


 Abstract—Software is everywhere and has become a major

worldwide industry. We find software embedded, for example,

in watches, coffee makers, cars, televisions, airplanes,

telephones, reservation systems, and medical equipment.

Software not only pervades a multitude of products, but also is

an important corporate asset, and demand is increasing. With

dynamic markets and evolving business models, organizations

need to stay agile to maintain and improve their competitive

edge. First release of software products includes enough

features and functionality to make it useful for the customers.

Later, software companies have to come up with up-gradation

or add-ons in their software to survive in the market through

a series of releases. They plan successive releases by adding

new features or new functionalities or try to improve

performance of system as compared to previous releases by

removing faults from existing software. Removing maximum

faults from existing release and delivering reliable software is

most important. In this paper we have used different fault

removal process based on generalized Erlang model for

different releases. The model is validated on real software data

set.

Index Terms—Software reliability growth model,

distribution function, multi release.

I. INTRODUCTION

The In recent years, with the rapid development of

computer technology, more and more software systems are

widely used in high reliability field. It is presented great

demanding for software reliability. In order to evaluate the

reliability of software, a lot of software reliability models

are presented [1]-[8]. Software reliability is defined as the

probability of failure-free software operation for a specified

period of time in a specified environment. In last three

decades several reliability growth (SRGMS)models have

been proposed, and some realistic issues such as imperfect

debugging, coverage and learning phenomena of software

developers have been studied and incorporated in software

reliability assessment [1], [6], [9]-[16].

The intense global competition software developing

companies like Microsoft, IBM, Adobe and Wipro etc. are

trying very hard to provide better value to its customers.

They are trying to make their market presence by Up-

gradations/add-ons or by adding some new functionality to

Manuscript received August 9, 2013; revised October 13, 2013.
Ompal Singh and Jyotish N. P. Singh are with the Department of

Operational Research, University of Delhi, Delhi, India (e-mail:

drompalsingh@live.com, jyotishdu@gmail.com).
Anshul Tickoo is with the ASE, Amity University, Noida, Uttar Pradesh,

India (e-mail: anshultickoo@hotmail.com).

P. K. Kapur is with the Amity International Business School, Amity
University, Noida, India (e-mail: pkkapur1@gmail.com).

the existing software system periodically. Technological

breakthroughs are happening rapidly and these new

innovations often take form of a new product. The concept

of performance of an upgraded software system over its life

cycle has been explained by using well known sigmoid

curve [14]. And it has been seen that in the initial period of

the software more efforts are put increasingly so that overall

performance of the technology can be improved till

attaining its natural performance limit. In general when

software reaches a level when it attains its operational

reliability level desired by the company, new upgraded

software is introduced in the market. Due to demand of

upgraded software in competitive environment the software

developing department’s sharp eye is always on market

competition keeping in their mind the quality of software

with the user’s needs and requirements. Also upgrading a

software application is a complex task. The upgraded and

existing system may differ in the performance, interface and

functionality etc. Although the developers upgrades the

software in order to improve the software product, which

also includes the possibility that the upgrade version will

worsen, That’s why there is risk involved into upgrading the

software system. While upgrading an existing software

system, only selected components of the software system

are changed while the other will remain same to function.

This process leads to an increase in the fault contents and

the testing team is always interested in knowing the bugs

present in the software which will decide the utility of up-

graded software. Safe up-gradation can improve the

behavior of the system and can preserve market for

company however risky up-gradation can cause critical

error in system. for example in October 2005, a glitch in a

software upgrade caused trading on the Tokyo Stock

Exchange to shut down for most of the day [1], in 1991

after changing three lines code in a signaling program

which contained millions lines of code, the local telephone

systems in California and the eastern seaboard came to stop].

