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Abstract—Project scheduling is an important research and 

application area in engineering management. Recent research in 

this area addresses resource constrained as well as stochastic 

duration. This paper demonstrates a simulation-based model for 

solving resource-constrained research and development projects 

(R&D) scheduling problems and calculates the total time of 

DSM using discrete event simulation. This model used Design 

Structure Matrix (DSM) to represent the information exchange 

among various tasks of a project, instead of a simple binary 

precedence relationship. DSM is capable of quantifying the 

extent of interactions as well. In particular, these interactions 

are characterized by rework probabilities, rework impact and 

learning. Results obtained showed an improved solution 

compared to earlier studies. 

 
Index Terms—DSM (Design Structure Matrix), PSO (Particle 

Swarm Optimization), RCPSP (Resource Constrained Project 

Scheduling Problems).   

 

I. INTRODUCTION 

Many research development (R&D) projects are inherently 

complex, thereby making effective management of the tasks, 

resources, and teams necessary to bring new products to 

market problematic. Frequently, managers of such R&D 

projects are overwhelmed with more complicated factors such 

as stochastic task times, ill-defined specifications, complex 

interrelationships between tasks, and information 

dependencies. Several researchers have recently developed 

an alternative project management tool called the Design 

Structure Matrix (DSM) that explicitly bears in mind the 

iterative nature of research development projects [1]. 

The purpose of this paper is to construct a simulation model 

using Discrete Event Simulation to calculate the total time of 

resource constrained design structure matrix. DSM works as a   

system analysis tool, which provides a compact and clear 

representation of a complex system. It captures the 

interactions/interdependencies/interfaces between system 

elements. It can also be considered a project management tool 

which provides a project representation that allows for 

feedback and cyclic activity dependencies. 

This paper is organized as follow firstly, gives a brief 

introduction on design structure matrix (DSM), secondly 

discusses the related work of resource constrained DSM 

simulation, thirdly describes the discrete event simulation 

model, and finally discusses results obtained, conclusions and 

future work. 
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II. DESIGN STRUCTURE MATRIX 

The basic DSM is a simple binary (A cell can hold one of 

only two values (0, 1), or (an “x” mark, an empty cell)) n - 

square matrix (where n is the number of system elements), 

with m non-empty elements (where m is the number of 

couplings among different system elements). A typical DSM 

is shown in Fig 1. Activity names are placed on the left hand 

side of the matrix as row headings and across the top row as 

column headings in the same order (order of their execution); 

a main DSM assumption is that activities are undertaken in the 

order listed from top to bottom. An off-diagonal mark (x) 

represents a coupling (an information flow, or a dependency) 

between two activities. If an activity i depends on (receives 

information from) activity j, then the matrix element (rowi , 

columnj ) i j contains an off diagonal mark (x) otherwise the 

cell is empty. 

Marks below the diagonal (sub-diagonal marks) are 

indicative of feed-forward couplings (i.e. from upstream 

activities to downstream activities), while those above the 

diagonal (super-diagonal) represent feedback couplings (i.e. 

from downstream activities to upstream activities). As they 

imply iterations, the latter type of couplings should be 

eliminated if possible or reduced to the maximum extent. If 

certain feedback couplings cannot be eliminated, the activities 

can be grouped into iterative sub-cycles (or circuits). For 

example, in Fig. 1, activities (1, 2, 3) and activities (6, 7, 8, 9, 

10) are grouped into two iterative sub-cycles. A primary goal 

in basic DSM analysis is to minimize the number of feedbacks 

and their scope by restructuring or re-architecting the process 

[1]. In other words, by re-sequencing the execution of the 

activities to get the DSM into as lower-triangular form as 

possible. To achieve this goal, Steward [2], [3] proposed a 

two phase approach: partitioning and tearing. In addition to 

Steward’s partitioning heuristic, several methods are found in 

literature: the Path Searching method [4], the Reach ability 

Matrix method [5], the Triangularization Algorithm [6] and 

the Powers of the Adjacency Matrix Method [7]. 

 

III. THEORETICAL BACKGROUND OF RESOURCE 

CONSTRAINED DSM SIMULATION 

Browning and Eppinger [8] used simulation to analyze 

iterative processes based on a DSM model as well as to 

account for normal variance of development task durations. 

However, this first DSM simulation method is based on rather 

restrictive assumptions regarding activity concurrency and 

rework, Roemer et al., 1999 discussed time-cost trade-offs in 

multiple overlapped tasks. However, this model is limited to a 

single path, assuming that sequential iterations take place 
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among sub-tasks within a task. 

