
  
Abstract—This paper proposes spherical product functions to 

define implicit spherical product surfaces. A spherical product 
function is composed of a contour function and a profile 
function and its iso-surface’s shape is generated by modulating 
and translating the iso-curve of the contour function through 
the points on the iso-curve of the profile function. This paper 
also shows if contour and profile functions are ray-linear, then 
an implicit spherical product surface can be parameterized and 
hence have both the advantages of implicit and parametric 
surfaces. Moreover, this paper proposes ray-linear two-branch 
and one-branch linear and super-hyperbolic functions that can 
be used to construct new contour and profile functions with 
asymmetric or symmetric iso-curves. Based on them, an 
implicit spherical product surface can has asymmetric or 
symmetric contour and profile and also has a parametric 
representation.  
 

Index Terms—Implicit surface, blending operations, 
parametric surface. 
 

I. INTRODUCTION 
In object modeling, implicit surface and parametric surface 

have their own advantages. Parametric surface is more 
popular than implicit surface due to its easier rendering and 
free-form surface generation, but implicit surface is attracting 
more and more attention because a complex implicit surface 
can be constructed easily from primitive implicit surfaces by 
blending operations [1]-[4] such as union and intersection. 

In implicit surface modeling, primitive implicit surfaces 
are defined as a level surface of a defining function, which 
decides the shapes of primitive implicit surfaces to be 
blended for creating a complex object. In the literature, many 
defining functions were developed, including generalized 
distance functions [5], super-quadrics [6], generalized 
distance metrics [7], super-ellipsoids [8]-[10], cylinders [11], 
sweep objects [12] and hyper-quadrics [13]. Among these 
functions above, super-quadrics [2] can be represented 
parametrically, too, and briefly they have both the advantages 
of implicit and parametric surfaces.  

To create new primitive defining functions with shapes 
more diverse than or different from existing defining 
functions, this paper proposes spherical product function. It 
is composed of a contour function and a profile function and 
its iso-surface, called implicit spherical product surface, is 
obtained by translating and modulating the iso-curve of the 
contour function from the points on the iso-curve of the 
profile function. In addition, this paper: 
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1) Shows that if both the contour and profile functions are 
ray-linear, then an implicit proposed spherical product 
surface can also be represented parametrically, that is, it 
has the advantages of implicit and parametric surfaces. 

2) Proposes ray-linear two-branch lineal and super- 
hyperbolic functions, which can be used to construct 
ray-linear contour and profile functions with symmetric 
shapes by an intersection blend. Thus, a spherical 
product surface can have a symmetric contour or profile.  

3) Proposes ray-linear one-branch lineal and super- 
hyperbolic functions, which can be used to construct 
ray-linear contour and profile functions with asymmetric 
shapes by an intersection blend and hence a spherical 
product surfaces can have an asymmetric contour or 
profile.  

This paper is organized as follows. Surface definitions are 
presented in Section II. Implicit spherical product surfaces 
are described in Section III. Symmetric contour and profile 
curves are presented in Section IV. Asymmetric contour and 
profile curves are presented in Section V. Conclusion is 
given in Section VI. 

 

II.  SURFACE DEFINITIONS 
This section reviews parametric and implicit surfaces. 

A. Definition of Parametric Surface 
Parametric surface is defined by a parametric formula P (α, 

β):[0, 1]2→R3, 

P(α, β) =[X(α, β), Y(α, β), Z(α, β)], 

where X, Y, and Z are polynomials of parameters α and β. 
Parametric surface needs less computing time in calculating 
the surface than implicit surface does.  

B. Definition of a Primitive Implicit Surface 
A primitive implicit surface is defined using primitive 

defining functions fi (x, y ,z):R3→R+, i=1,2,…, by the point 
set: 

{ (x, y, z)∈R3  |  fi (x ,y ,z) =1 }. 

In this paper, fi(x,y,z)=1 denotes an primitive implicit 
surface for short and R+ stands for [0, ∞] in R 

Because primitive defining functions fi(x,y,z) control the 
shapes of primitive implicit surfaces fi(x,y,z)=1 to be blended 
for a complex implicit surface, presented in Subsection C, 
many defining functions were proposed in [5]-[13]. For 
example, super-quadrics [6] are written by:  

F (x, y, z)=((x/a1)2/n1+(y/a2)2/n1)n1/n2+(z/a3)2/n2)n2/2=1,  
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where n1 and n2 are squareness parameters of the shape in 
east-west and north-south directions, respectively. Some 
existing primitive implicit surfaces are displayed in Fig. 1. 

 

           
(a)                                       (b) 

        
(c) 

Fig. 1. (a). A cylinder. (b). Planes. (c). Super-quadrics (x2/n1+y2/n1+ z2/n1) 
n1/2 =1 with parameter n1 varying from 1.9, 15, 1, 0.8, 0.4, to 0.25 for the 

objects from left to right. 

