International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

Behavior Engineering Methodology Enhancement to
Support Code Generation

Emerson C. Simbolon and Eko K. Budiardjo

Abstract—Behavior Engineering (BE) is a component and
behavioral based system methodology. BE uses Behavior
Modeling Language (BML) to models a system. Formal syntax
in BML supports automated code generation to the built
system. However, no tool exists yet to support it. This paper
propose a method in which makes it reliable to support code
generation. Rational Unified Process (RUP) terminology such
as Workflow, Worker, Activity and Artifacts are used to
familiarize the method to people who already familiar to RUP.
The suported research target is to apply the BE, so a tool is
produced as well to apply the method.

Index Terms—Behavior engineering,
software engineering

code generation,

I. INTRODUCTION

Software development reliability has been an important
issue since the emerging of safety in software engineering.
Pioneers such as Dijkstra [1], Hoare [2], and Milner [3]
have raised more concerns and suggested several important
ideas and methodologies to build system with possibility of
minimum error. The idea of reliable software construction
and verification is not a practical subject and targeted to
build critical system. For example, B by Abrial is one of

software methodology for reliable software development [4].

It has been used in many critical software developments
such as Paris Transportation and Peugeot automobiles [5].
The process in B requires deep logical proof. The details of
deriving specifications have made possible to generate the
code automatically. The process starts with a formal
specification through several logical refinements which
yield a reliable generated source code. The formal
specification and logical refinements are expensive, but
paid off by the result of having a reliable generated source
code.

In 2003, Dromey proposed another mechanism to create
a dependable system which called Behavior Engineering
(BE) [6]. Based on BE, software requirements are analyzed
and designed to form an Integrated Behavior Tree (IBT or
only BT). BT has a formal semantic, so code generation is
possible [7].

BT diagram provides a possibility to semi-automatic
check of requirements' consistency, completeness, and
aliveness [8]. Moreover, if the check process produces some
counter examples, it is also possible to trace the counter
example visually from the original diagram. Those features
could lead to another new methodology of software
engineering, which focuses on reliability but maintain

Manuscript received July 19, 2013; revised September 22, 2013 .
The authors are with the Faculty of Computer Science, University of
Indonesia, Indonesia (e-mail: emerson.chan@ui.ac.id, eko@cs.ui.ac.id).

DOI: 10.7763/1JM0.2013.V3.334

simplicity and easiness for software engineers in building
critical system.

In this paper, we apply an enhancement to BE to support
an executable and dependable code. It uses ABS model as
middle level representation, while BT as the higher level
and Java at the implementation level. ABS is a semi-formal
language to model system specification abstractly and yet
still executable [9]-[11] Some features of ABS are already
lined up with BT features. For example, ABS supports
parallel system interaction just like BT. ABS ensures
parallel execution aliveness to avoid deadlock and
starvation natively.

The rests of this paper are presented as follow: Section II
describes BE process and how it models a system. Section
III describes environment that is used to conduct the
experiment. Section IV proposes enhancement to the BE
including the example of enhancement result. Section V
evaluates the result of the research and suggestion to future
works. Section VI concludes the research. Section VII
provides future works that will help enhance the current
result.

II. BEHAVIOR ENGINEERING

BE is an integrated discipline that supports a large scale
system development based on components and its behaviors
that exists in that system. BE uses Behavior Modeling
Language (BML) which consists of: Behavior Tree (BT),
Composition Tree (CT), and Structure Tree (ST). Those
models respectively describe behavioral runtime, system
composition, and hierarchical structure of the system. This
paper concentrates on BT.

A. Behavior Engineering Process

The whole BE process described in Fig. 1. First step of
BE is to formalize the requirements. Dromey described the
formalization step as to remove redundant, inconsistent
information, also to split the complex requirements into
smaller and focused requirement [6]. The next step is to
model the requirement using BT. There is one Requirement
BT (BT) that corresponded to each requirement. After each
RBT is valid with respect to its requirements in natural
language, they are integrated into an IBT. The integration
processes are explained by Winter et al. [12]. IBT models
the whole system and is required for further development
steps, i.e. model checking, simulation, and code generation.