Abdelsalam and Bao [9] presented a simulation-based 

optimization framework that determines the optimal sequence 

of activities execution within a product development project 

that minimizes project total iterative time given stochastic 

activity durations. Browning [10] used a DSM-based model 

of a process to quantify a process configuration’s expected 

cost and duration and their variances. Cost, duration (or 

schedule), and variances in both are largely a function of the 

number of iterations required in the process execution and the 

scope or impact of those iterations. Since iterations may or 

may not occur (depending on a variety of variables), this 

model treats iterations stochastically, with a probability of 

occurrence depending on the particular package of 

information triggering rework. 

Zhang [11] presented a simulation –based optimization 

model for solving resource-constrained product development 

project scheduling problems .the model uses the design 

structure matrix (DSM) to represents the information 

exchange among various tasks of the project, modelling based 

on DSM allows iteration to take place .adding resource 

factors to DSM simulation. He not only model the constraints 

posed by resource requirements, but also explore the effect of 

allocating different amount of resources on iterations.  

In this research, we develop discrete event simulation 

model to calculate the total time of resource constrained DSM. 

Adding to the previous work the resource-constrained 

assignment, different type of distribution allowed for each 

activity duration, and concurrency assumption in achieving 

the activity. 

 
Fig. 1. Typical DSM. 

 

IV. METHODOLOGY 

In this Section we discuss the methodology used to 

calculate the total time of the resource constrained DSM, we 

will discuss the model in details, characteristics, variables and 

model steps. 

A. Discrete Event Simulation  

Discrete event simulation is a class of simulations that rely 

on repeated random sampling to compute results. They are 

commonly used when it is infeasible or impossible to compute 

an exact result with a deterministic algorithm. It is an 

extension of Browning's work on DSM simulation [8], [10].  

B.  Model Characteristics 

The model characteristics are as follow, 

 Time of the activity is stochastic and follow any 

distribution according to user preferences like (e.g. 

Triangular, uniform) 

 Concurrency is allowed in performing the activities. 

 Amount resources available are limited. 

 Several types of resources are allowed 

 Total amount of resource available is more than any 

single activity requirements; at any time, at least one 

activity can be executed. 

 SOF criterion is used to resolve resource conflict. 

 Learning curve (LC) is a measure of the activity 

when it is repeated, when activity does work for 

more than one time the duration of that activity is 

represented by learning curve. 

TABLE I:  LIST OF SIMULATION VARIABLES 

Variable Description 

n Number of activities 

m Number types of resources 

Act_ID vector of length n which contain the activities name 

Act_dur 

Actual duration vector, vector of length n which 

containing the duration value of each activity that will 

calculated once by sampling the duration of the activity 

in the initialization step 

Sim_Clock A variable giving the current value of simulated time 

LC 

Learning Curve which is a measure of the characteristic 

of the activity when it repeats. When activity does work 

for more than once the  duration of that activity is 

represented by Learning Curve 

New_dur 
New duration vector, a vector of length n containing the 

last duration value for each activity 

F_dur 

Finished duration vector, a vector of length n containing 

a duration value for each activity after calculating it by 

the equation: 

F_dur = New_dur + Sim_Clock 

Iter_num 
number of iterations, indicates the number of times the 

activity worked during the simulation 

EMn2 
Event matrix of the activities, put in it Act_ID and F_dur 

of the activities which will work in a specific time step 

MayWN 

May Work Now vector, a vector of length n with [0, 1] 

entry for each activity, indicates that the activity in the 

May work or not depending on resource availability. If 

no problem in resources, so WN=MayWN, and put in 

EM. 

WN 

Work Now vector, a vector of length n with [0, 1] entry 

for each activity, indicates that the activity in the EM or 

not. WN vector will be 1 if the activity already in the 

EM, 0 otherwise 

FV 

Finished vector: a vector of length n with [0, 1] entry of 

each activity, indicates if the activity finished or not. 1 if 

the activity finished, 0 otherwise 

RA 
vector of length m represents resource availability for 

each type 

Res 
matrix of size n*m represent amount requested for each 

activity from each type of resources 

RPji 

P (activity i causes rework for activity j), the rework 

probabilities of one activity causing the rework of 

another 

RIji 
Rework impact, % of activity j reworked because of 

input change from activity i 
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C. Simulation Model Variables 

The simulation model variables are as shown in Table I. 