C. Blending Operation to Construct a Complex Surface 
Moreover, a more complex implicit surface is created 

easily by constructing k primitive implicit surfaces fi (x, y, z) 
=1, i =1,..., k, through a blending operator Bk (x1,..., 
xk):R+

k→R+ and is defined by the point set:  

{(x,y,z)∈R3 | Bk (f1 (x, y, z),...,fk (x, y, z)) = 1}.       (1) 

Some existing blending operators can be found in [1]-[4], 
such as Super-ellipsoidal intersection and union operators 
[4], 

     Bk (x1,…, xk)=(x1
n+…+xk

n)1/p  and 
Bk (x1,…, xk)=(x1

-n+…+xk
-n) -1/n. 

In (1), blending operation Bk (f1 (x, y, z),..., fk (x, y, z)) can 
also be viewed as a new defining function and reused as a 
new primitive surface in other blending operations. This is 
seen in Fig. 2, which shows sequential union blends of four 
cylinders fi ((x, y, z))=1, i=1, 2, 3, 4, defined by B2 (B2 (B2 (f1 

(x, y, z), f2 (x, y, z)), f3 (x, y, z)), f4 (x, y, z))=1.  

 

III. IMPLICIT SPHERICAL PRODUCT SURFACES 

This section defines an implicit spherical product surface 
and describes their shapes. 

A. Spherical Product Functions 
Let h(x, y) and m(x, z), called contour and profile functions 

respectively, both map R2 to R+. Thus, if h(x, y)=1 and m (x, 
z)=1, called contour curve and profile curve respectively, are 
viewed as a horizonal curve and a vertical curve, then an 
spherical product function, denoted as m(x, z)⊗h(x, y), is 
defined by 

                             M (x, z)⊗h (x, y)= m (h (x, y), z ),                 (2) 

Therefore, m(x, z)⊗h(x,y) can define an implicit spherical 
product surface by  

 F (x, y, z)=m (x, z)⊗h (x, y)=1. 

Surface m(x, z)⊗h (x, y)=1 has a cross–section like contour 
curve h (x, y)=1 and has a profile like profile curve m (x, z)=1. 
Described geometrically, every point (x0, z0) that satisfies the 
equation m(x0, z0)=1 and x0≥0 generates a contour curve, so 
m(x, z)⊗h(x, y)=1 can be viewed as contour curve h (x, y)=1 
translated along z-axis by [0, 0, z0] and modulated to be h(x, 
y)=x0. That is, surface m(x, z)⊗ h(x, y)=1 is  
1) Like a translational surface with contour h(x, y) =1 

translated along z-axis and modulated by every point on 
m(x, z)=1, as shown in Fig. 3. 

2) Like a rotational (revolution) surface with profile curve 
m(x, z)=1 revolved with respect to z-axis when h(x, y) is 
given by (x2+y2)0.5. 

B. Parameterization of Implicit Spherical Product Surface 
The most important property of an implicit spherical 

product surface is that it can be parameterized. This is 
described in Theorem 1: 

 
Fig. 3. (a) Dotted curves show the contours generated by points M (0.8, 07) 
and N (1, 0) on the curve m (x, z)=1. (b) The shape of m(x, z) ⊗h(x, y) =1 has 
a cross-section like contour curve h (x, y) =1 and a profile like profile curve m 

(x, z) =1.  
 

• Theorem 1: If contour and profile functions m (x, z) and h 
(x, y) both have the ray-linear property stated below:  

Non-negative ray-linear property: “A function f (x, y): 
R2→R+ is called non-negative ray-linear if condition f(ax, 
ay)=af (x, y) holds for any (x, y)∈R2 and a∈R+”  
, then an implicit surface m(x, z)⊗h(x, y)=1 is able to be 
represented parametrically by: 

         P(α,β)
⎥
⎥
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where α∈[-π, π] and β∈[-π, π]. 
Proof: Since m(x, z) and h(x, y) are ray-linear, then curves 

m(x, z)=1 and h(x, y)=1 can be parameterized by 
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Because h (x, y) is ray-linear, h (x, y)=x0 is the same as h 

(x/x0, y/x0)=1. It follows that m (x, z)⊗h (x, y)=1 can be 
parameterized by  

 
Fig. 2. Sequential union blends of four cylinders.
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This is equal to (3) after being expanded. 
The following theorem is proposed to help create new 

ray-linear contour and profile functions:  
• Theorem 2: If all fi(x, y):R2→R+, i=1,..., k, and blending 

operator Bk(x1,..., xk): R+
k→R+ are  ray-linear, then 

blending operation Bk(f1(x, y),...,fk (x, y)) is ray-linear, too. 
Thus, from Theorem 2 ray-linear contour and profile 

functions h (x, y) and m (x, z) can be developed by performing 
ray-linear super-ellipsoidal intersection blend on ray-linear 
two-branch or one-branch lineal and super-hyperbolic 
functions, presented in Sections IV and V, through the 
blending operation:  

Bk (f1,…,fk) =(f1(x, y)p+…+fk (x, y)p)1/p,             (4) 

where p>1 and fi (x, y), i=1,…,to k, are fh (x, y), fp (x, y), fsh (x, 
y) or fsp(x, y) in (5)-(8). 