B. Behavior Tree

BT is a tree-like structure that consists of Behavior
Nodes (BN). BT models the behavior of the system through
interaction of each component and its behavior. Semantic of
BT is derived from process algebra so it is assumed to be

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

safe and sound when we operate two nodes or more to form
a BT [14]. Node notation in BT is shown in Fig. 2.

Ambiguous { -

|

Defect Removal

Fo

Incomplete 7/l

Informal

l!ntsnra!!en
¥

Integrated Behavior Tree

Fig. 1. Behavior engineering process[13]

II ‘ " ‘:> ,/‘r/®
! R1 Door label

1
[Open :
'

Fig. 2. Node notation in BT[15]

Legend:

A: component, B: behavior, C: operator, D: identifier label,E: behavior
type,F: traceability link (with respect to requirement number),G:
traceability status (with respect to requirement change), H: sign, I: node.

Information that required in code generation is: A, B, C,
E, and I. Component information is needed to generate the
object code. Behavior name and its type information is
generated into the object’s method. Operator information is
used to control the execution process. The node information
is used as the execution flow.

C. Model Check and Code Generation

Research about model check in BT is based on the need
of model correctness before the development phase [16]
The model check is applied to a well-defined model
specification such asSymbolic Analysis Laboratory (SAL).
SAL is a model language that is used to model concurrent
system and already support model check, simulation,
deadlock detection, and automated testing generation.
Translation of BT model to SALis already conducted by
Grunske et al., [8]. Another verification method is also
conducted by transform the BT model into Alloy [17].

BT transformation into SAL defines translation rule in
variable handling, inter node translation, and behavior type
execution. These schemes also can be used to transform BT
to another programming language. In 2011, Emerson used
this scheme to translate BT to an executable model
language that called Abstract Behavioral Specification
(ABS) [18]. Through the translation model to an executable
model the BT model is also executable.

D. Behavior Runtime Environment
BRE is an execution environment of BE model. Each

524

behavior type and operator is contributed to the runtime
process. Fig. 3 explains the state of BN execution.

New Running
State Statef

Blocked
State

Fig. 3. State transition in BN execution [7]

The execution process of each behavior type, operator,
and edge type are shown in Table I.

TABLE I: BEHAVIOR NODE EXECUTION PROCESS [7]

Node Type Path | Running/Blocked Behavior
State Realisation Ready La!l component function pointer and execute user-
defined code,
s Selection Rendy lu'nllmt‘c leprcsslon. Only add children to new if
= expression is true.
2 [Guard Blocked | Evaluate Expression. Unblock if expression is true.
= £ — — — :
& 2| tmput Blocked Wait to reeeive message from ¢BRE (Internal) or a
component or the environment (External)
Output message to eBRE (Iuternal) or enviromment
Output Ready P = ()
(External)
Add Destination to process control model with new
Reference Ready
state
5 Remove all descendants of Destination from process
-1 Reversion Ready | control model regardless of state. Add Destination
g % node to process control model with new state.
C 2| Branch.Kill Ready Remove all descendants of Destination from process
control model regardless of state.
Synchronisation Blocked .Clmck if all destination nodes are in blocked state,
- if so unblock.
i Atomic Compositio Child nodes are added with ready state at start of
4,5 ol m mposition - FIFO queue, instead of with new state.
5 .-.E:” If node is umblocked or becomes the running node
& = | Alternative Branching - then remove all siblings from process control model
regardless of state.

E. Software Development Tool

Research in BE is collected and integrated to form a
Software Development Tool. The tool consists of BT text
editor (TextBE) [7], BT graphical editor (Graph BT), code
generator [18], simulator [19], and model-checker [20].

III. EXPERIMENT

The experiment uses environment as shown in Table II.
The experiment aims to show that the enhancement produce
intended result to the case study. The experiment is not
covering depth evaluation of model-checking environment
because of the tool is not ready at the time this paper written.
Through the experiment we show the proof that the
enhancement works and also discovered many technical
things that are needed to be added. Those technical things
are including the practice of producing Graphical User
Interface (GUI). We also include many preconfigured
component to help generate a ready to use implementation
code.