D. Algorithm 

The following Table provides the detailed steps for the 

Simulation model. 

 

TABLE II: THE PROPOSED ALGORITHM  

Inputs: input variables of the project. 

Outputs: the expected total time of the project. 

1: Initialize these vectors, New_dur vector, Iter_num, WN, FV, and 

Sim_Clock with zero. 

2: Sample the time of the activities, according to any distribution. 

3: Initialize the EMn2 by identifying activities that have no 

predecessors to start immediately to be in the May WN vector. 

4: check on resource availability, if there is no problem in resources 

(i.e. amount available of resources >= amount required for a activity) 

put MayWN in WN vector and put activity in EM, then this activity 

can start; otherwise go to step 5. 

5: assign resources to activity according any selected rule like SOF, 

MOF, FCFS, MRF in our model; we use the SOF rule. 

6: Calculate F_dur ,F_dur = Act_dur + Sim_Clock, then Put 1 in the 

WN cell that corresponds to this activity. 

7: Arrange EM, Arrange the durations of the activities in ascending 

order, Update the Sim_Clock with the least duration, FV = 1, and 

modify the duration of this activity by the following equation: 

New_dur = New_dur * LC. 

8: Find all activities that have Feed-Forward relation and check the 

resources availability. Next, add them in the EM. 

9: Find all activities that have Feed-back relation and add them in the 

EM, modify WN of this activity to be zero, remove this activity from 

the EM, arrange the EM ascending, and, at last, update the 

Sim_Clock again by the first activity. 

10: Find Feed-Forward relation for the finished activity: search for the 

activities which the finished activity input to them. If those depend 

only on the finished activity, OR depends on another activities, but 

they were finished and they are not put in the WN and FV. After check 

the resources availability, put them in the EM, calculate F_dur  (F_dur 

= New_dur + Sim_Clock), and then set WN of those activities = 1. 

11: Find Feed-back relation for the finished activity: search for the 

activities which have a feed-back relation, check if this activity will 

start or not by generating a random number. If Random Number < PR 

and WN of this activity = 0 and finished =1, check the resource 

availability then put this activity in the EM, modify its time by the 

following equation: New_dur = New_dur * LC *RI. 

12: For the activities which will rework, search for the activities that 

have a feed-forward relationship, then check if those activities will 

put in the EM by generating random number as before, but taking into 

consideration that FV of them = 1 and WN of them = 0. 

13: repeat these steps until all activities are executed. 

 

 

V. RESULTS 

We present the results obtained using our simulation model 

in solving numerical example, this example contain a set of 

activities with stochastic duration follow a triangular 

distribution, DSM define the relation feed-back and 

feed–forward between activities, Rework probability matrix, 

Rework Impact Matrix [8], resource availability, resource 

requested for each activities, number of simulation  runs 

=200,We applying our simulation model to several cases 

without concurrency and with concurrency assumption and 

figure the results obtained. 

Base Case: solving the original Example without resource 

constrained like [8], we find this output, Fig. 2, shows 

probability mass functions (PMFs) and cumulative 

distribution functions (CDFs) for Duration outcome the mean 

duration, E [Duration], is 141.64 days with a standard 

deviation, S, of 23.20 days. Median duration is 135.06 days, 

even though the Duration distribution is skewed to right 

(skewness = 0.74). We note from this results that this model 

give results better than Tyson R. Browning simulation model. 
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Fig. 2. Duration PMFs, CDFs output in base case. 

Resource Constrained Case: using the original example [10] 

and adding to this resource constrained feature. Number type 

of resources=2: Type 1=10 units, Type 2=12 units. Each 

activity has resources requested from each type. After we ran 

the model, we reached this output: Fig. 3 shows probability 

mass functions (PMFs) and cumulative distribution functions 

(CDFs) for duration outcome; the mean duration, E 

[Duration], is 231 days with a standard deviation, S, of 20.13 

days. Median duration is 230.40 days, even though the 

duration distribution is skewed to left (skewness = 0.04). 
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Fig. 3. Duration PMFs, CDFs output in resource constrained case. 

A. Model Validation 

In this section, we introduce different scenarios to prove 

that the results of our model are logical. 