Similar gaffes have occurred from important government

systems [15], [17] to freeware on the internet. Sometimes

Upgrades can worsen a product and user may prefer an

older version. The typical software failure curve

experienced by traditional software reliability growth model

can be depicted by the Fig. 1. The traditional software

reliability growth model fails to capture the error growth

due to the software enhancements in user-end. In the useful-

life phase, software firm introduces new add-ons or features

on the basis of the user need. Software will experience an

increase in failure rate, each time an upgrade is made. The

failure rate decreases gradually, partly because of the

defects found and fixed after the upgrades. Fig. 2 depicts the

increase in failure rate due to the addition of new features in

Fault Removal Phenomenon Using Different Distribution

Functions for Each Release

 Ompal Singh, Jyotish N. P. Singh, Anshul Tickoo, and P. K. Kapur

5

International Journal of Modeling and Optimization, Vol. 4, No. 1, February 2014

DOI: 10.7763/IJMO.2014.V4.338

http://en.wikipedia.org/wiki/Tokyo_Stock_Exchange
http://en.wikipedia.org/wiki/Tokyo_Stock_Exchange
http://en.wikipedia.org/wiki/Freeware

the software. Even fixing bugs may induce more software

failures by fetching other defects into software. But if the

goal of the firm is to upgrade the software by enhancing its

reliability, then it is possible to incur a drop in software

failure rate that can be done by redesigning or re-

implementing some modules using better engineering

approaches [17].

Time

Fa
ilu

re
 R

at
e

Test/

Debug
ObsolescenceUseful Life

Fig. 1. Traditional failure rate curve for software systems.

Fig. 2. Failure rate curve due to feature enhancements for software systems.

Recently Kapur et al., [16], [17] developed a multi up-

gradation reliability model, considering that cumulative

faults in each generation depend on all previous releases

and also assumes that fault is removed with certainty. But

the proposed model is based on the assumption that the

overall fault removal of the new release depends on the

reported faults from the just previous release of the software

and on the faults generated due to adding some new

functionalities (add-ons/up-gradations) to the existing

software system. Removal of maximum number of faults

from each release is most important part in software

development. Up gradation increases the complexity of

software. All the developed multi up gradation modeling

phenomenon consider one distribution function for fault

removal process in every release i.e. one fault detection rate

for all the release. As the complexity of the software

increases due to enhancement in features fault removal

process become harder. We have taken different detection

rate for each release. In other words we have considered

different distribution function for each release.

In this paper, we propose a general framework for multi

up-gradation software reliability growth model

incorporating different distribution function for each release.

The rest of this paper is organized as follows. Section II

describes assumptions and notations. Section II C briefly

reviews literature on Software Reliability. In section II D,

we propose a general framework for up-gradation problem.

Section III discuses about how can derive new model in this

environment. Section IV shows the experimental results

through real data sets. We also analyze about parameter in

each release. Finally, conclusions are given in Section V.

II. MODELING THE SOFTWARE RELIABILITY MULTI UP-

GRADATIONS

A. Assumptions

The basic assumptions of the model are as follows:

 The fault detection/ correction are modeled by non

homogeneous poison process (NHPP).

 The number of faults detected at any time is

proportional to the remaining number of faults in the

software.

 Failure introduction rate is equally affected by faults

remaining in the software.

 The number of faults in the beginning of the testing

phase is finite.

 All faults are mutually independent from failure

detection point of view.

 Software systems are subject to failure during

execution caused by a fault remaining in the system.

B. Notations

)(tm Expected mean number of faults removed by time t

)(tf Probability density function.

()iF t Probability distribution functions for
thi release.

1it  Time for
thi release (i=1 to 4).

ia Initial fault content for
thi release (i=1 to 4).

()ib t
Time dependent fault detection rate function for

thi release.

ib Constant parameter for
thi release.

C. Review of Software Reliability Models

Several SRGMs have been proposed in software

reliability literature under different set of assumption and

testing environment to capture the cumulative number of

faults removed in the software[1], [3], [5]-[7], [9]-[14], [16].

Further With the help of the hazard rate we can derive the

mean value function of cumulative number of faults

removed.

Let () 0N t t  be a counting process representing the

cumulative number of software failures by time t. The

counting process N (t) is shown to be a NHPP with a mean

value function ()m t which represents the number of faults

removed by time t.

