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Abstract—In almost every engineering and technology fields, 

information channel capacity is the tightest upper bound on 

the amount of information that can be reliably transmitted 

over a communications channel. Brijpaul and Sharma [1] gave 

a direct method of computing the performance function of a 

discrete memoryless communication channels. They obtained 

the performance function for discrete channels by using 

Shannon entropy which is additive in nature, but in some 

situations additivity does not hold well. In such situations, non-

additivity prevails. Arimoto [2] and Blahut [3] proposed an 

iterative method to compute the channel capacity of a discrete 

memoryless channel. In this paper we present an algorithm for 

computing performance function for useful (r, s) – entropy 

under single and multiple constraints by defining mutual 

information in terms of Sharma and Mittal [4] entropy of 

order r and degree s which is non-additive in nature. 

 
Index Terms—(r, s) Entropy, performance function, channel 

capacity, communication channel, additivity. 

 

I. INTRODUCTION 

Channel capacity is a fundamental concept in information 

theory and was introduced by Shannon [5]. The channel 

capacity is the maximum rate at which information can be 

transmitted with a single use of the channel with arbitrarily 

low probability of error. It is usually expressed as bits per 

second. The capacity of the channel is a useful measure as it 

tells us the highest rate at which information can be reliably 

transmitted. A general method for determining the capacity 

of discrete memoryless channel has been suggested by 

Cheng [6] and Takano [7]; Zhao and Bose [8]. While 

Meister and Oettli [9] proposed an iterative procedure based 

on the method of concave programming and showed that it 

converges to capacity. An insight into the concept of 

Channel Capacity was presented by Costello and Forney 

[10].  Arimoto [2] and Blahut [3] also proposed another 

iteration method to compute the capacity, which is very 

simple and systematic. 

Let X = (x1, x2, x3… xn) and Y = (y1, y2, y3, … ym) represent 

the set of input alphabet with n letters and the set of output 

alphabet with m letters respectively. Let p (xi) and p (yj) 
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where i = 1, 2, 3, ... n and  j = 1, 2, 3,… m be the probability 

distribution functions defined on X and Y respectively. 

Shannon’s [5] measure of information is given by 

H (X) = - 
1

( ) log ( )
n

i i
i

p px x


 , p (xi) > 0, 
1

n

i

 p(xi) = 1

 (1.1) 

The conditional entropy is defined as 

H (X/Y) = 

1 1

  ( , ) log  ( / )
n m

i j i j

i j

p x y p x y
 

     (1.2) 

where p (xi / yj) and p (xi, yj) are the conditional and joint 

probabilities respectively. The average mutual information 

is given by  

I (X / Y) = H (X) – H (X / Y)   (1.3) 

 
The channel capacity are defined by Shannon is given by 

C = Max.  {I(X/Y):  
1

n

i

 p(xi) = 1 }  (1.4) 

Brijpaul and Sharma [11] formulated the effects of the 

restrictions as constraints and found the maximum rate 

under these constraints. They call it as channel performance. 

They have defined the channel – performance as 

 

C = Max.{I(X/Y):
1

n

i

 p(xi) = 1 ,
1

n

i

 Cki  p(xi) < δ  k}; 

k = 1, 2, 3, ...  

 (1.5) 

  

 

Brijpaul and Sharma [11] obtained the performance 

function for discrete channels by using Shannon entropy 

which is additive in nature, but in some situations additivity 

does not hold good. In such situations non-additivity 

prevails. Belis and Guiasu [12] attached with the probability 

scheme, a utility (weighted) distribution. Shimar and Taneja 

[13] have computed the performance function of γ  entropy 

using Belis and Guiasu [12] measure under single and 

multiple constraints. In this paper, we are giving an 

algorithm for computing the performance function for 
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where Cki is the k th type of cost associated with the symbol 
xi and δ  k, k = 1, 2, 3, ……. l  are non – negative 
previously fixed constants arising from practical 
considerations. 
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generalized weighted β entropy of discrete memoryless 

communication channel under single and multiple 

constraints in which the mutual information has been 

defined in terms of Havrda and Charvat [14] entropy of 

degree β which is non-additive in nature which depends 

upon the utility distribution.             

    

U =   1 1 1 n n ( ), ( ), ( ),... ( ) : ( )  0)u x u x u x u x u x   
 

II. ALGORITHM  

Let us denote a discrete memoryless channel with n input 

and m output symbols by m  n matrix A i.e. where  

Hβ (P ; U)= (2
1-β

 – 1)
-1
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 ( ) ( )
n

β

i i
i

u x p x

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       (2.1)
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where Hβ (A : P ; U) is the conditional weighted  entropy of 

degree β . 