Case 1: If we increase the total amount of available 

resources, type 1 of resource = 50, type 2 of resource=50, 

using the example data given in [8], we found out the 

following output: Fig 4 demonstrates probability mass 

functions (PMFs) and cumulative distribution functions 

(CDFs) for duration outcome; the mean duration, E 

[Duration], is 171 days with a standard deviation, S, of 21.73 

days. Median duration is 167.89 days, even though the 

duration distribution is skewed to right (skewness = 0.29). We 

can infer from these results that the expected project total time 

will decrease (to be 171 days), which proves the inverse 

relationship between the total amount of resources and the 

total time of the project. 
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Fig.  4.  Duration PMFs, CDFs output in case 1. 

Case 2: if we decrease the total amount of available 

resources type 1 = 5 units, type 2 = 6 units, using the example 

data given , we obtained this output: Fig. 5 shows probability 

mass functions (PMFs) and cumulative distribution functions 

(CDFs) for duration outcome; the mean duration, E 

[Duration], is 239 days with a standard deviation, S, 21.55 

days. Median duration is 239.40 days, even though the 

duration distribution is skewed to Left (skewness = 0.17). We 

can conclude from the previous results that the expected 

project total time will increase, which proves the inverse 

relationship between the total amount of resources and the 

total time of the project. 
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Fig. 5. Duration PMFs, CDFs output in case 2. 

 

Case 3: If we increase one type of resources and control the 

second to become constant:  

Case 3a: type one increases to be = 50 units, and type two 

remains constant=12 units. Using the example data given in [8] 

we found the output the mean duration, E [Duration], is 229 

days with a standard deviation, S, 21.81 days. Median 

duration is 231.40 days, even though the duration distribution 

is skewed to right (skewness = 0.31). 

Case 3b: Type one =10 units remaining constant, and type 

two increases to be = 50 units. By using the example data in 

[8], we reached this output, E [Duration], is 167 days with a 

standard deviation, S, of 19.62 days. Median duration is 

165.27 days, even though the duration distribution is skewed 

to right (skewness = 0.48). The expected total time decreased 

so much from the original since most of the activities 

depended on the second type of resources which did not 

constrain the activities achieved. 

Case 4: in our model we have the flexibility to make each 

activity follow different type of distribution; we have the 

following distributions to deal with. Gamma, uniform, 

triangular... Let assume the activities in [8] all follow different 

distribution we obtain this results. Fig. 6 shows probability 

mass functions (PMFs) and cumulative distribution functions 

(CDFs) for Duration outcome the mean duration, E 

[Duration], is 378.76 days with a standard deviation, S, of 

43.06 days. Median duration is 379.51 days, even though the 

Duration distribution is skewed to right (skewness = 0.39). 
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Fig. 6. Duration PMFs, CDFs output in case 4. 

B. Concurrency Assumption 

In our model, we apply the concurrency assumption with 

concurrency factor = 0.5, which does not mean that an activity 

starts when another activity is finished (finish-to-start 

relationships); the activity will not wait till all activity 

duration is finished, but it can start when 0.5 of the duration is 

finished only. This concurrency factor can change according 

to user preferences. When we ran the simulation model with 

the concurrency assumption, we obtained the results shown in 

Table III. We are interested only in the expected total time of 

the project. When we compared between with-concurrency 

and without-concurrency assumptions, we noted that the 

expected total time decreased in some cases and increased in 

others depending on the interdependencies between activities. 

 
TABLE III:  RESULTS OBTAIN USING CONCURRENCY ASSUMPTION IN 

SEVERAL CASES 

Expected total time of the 

project 

Case  

135 days Base 

227 days Resource constrained 

165 days 1 

238 days 2 

Case a=225 days 3 

Case b=164 days 

376 days 4 

 

VI. CONCLUSION AND FUTURE WORK 

In this paper we have presented a simulation-based model 

for solving RCPSPs. we use DSM as our primary data 

repository and representation tool. It provides a clear 

visualization, eases modifications to RCPSPs, and allows us 

to use many mathematical analytic methods to analyze a 

problem. More importantly, rework, which commonly occurs 

in process development projects, can now be easily modeled 

through the use of rework probabilities and rework impacts 

using DSM. In our simulation–based approach allows us to 

generate according to rework probabilities and rework 

impacts stochastically ,instead of a single value of total 

project durations ,we examine a distribution of total project 
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durations, as result of many discrete event simulation runs. 

We can see clearly how rework evolves and contributes to the 

total project durations. In the future we will try to use PSO to 

find the optimal sequence within the resource constrained 

DSM, and find the minimum time using RCPSPs simulation 

model, and find the maximum utilization of the available 

resources.  
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