Based on the NHPP assumption, it can be shown that N (t)

has Poisson distribution with mean (), . .,m t i e

 
 () exp ()

() , 0,1, 2,...
!

nm t m t
Pr N t n n

n

 
  

By definition, the mean value function of cumulative

number of failures, m (t), can be expressed in terms of the

failure intensity function of the software, i.e.,

0
()= ()

t

m t s ds

6

International Journal of Modeling and Optimization, Vol. 4, No. 1, February 2014

Based on previous assumptions the differential equation

describing the removal phenomenon can be given by:

 

 
   

'
()

. . () (). ()
1

F tdm t
a m t s t a m t

dt F t
   

 (1)

Solving the above differential equation (1), under initial

condition m (0) =0, we get mean value function as:

  . ()m t a F t (2)

D. General Framework for Multi Up-Gradations Model

Our modeling framework with different type of

distribution function is developed based on a unified

framework proposed by literatures [6] and Mathematical

model related to each release are given separately.

1) Modeling for first release

The First Release of software is released at
0t t . Note

that there is not any effect of another release on the in this

release of the software and we consider tasting phase as

classical SRGM. The mathematical equation of these finite

numbers of faults removed is given as:

 1 1 1. ()m t a F t (3)

2) Modeling for second release

After first release, the company has information about the

reported bugs from the users who used release 1, hence we

must consider the effect of release 1 on this release. In this

model note that testing phase for second release and

operational phase of release1 happened in same interval

time as
0 1t t t  .Also in order to attract more customers, a

company adds some new functionality to the existing

software system. Adding some new functionality to the

software leads to change in the code. These new

specifications in the code lead to increase in the fault

content. Now the testing team starts testing the upgraded

system. In this period when there are two versions of the

software,
1 1.(1 ())a F t is the leftover fault content of the

first version which interacts with new portion of detected

faults i.e. 2 1().F t t In addition a fraction of faults generated

due to enhancement of the features are removed with new

rate. The mathematical equation of these finite numbers of

faults removed can be given by:

2 2 1 1 1 2 1 1 2() ((1 ()). () ,m t a a F t F t t t t t      (4)

3) Modeling for third release

Similarly for release 3, we consider faults generated in

third release and remaining number of faults from the

second release and the corresponding mathematical

equation can be represented as follows:

3 3 2 2 2 1 3 2 2 3() ((1 ()). () ,m t a a F t t F t t t t t       (5)

4) Modeling for fourth release

And similarly for release 4, the corresponding

mathematical expression can be given by:

4 4 3 3 3 2 4 3 3 4() ((1 ()). () ,m t a a F t t F t t t t t       (6)

5) Modeling for
thi release

In general for release i, the corresponding mathematical

expression can be given as:

1 1 1 2 1 1() ((1 ()). () ,i i i i i i i i i im t a a F t t F t t t t t            (7)

III. DERIVATION OF NEW MODEL

In this section based on structure which we make in

release 1 to 4, we derive multi up-gradation growth models

with different detection rate in each release. The detection

rate for first release is constant. The distribution function for

the first release follows exponential distribution. The

detection rate for the second release of the software is time

dependent and the distribution function for second release is

2-stage Erlang distribution function. Similarly the mean

value functions for the third and fourth release follow 3-

stage Erlang growth curve and 4-stage Erlang growth curve

respectively. Table I show the complete list of detection rate,

distribution function and mean value function for each

release.

TABLE I: LIST OF DETECTION RATES

Release Detection Rate ()b t Distribution ()F t Function Mean Value Function ()m t

First 1b 1(1)
b t

e


 1

1(1)
b t

a e




Second

2

2

21

b t

b t
 2

2(1 (1))
b t

b t e


  2

2 2(1 (1))
b t

a b t e


 

Third 2 2
3

3 2

3

3 2
2(1)

b t

b t

b t 
 3

2 2

3
3(1 (1))

2

b tb t
b t e


   3

2 2

3
3 3(1 (1))

2

b tb t
a b t e


  

Fourth 2 2 3 3
4 4

4 3

4

4 2 2
2(1)

b t b t

b t

b t  

4

2 2 3 3

4 4
4(1 (1))

2 3

b tb t b t
b t e


   

4

2 2 3 3

4 4
4 4(1 (1))

2 3

b tb t b t
a b t e


   

7

International Journal of Modeling and Optimization, Vol. 4, No. 1, February 2014

A. Multi Up-Gradations Based on Generalized Erlang

Distribution (i=1 to 4)