TABLE II: EXPERIMENT ENVIRONMENT

Criteria Used Technology
IDE Eclipse

Model Editor GraphBT
Implementation language Java

Model language ABS

Targeted machine PC

Operating system Windows 8

GUI library Eclipse SWT

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

IV. ENHANCEMENT TO BE

The enhancement purpose is to suggest technical things

that are not discussed previously to achieve code generation.

The enhancement suggests terminologies that used in RUP
such as worker, workflow, activity, and artifacts [21]. The
purpose is to help many technician that already familiar
with RUP to use BE.

The enhancement is not damaging the general concept of
BE. It because the enhancement based on the experiment of
applying the BE concept to a case study and make it more
standardized and well defined guidance. The application of
the methodology considers: work flow, worker, artifacts,
and activity.

A. Methodology Practice
1) Requirement gathering

This phase is the initial inspection to the problem space
of the system. Requirement is acquired through an
interview to the Project Owner. The rest development
processes depend on the clarity and the exhaustive
information of the requirements.

Artifact produced

Requirements (K1). Requirements are needed for analysis
phase. Its contents are narration of system's problem space.
Requirements should be amended if defects are found.
Worker

Project Owner (W0). Project owner is the author who has
the big plan of the whole project. She/he should confirm
that the built software is fit to the requirement.

Project Manager (W1). Has task to bridge the gap
between WO and the development team. Has responsibility
to deliver the project on schedule and to assign job to the
development team.

Requirements collector (W2). Has task to collect and
organize the requirements.

e Activity

Interview (A0). This activity is conducted by W2 to W0
to generate K1.

Organize the requirement (Al). After the requirements
written to a document, W2 should be organized it with
respect to specification of a requirement.Exampleof the
organizationresult is based on the requirements described
by Dromey [6].

R1 There is a single control button available for the use
of the oven. If the oven door is closed and you push the
button, the oven will start cooking (that is, energize the
power-tube) for one minute.

R2 If the button is pushed while the oven is cooking, it
will cause the oven to cook for an extra minute.

R3 Pushing the button when the door is open has no
effect.

R4 Whenever the oven is cooking or the door is open, the
light in the oven will be on.

RS Opening the door stops the cooking.

R6 Closing the door turns off the light. This is the normal
idle state, prior to cooking when the user has placed food in
the oven.

R7 If the oven times out, the light and the power-tube are
turned off and then a beeper emits a warning beep to
indicate that the cooking has finished.

525

2) Analysis (F2)

Analysis is conducted through formulation of the
requirements to BT diagram. The focus is to verify the
requirement, remove ambiguity, complete information, and
to preserve both consistency and clarity of the requirements.

Artifact produced|
Component identification document (K2). This document
consists of list of the components that identified from KI1.
Behaviors, attributes, and states are also included in this
document.

RBT (K3). It is the RBT diagram that created with respect
to each requirement.

IBT (K4). The integration result of the RBT.

Worker

Analyst (W3). The role is to analyze the component, its
behaviors, attributes, and states from K1 and put it to K2.
W3 also creates RBT and the IBT.

Activity

Component identi fication (A2). W3 identifies
components and behaviors from KI1. For example, the
identification result from Oven system is shown in Table 3.

Build RBT (A3). After the components and behaviors are
successfully identified, Analyst builds the RBT based on
each requirement narration. The RBTsare created as much
as the amount of requirements and identified with the same
key of the corresponding requirement.

Build IBT (A4). IBT is an integration of all RBT. IBT
represents the whole system behavior. Winter et. al.
explains how to integrate RBT to IBT [12]. Integration
result of Oven system is shown in Table III.

TABLE III: COMPONENT ANALYSIS RESULT OF OVEN SYSTEM
Id requirement

Identified components

R1 Button, Door, Power tube, Timer, Oven
R2 Button, Oven, Timer
R3 Button, Door
R4 Oven, Door, Lamp
RS Door, Oven
R6 Door, Lamp
R7 Timer, Lamp, Power tube, Speaker, Oven
TABLE IV: BEHAVIOR ANALYSIS RESULT OF OVEN SYSTEM
Component Behavior Behavior type Supp.orted
requirement
Button Pushed State Realization R1,R2,R3
Door Closed Selection R1
Door Open Selection R3,R4
Door Open Guard RS
Door Closed State Realization R2,R3
Timer | minute count StateRealization R1
down
Timer Aqd extra StateRealization R2
minute
Timer Timeout Guard R3
Power tube On State Realization R1
Power tube Off State Realization R7
Speaker Play sound State Realization R7

3) Design (F3)

This phase decides base architecture for the system. The
system is implemented into a well-established language
such as C or Java.

