
curves, the difference of nanocomposites strength caused by 
different types of embedded CNTs is clear. In next step, this 
significant parameter in nanocomposites design in the case of 
chirality effect is studied. 

The Effect of Chirality on tensile behavior of RVE 
In Fig. 7 the stress-strain curves of four RVEs in one 

diagram is presented. It is noticeable that the curves of RVEs 
including identical chirality of CNTs are in a same color and 
the curves of RVEs with equal diameter CNTs in same style.  
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Fig 7. The effect of CNTs chirality on tensile behavior of RVE. 

 

 
Fig 8. Secant moduli of two kind of embedded CNTs in nanocomposites in 

two different diameters. 

 
It can be concluded that using RVEs including Armchair 

CNTs results superior curves in nanocomposites. It means 
more strength and toughness in tensile loadings especially in 
higher strains (in both diameter ranges). 

In order to evaluate the nonlinearity of modeled RVEs, the 
secant moduli of tensile analysis are shown in Fig. 8. It is 
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clear that in a same kind of inserted CNTs, the secant 
modulus decreases by raising the CNTs diameter. Also, in a 
same diameter of CNTs in RVEs, the secant modulus of 
Armchair included nanocomposites are in a higher range. 
(Curves with same shape in Fig. 8) 

The Effect of Volume Fraction of CNT on tensile behavior of 
RVE 

In Fig. 9 the stress-strain curves of 4, 8 and 12 percent VF 
of Armchair CNTs included RVEs, and in Fig. 10 for Zigzag 
CNTs included is depicted. The figures are expressing that 
higher amount of CNT in RVE will improve the tensile 
behavior of nanocomposite. It is clear that in a same VF using 
smaller diameter CNTs in RVE will result superior curves. 
The important point is that the improvement in tensile 
behavior of nanocomposites due to diameter of CNTs in 
higher VFs is greater. Thus, it could be deduced that the 
effect of CNT diameter on tensile behavior of 
nanocomposites is influenced by the amount of CNT in it. 
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Figure 9. The effect of Armchair volume fraction on RVEs tensile behavior  
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Fig 10. The effect of Zigzag volume fraction on RVEs tensile behavior.  

In order to investigate the dependency of chirality effect to 
the volume fraction of CNT, stress-strain curves of two equal 
diameters Armchair and Zigzag CNTs are superposed in Fig. 
11. 
The diagram declares that the influence of chirality of CNT 
on tensile behavior of nanocomposite is not dependent to 
volume fraction of embedded CNT.  
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Fig 11. The effect of chirality and volume fraction of CNTs on tensile 

behavior of RVE. 

 

VI. CONCLUSION 
The effect of chirality, diameter and volume fraction of 

SWCNTs on tensile behavior of their nanocomposites is 
investigated. Multi-scale material modeling in ABAQUS 
software is used to simulate the tensile loading on a 
representative volume element of CNT/polymer 
nanocomposite. CNTs are modeled based on their atomic 
structures through modified Morse PEF in molecular 
mechanics as frame structures. Different amount of Armchair 
and Zigzag CNTs in different diameters are assembled by 
composing CNT and polymer in RVEs. The obtained 
nonlinear stress-strain curves of RVEs show the dependency 
of nanocomposites tensile behavior on volume fraction, 
chirality and diameter of embedded CNTs. 

It is shown that using CNTs with lower diameter in RVEs 
will strengthen the nanocomposites in tension. In addition, 
using RVEs with Armchair CNTs results more strength and 
toughness in tensile loadings especially in higher strains. 
Moreover, inserting higher amount of CNT in RVE will 
improve the tensile behavior of nanocomposite. Finally, in a 
same amount of CNTs in RVES, using smaller diameter 
CNTs will result a significant strength in nanocomposites in 
tension, especially in higher volume fraction of CNTs. 
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