1) First release

1

1 1

1 1 1

() (1)

. () , 0

b tm t a e

a F t t t


 

  

2) Second release

2

2 2 1 1 1 2

2 1 1 1 2 1 1 2

() ((1 ()). 1 (1)

((1 ()) () ,

b tm t a a F t b t e

a a F t F t t t t t

      

     

3) Third release

3

2 2

3

3 3 2 2 2 1 3

3 2 2 2 1 3 2 2 3

() ((1 ()). 1 (1)
2

((1 ()). (),

b tb t
m t a a F t t b t e

a a F t t F t t t t t


 

       
 

      

4) Fourth release

4

2 2 3 3

4 4

4 4 3 3 3 2 4

4 3 3 3 2 4 3 3 4

() ((1 ()). 1 (1)
2 3

((1 ()) () ,

b tb t b t
m t a a F t t b t e

a a F t t F t t t t t


 

        
 

      

IV. PARAMETER ANALYSIS

To check the validity of the proposed model and to

describe the software reliability growth, it has been tested

on tandem computer [1] four release data set. Also we have

used non linear least square technique in SPSS software for

estimation of parameters. Estimated value of parameters of

each releases are given in Table II. Table III shows the

comparison criterion of the four software releases. Fig. 3-

Fig. 6 shows the estimated and the actual values of the

number of faults removed for four releases. Based on data

available given in Table II, the performance analysis of

proposed model is measured by the four common criteria

MSE, Bias, RMSPE, R2, and Variation.

TABLE II: PARAMETER VALUES

Parameter Release 1 Release 2 Release 3 Release 4

ia 113.12 67.51 52.607 44.046

ib 0.1969 0.3948 0.604 0.431

TABLE III: COMPARISON CRITERIAS

 Release 1 Release 2 Release 3 Release 4
2R .982 .995 .996 .995

Bias .07041 .03703 .000541 0.01289

MSE 17.230 9.6021 3.4182 4.305

Variation 3.5645 2.8690 1.7207 1.9649

Fig. 3. Goodness of fit for release 1.

Fig. 4. Goodness of fit for release 2.

Fig. 5. Goodness of fit for release 3.

Fig. 6. Goodness of fit for release 4.

V. CONCLUSION

The modelling frameworks presented in this paper aim at

extension of multi up-gradation modelling framework under

the different distribution function for each release. The

software reliability multi up-gradation model in this paper is

based on the assumption that the overall fault removal of the

new release depends on the faults generated in that release

and on the leftover faults of just previous release (for each

release). Experimental results show that the proposed gives

a better fit to the observed data.

ACKNOWLEDGEMENT

The research work presented in this paper is supported by

grants to the forth author from Department of Science and

Technology (DST) Grant No SR/S4/MS: 600/09, India.

REFERENCES

[1] H. Pham, System Software Reliability, Springer-Verlag, 2006.

[2] H. Pham and X. Zhang, “NHPP software reliability and cost models

with testing coverage,” European Journal of Operational Research,
vol. 145, pp. 443-454, 2003

[3] M. Ohba, “Software reliability analysis models,” IBM Journal of

Research and Development, vol. 28, no. 4, pp. 428–443,1984.
[4] L. V. Bart, Zimmermann and E. R. Marina, “Development of a

methodological framework for examining science and technology in

flanders,” Katholieke Universiteit, Leuven, 2000.
[5] P. K. Kapur. R. B. Garg, and S. Kumar, Contributions to Hardware

and Software Reliability, World Scientific, Singapore, 1999.

[6] P. K. Kapur, H. Pham, S. Anand, and K. Yadav, “A unified approach

for developing software reliability growth models in the presence of

imperfect debugging and error generation,” Communicated in IEEE

Transactions on Reliability, vol. 2, pp. 1036-1040, 2008.

8

International Journal of Modeling and Optimization, Vol. 4, No. 1, February 2014

[7] S. Bittanti, P. Bolzern, E. Pedrotti, and R. Scattolini, “A flexible

modeling approach for software reliability growth,” in Software

Reliability Modelling and Identification, G. Goos and J. Harmanis,

Eds., Springer, Berlin, Germany, 1998, pp. 101–140.