Artifact produced

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

Architecture plan (K2). It contains configuration of the
big plan of each component's implementation.

Component interface (K3). It represents each component
look. Only component that visible to user is needed to be
designed. The dimension of each component design should
consider other aspects such as: relation to other component,
aesthetics, and ergonomics.

System look (K4). It pictures the whole system look. The
look is a result of the component interface placement.

Worker
System designer (W4). The role of this worker is
designing the system based on analyzed requirements.

e Activity

Design system architecture and implementation (AS).
Designer has responsibility to plan the realization of every
behavior. Designer also design the detail needed such as
libraries that are needed for the implementation phase. The
designed library needs to be fully tested to ensure the
validity of its functionality.

The design result to oven system is as follow:

We will use "Button" preconfigured component to
represent Button and Door component. Speaker needs to
play sound, so we need a library to play a sound. We also
need a library to implement the Timer capability.

Design component interface (A6). This activity gives
clear picture to each component look. The look should
consider what state that the component realizes to have the
look. The example design result of the component Button
and Door are shown in Fig. 4 and Fig. 5.

a = n
5

[
h-

EY
!

i
7
7

L
.Ill.l

=g

\

(a) Button when the door is opened (b) Button when the door is closed
(c) Button when the Oven is cooking
Fig. 4. The design of oven button

(a) Button when the Oven is “Off” (b) Button when the Oven is “On”
(c) Door in open condition
Fig. 5. The design of oven door

4) Verification (F4)

Verification is needed to ensure the correctness of the
analysis result. With verification, we can make sure that a
condition will or not will be met or whether the model
already exhaustive. Verification conducted using model
checker.

Artifact produced

Verification result. It consists of the verification result

and the test case to repair the model.

Worker

Verifier (WS5). Has task to verify the model.
e Activity

526

Formulate temporal logic (A7). Verifier identifies every
condition that should not or should be met using temporal
logic. Those formulas are identified through requirements
and should be satisfied by the model before the system
deployment.

Modelcheck IBT (A8). Verifier checks correctness of the
model based on the temporal logic formula. Model check
result is used to evaluate and repair the IBT or the
requirements based on the test case that caused it to fail.

5) Implementation (F5)

In this phase, every behavior should be implemented to
meet the expected behavior in its execution. For example,
when Speaker realize '‘play" behavior, it really plays a
sound when it is executed. Differ with the conventional
methodology, implementation in BE tries to focus
implementation in each behavior and not the whole system
code at once.

Worker

Implementer (W6).Implementer has task to implement
the system based on the design. Implementer can request a
new library if there is no existing library support the needed
functionality.

Activity

Add technical detail (A9). Technical detail adding
purpose is to add chunk of code that satisfies the expected
behavior functionality. The code is more concrete than BE
syntax and should be executable. Technical details that are
added to Oven system behaviors are shown in Table I'V.

Organizing layout (A10). To applies the designed layout
of the system. The layout result of the system oven is shown
in Fig. 6.

TABLE IV: TECHNICAL DETAIL OF OVEN SYSTEM BEHAVIORS

Component Behavior Behavior Type Tecl?mcal
detail
. 1 minute Lo timer_var!
Timer countdown StateRealization start();
. Add extra Lo timer_var!
Timer minute StateRealization addMinute(1);
timeout_var =
Timer Timeout Guard timer_var!
timeout()
sound_var!
Speaker Play sound StateRealization play(“resource/
beep.wav");

6) Testing (F6)

Testing ensures that all system functionality run without
defects. Testing is based on the scenario that identified
through requirements. The result is consists of testing detail
and the status of each scenario whether it is accepted or
rejected and the reproduction step to reproduce the failure.