We define the weighted capacity of degree β of a discrete 

memoryless channel A as  

Cβ (P ; U)  =  max  I β (A : P ; U)  (2.3) 

In view of various cost factors, we define the generalized 

weighted β – performance function as  

Cβ ( δ  ; U)  =   max  { I β (A : P ; U)  : 
1

n

i

 p(xi) = 1 , 

1

n

i

 Cki  p(xi)  <  δ k } ; k = 1, 2, 3, …….     (2.4) 

where Cki is the k
th

 type of cost associated with the symbol xi. 

Introduce a stochastic matrix n  m as  

 

q={ q (xi / yj) , i  = 1, 2, 3,…n & j = 1, 2, 3, …m } 

where  

q (xi / yj)  >  0 , 
1

n

i

  q (xi / yj ) = 1 (2.5) 

We define generalize conditional entropy of degree β as 

Jβ (A: P; Q; U) = (2
1-β

 – 1)
-1 

{
1-

1 1

( ) ( )  ( / ) ( 1  ( /  )  }
m n

β β β β

i i j i i j

j i

u x p x p y x q x y
 

  ;β  1, 

β >0   (2.6) 

Then, if q is defined by  

q (xi / yj)  =  

1

 ( ) ( ) ( / )

 ( ) ( ) ( / )

i i j i

n

i i j i

i

u x p x p y x

u x p x p y x



   =   P (xi / yj) (2.7) 

Using (2.7) in (2.6), the expression reduces to (2.2) i.e. to 

say 

Jβ (A : P ; q ; U)     =      Hβ (A : P ; U) 

Furthermore, we can easily prove the inequality 

Jβ (A : P ; q ; U)    >  Jβ (A : P ; P* ; U )  (2.8)  

where P* is the stochastic matrix whose (i , j)
th  

entry is A (xi 

/ yj) as defined in (2.9). 

Theorem 2. 1 Performance function for generalized 

weighted β entropy under single constraint 

For any fixed β and q,   Jβ (A; P; q; U) is maximized by  

p (xi)   =  

1
  

1  -1( ) (2 1)
 

  ( ) 

β β
i

i i

λ θ C

β u x a

  
 
 

  (2.9)  

where  

ai  =   1 - 
1-

1

  ( / )  (1   ( / ) )
m
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j i i j

j

p y x q x y


   (2.10) 

  and  are lagrange’s multipliers, subject to 

1

n

i

 p(xi) = 1  and  
1

n

i

 Ci  p(xi)  = δ   (2.11) 

And   

     =  
i 1

n

iC




1
  

1  -1( ) (2 1)
 

( ) 

β β
i

i i

λ θ C

β  u x a

  
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    (2.12) 

And then 

Cβ (δ  ; q ; U)   =  (2
1-β

 – 1)
-1

  

1

n

i


1  -1( ) (2 1)

  

β
β β

iλ θC

β

  
 
 

 (a
i
)

1

1-β
- 1  <   C

β
 ( δ  ;U)

      (2.13) 

Proof:  

The function which we want to maximize is of the 

following form: 

Hβ (P ; U)  -  Jβ (A: P ; q ; U) 

Using the lagrange’s method of multipliers, we have 

   = Hβ (P ; U)  -  Jβ (A I P ; q ; U)  +  (1 - 
1

n

i

 p(xi) )  +           

  ( δ  - 
1

n

i

 Ci  p(xi) )   (2.14) 

We will obtain a maximum of (2.14) by differentiating 

  with respect to p (xi) and setting this partial derivative 

equal to zero. i.e. 
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Which is the required probability distribution? Now 

multiplying the above equation by Ci and summing over i 

and using the relation 

1

n
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which is the required result. 

Particular case: If by putting ui = 1 in equation (1.12) and 

(1.16), the above equation reduces to the results obtained by 

Gupta and Arora [15].  

 

III.   CONCLUSION 

Information theory, developed by Claude E. Shannon 

during World War II, defines the notion of channel capacity 

and provides a mathematical model by which one can 

compute it. The key result states that the Performance 

function of the DMC channel, as defined above, is given by 

the maximum of the mutual information between the input 

and output of the channel, where the maximization is with 

respect to the input distribution This paper focuses on 

computing the performance function for (r, s) entropy of a 

discrete memoryless communication channel using the 

utility function under single constraint. This result can also 

be extended to find the performance function of a discrete 

memoryless communication channel under multiple 

constraints. 
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