[8] S. Yamada, S. Osaki, and Y. Tanio, “Software reliability

measurement and assessment methods during operation phase and
their comparisons,” System and Computers in Japan, vol. 23, no. 7,

1992.

[9] C. T. Lin and C. Y. Huang, “Enhancing and measuring the predictive
capabilities of testing-effort dependent software reliability models,”

The Journal of Systems and Software, vol. 81, pp. 1025–1038, 2008.

[10] L. Goel and K. Okumoto, “Time-dependent error-detection rate
model for software reliability and other performance measures,”

IEEE Trans. on Reliab., vol. 28, no. 3, pp. 206–211, 1979.

[11] A. L. Goel, “Software Reliability Models: Assumptions, Limitations
and Applicability,” IEEE Transactions on Software Engineering, SE-

11, pp. 1411-1423, 1985.

[12] K. Kanoun, B. M. Martini, and J. M. D. Souza, “A method for
software reliability analysis and prediction application to the

TROPICO-R switching system,” IEEE Trans. Software, no. 17, no. 4,

pp. 334–344, 1991.
[13] P. K. Kapur and R. B. Garg, “Software reliability growth model for

an error-removal phenomenon,” Software Engineering Journal, vol. 7,

no. 4, pp. 291–294, 1992.
[14] P. K. Kapur, S. Younes, and S. Agarwala, “Generalized Erlang model

with n types of faults,” ASOR Bulletin, vol. 14, no. 1, pp. 5–11, 1995.

[15] S. Yamada, M. Ohba, and S. Osaki, “S-shaped software reliability
growth models and their applications,” IEEE Trans. on Reliability,

vol. 33, no. 4, pp. 289–292, 1984.

[16] P. K. Kapur, H. Pham, A. Gupta, and P. C. Jha, Software Reliability
Assessment with or Applications, UK: Springer, 2011.

[17] P. K. Kapur, A. Tandon, and G. Kaur, “Multi Up- gradation Software

reliability Model,” in Proc. 2nd International Conference on
Reliability, Safety and Hazard, 2010, pp. 468-474.

Ompal Singh is currently a reader in the
Department of Operational Research, University of

Delhi, India. He has been an active member of the

Society for Reliability Engineering, Quality and
Operations Management (SREQOM) since 2000.

He obtained his Ph.D. degree in software reliability
(operational research) from University of Delhi

(INDIA) in 2004. He has published extensively in

Indian journals and abroad in the areas of

Marketing, Software Reliability and Optimization.

Jyotish N. P. Singh is a research scholar in the

Department of Operational Research University of

Delhi. Presently he is working as a guest lecturer in

Ramjas College, University of Delhi. He obtained his
master’s degree in operational research from

University of Delhi, Delhi. His Research interest

includes, mathematical modelling in software
reliability, software up-gradation modelling and

software release. He has published research papers in international and

national journal of repute.

Anshul Tickoo is currently an assistant professor in

Amity School of Engineering, Amity University,
Noida. She is a research scholar in Amity School of

Engineering and Technology, Amity University. She

obtained his M. tech (CSE) degree from Amity
University and has done B. Tech (instrumentation

technology) from M. S Ramaiah institute of

technology (Bangalore). Her Research interest
includes, software up-gradation modelling and

Software release.

P. K. Kapur is a professor at Amity International

Business School, Amity University, Noida and

former head of the Department of Operational
Research and former dean of the Faculty of

Mathematical Sciences, University of Delhi. He has

been the president of Society for Reliability
Engineering, Quality and Operations Management

(Regd.) since 2000 and former president of

Operational Research Society of India. He obtained
his Ph.D. degree in reliability theory (operational research) from University

of Delhi in 1977. He has published extensively in Indian journals and

abroad in the areas of Marketing, Hardware Reliability, Optimization,
Queuing Theory and Maintenance and Software Reliability (more than 200

papers). He has recently published a book on “Software Reliability

Assessment with OR Applications” (Springer, UK, 2011).

9

International Journal of Modeling and Optimization, Vol. 4, No. 1, February 2014