Fig. 6. Layout result of the system oven

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

Artifact produced

Testing scenario (K6). Is a document in which each
scenario should be accepted to mark the work as done.
Information such as type of failure, reproduce steps, and
who is responsible to the failure is noted in this document.
Testing scenario of Oven system is shown in Table V.

TABLE V: OVEN SYSTEM TEST SCENARIO

Scenario Expectation
E;;;on is pushed when Door is Nothing happens

Button pushed when Door is closed
and the Oven is idle
Button is pushed when the Oven is

Start cooking for 1 minute

Adds 1 minute cooking time

cooking
Open the door when the Ovenis ~ The Door will be opened and the
cooking cooking ends

Cooking ends after waiting for 1
minute and the Speaker plays a
“beep" sound

Cook for one minute

Worker

Tester (W7). Has task to conduct the testing scenario and
fill the required information regarding the test process.

e Activity

Testing (A11). Tester conducts the test to the generated
code of an implemented IBT based on testing scenario.
Tester takes note about the failure and reproducing steps.

7) Deployment (F7)

This is the last phase of a system development. After a
system is being deployed, it is ready to be used by user.

* Artifact produced

Executable program (K7).It is the resulted program that
generated from the implementation of BT.

Documentation (K8). This document contains technical
detail of the development product such as description of
each component and behaviors.

User Manual (K9). This document is used as a guidance
to use the product.

Release notes (K10). This document is used to describe
the system condition after development phase.

Graghll - ven/Ovenciagram - Ecipse Plaform
S

Fig. 7. GraphBT user interface

B. Tool Support

The whole development process utilized certain tools.
The tools that are useful for development process are:

Pivotal Tracker (PT). PT is an Agile based requirement
management. It helps communication between Project
Owner in discussing requirement and problem space of the
system. PT is useful in requirement gathering and to
organize requirement.

GraphBT.Graph BT is an Eclipse plug-in that is used to

527

apply the methodology described above. GraphBT is an
integrated software development in BE, so it can be used to
model-check, simulate, and generate code of a BT model.
GraphBT is available as an open source project. GraphBT
looks is shown in Fig. 7.

Git (or alike). This tool is used to track change. Git is
integrated to Eclipse. Collaboration is achieved through Git

Adobe Photoshop (or alike). This tool is required to
design component interface.

V. EVALUATION

A. BT result

The BT that produced by applying the guide (BT1)
differs with BT that produced by the past (BT2). It is
because BT1 is bounded by execution purpose. Another
case also BT1 removes component User that operates the
system and only concentrates on the system behavior for the
execution purpose.

The change of the BT1 also makes the model-check
process different. To conduct model check to BT1, there
should be additional BTnode that has another property that
yet not included in Fig. 2. That property is needed to
distinguish whether a node should be included to the code
generation or to model check only. In other words, that
node will not be generated to avoid self-realization but the
model checker always knows that the condition will be
realized eventually.

B. Produced System

The produced system is not validated is open to
contributor. The quality of the produced system is based on
the quality of the development environment. For example,
the combination of Java as the implementation language,
ABS as the model language, and SWT library, a full
operated desktop application is produced. A full critical
system is able to be built as long as the environment is
prepared well.

VI. CONCLUSION

BE enhancement is proposed, defined, and applied. The
experiment result conclude that: BE supports a reliable
system development that able to generate dependable code,
quality of the produced system depends on the development
environment, BE needs investment to mature the
development process for commercial use. More advanced
case study is needed to represent the capability of BE and to
find another common practice in building system using BE.

ACKNOWLEDGMENTS

IMHERE for research grants. GraphBT -contributors:
Agung Pratama, Ardi, AtimasNurahmad, IkhsanulHabibie,
and NurulQomariyah.

REFERENCES
(1]

E. Dijkstra, "Letters to the editor: Go to statement considered
harmful," Communications of the ACM, pp. 147-148 ,1968.
T. Hoare, Communicating Sequential Processes, 1st ed. Prentice Hall

International, 1985.

91

[10]
[11]

[12]

[13]
[14]

[15]
[16]

[17]

[18]

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

M. Hennessy, R. Milner, "On Observing Nondeterminism and
Concurrency," in Proc. the 7th Colloquium on Automata, Languages
and Programming, London, 1980, pp.299-309 .

R. Abrial, "The B Tool (Abstract)," in Proc. the Europe Symposium
on VDM - The Way Ahead, 1988, 86-87.

Clearsy System Engineering, Industrial Use of the B-Method, 2011.
R. Dromey, "From requirements to design: Formalizing the key
steps," Software Engineering and Formal Methods, pp.1-10 , 2003.

T. Myers, "The foundations for a scaleable methodology for systems
design," PhD Thesis, Griffith University , 2010.

L. Grunske, P. Lindsay, and N. Yatapanage, " An automated failure
mode and effect analysis based on high-level design specification
with behavior trees," in Integrated Formal Methods, J. Romijn, G.
Smith, J. Pol, eds. , 2005, pp. 129-149.

D. Clarke, N. Diakov, R. Hahnle, E. Johnsen, I. Schaefer , J. Schafer,
R. Schlatte, P. Wong, "Modeling Spatial and Temporal Variability
with the HATS Abstract Behavioral Modeling Language," SFM,
2011.

HATS Project: The ABS Language Specification. [Online]. Available:

http://tools.hats-project.eu/download/absrefmanual.pdf

The HATS Project: ABS: FLI. In: HATS Project Tool. [Online].
Available: Available at: http://tools.hats-project.eu/

K. Winter, 1. Hayes, and R. Colvin, "Integrating requirements: The
behavior tree philosophy," Sofiware Engineering and Formal
Methods, Pisa, pp. 41-50 , 2010.

ARC Center for Complex System, Building Dependable Systems,
2012.

R. Colvin and 1. Hayes, Technical Report - A Semantics for Behavior
Tree, 2007

Behavior Tree Group, Behavior Tree Notation, 2007.

P. Lindsay, K. Winter, and N. Yatapanage, "Safety assessment using
behavior tree and model checking," Sofiware Engineering and
Formal Methods, Pisa, Italy, pp.181-190, 2010.

W. Itani and L. Logrippo, "Formal approaches to requirements
engineering - From behavior trees to alloy," in Proc. 2005 Canadian
Conference on Electrical and Computer Engineering, 2005, pp.
916-919 .

E. Simbolon, "Translation of specification in behavior tree to an
executable abstract behavioral specification," Bachelor Thesis,
Universitas Indonesia, Depok , 2011.

528

[19]

[20]

[21]

F. Dolot, "Rancangan dan implementasi bahasa simulasi untuk
requirement engineering dalam bentuk animasi behavior tree pada
textbe (textual editor for behavior engineering)," Skripsi, Universitas
Indonesia, Depok ,2011

N. Pratiwi, "Simulation of software requirement in BT using SAL,"
Skripsi, Universitas Indonesia, Depok , 2011.

M. Priestley and M. Utt, "A unified process for software and
documentation development," in Proc. I[EEE/ACM IPCC/SIGDOC,
2000.

Emerson C. Simbolon was born in Jakarta on 1990.
In 2013, he is graduated from master program in
computer science — University of Indonesia. His
research interest in Software Engineering is in
particular of Behavior Engineering process and
modeling. He is currently an engineer in a mobile
software company in Jakarta.

Eko K. Budiardjo was born in Jakarta on 1959. He
has been the faculty member of the faculty of
computer science - University of Indonesia since
1985. Teaching, research, and practical services are
aligned; give result in a full spectrum of academic
achievement. Majoring in Software Engineering as
professional track record, he has made some
scientific contribution such as Software Requirement
Specification (SRS) patterns representation method,

k

ZEF Framework, and FrontCRM Framework. Graduated from Bandung
Institute of Technology (ITB) in 1985, holds Master of Science in
Computer Science from the University of New Brunswick — Canada in
1991, and awarded Philosophical Doctor in Computer Science from the
University of Indonesia in 2007. Currently he is the Vice Chairman of
ICT Technical Committee of The National Research Council (DRN), and
Chairman of The Indonesian ICT Profession Society (IPKIN). He is
reachable through eko@cs.ui.ac.id.