Subsequently, ray-linear contour and profile functions h (x, 
y) and m (x, z) developed from (4) can be used to develop 
implicit spherical product surface m (x, z)⊗h (x, y)=1 with a 
parametric representation as in (3) of Theorem 1. 

 

IV. SYMMETRIC CONTOUR AND PROFILE CURVES 

According to Theorems 1 and 2, this section develops 
ray-linear contour and profile functions with symmetric 
iso-curves as in (4) by proposing:  
1) Ray-linear two-branch lineal functions and 
2) Ray-linear two-branch super-hyperbolic functions, 

A.  Ray-linear Two-Branch Lineal Function 
A ray-linear two-branch function with two lineal iso-curves 

is defined by: 

fp (x, y)=| v • [x, y] | / dv,                    (5) 

where v is the unit normal vector of the line fp (x, y)=1 and dv 
controls the shortest distance from the origin to the line. 
Symbol • means dot product in this paper. 

As shown in Fig. 4(a), fp(x, y) =1 is a pair of parallel and 
symmetrical lines. Besides, it is easy to prove fp(x, y) is 
non-negative ray-linear. 

B. Ray-linear Two-branch Super-Hyperbolic Function 
Let v and u be unit vectors in R2, v • u be 0, dv, du and m all 

be greater than 0. Then, a ray-linear two-branch function with 
symmetric super-hyperbolic iso-curves is defined by 

fh(x,y)= ( )
⎪⎩

⎪
⎨
⎧

<

−
m

u
m

v

mm
u

m
v

yxfyxfif

yxfyxf

),(),((0

),(),((
1

(6) 

where  fv=| v • [x, y] | / dv and fu=| u • [x, y] | / du. 

It is easy to prove fh (x, y) is non-negative ray-linear. As 
shown in Fig. 4(b). The shape fh (x, y)=1 is a pair of 
super-hyperbolic and symmetrical curves bounded in 
specified regions; vectors v and u control the orientation of 
the curve; parameter dv determines the shortest distance from 
the origin to the curve; and parameter m controls how much 

square the curve is, for example: 
• When m≈1, fh (x, y) =1 degenerates toward two folded lines 

passing through “points f, e, and g” and “points f’, e’, and 
g’ ”, respectively, red dotted lines. 

• When m>1, fh(x, y) =1 is two super-hyperbolic curves, 
black solid curves.  

C.  Symmetric Contour and Profile Curves 
Fig. 5 demonstrates some contour or profile curves h (x, 

y)=1 or m(x, z)=1 defined by (4) where fi are two-branch 
lineal and super-hyperbolic functions in (5)-(6). 

 

  
(a)                                                   (b) 

Fig.  4. (a).The iso-curve of a two-branch lineal function fp (x, y). (b). The 
iso-curve of a two-branch super-hyperbolic function fh (x, y), a pair of solid 

curves bounded in red dotted curves. 
 

 
Fig.  5. Contour curves h(x, y)=1 or profile curves m (x, z)=1, which are 

defined by performing a super-ellipsoidal intersection blend on two-branch 
lines in (5) (parallel lines) and super-hyperbolas in (6) (folded lines). 

 

 
Fig.  6. Implicit spherical product surfaces m(x, z) ⊗h (x, y) =1 defined by 

using the curves in Fig. 5(A)-(I) as m (x, z) =1 and the curve in Fig. 5(K) as 
h(x, y) =1. 

 
When the curve in Fig. 5(K) is used as contour function h (x, 
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y) and is written by 

h(x, y)=(fp1(x, y)n1+fp2(x, y)n1+fp3(x, y)n1+fp4(x, y) n1)1/n1,  

where fp1=|x/15|, fp2=|y/15|, fp3=| 2/x + 2/y |/15, fp4=| 2/x−  
+ 2/y | /15 and n1=20, and the curves in Figs. 5(A)-(I) are 
used as profile functions m (x, z), then they generate spherical 
product surfaces m (x, z)⊗ h (x, y)=1 listed in Fig. 6. 
 

V.   ASYMMETRIC CONTOUR AND PROFILE CURVES 

The iso-curves of two-branch lineal and super-hyperbolic 
functions in (5) and (6) is always in pairs, so m (x, z)⊗h (x, 
y)=1 created from them always has a contour or a profile with 
symmetrical shapes as seen in Fig. 6. To develop m (x, z)⊗ h 
(x, y)=1 whose contour or profile has an asymmetrical shape, 
this section proposes: 
1) Ray-linear one-branch lineal functions and 
2) Ray-linear one-branch super-hyperbolic functions 
whose iso-curves are a single curve, not in pairs. 

A.  Ray-linear One-Branch Lineal Function 
A ray-linear one-branch lineal function fsp(x, y) with a 

single iso-curve as shown in Fig. 7(a) is defined by: 

fsp(x, y)= [ fp(x, y) ]+ = Max(0,  fp(x, y))          (7) 
               fp(x, y) = ( v • [x, y] ) / dv, 

where v is the unit normal vector of fsp(x, y)=1 and dv is the 
shortest distance from the origin to the line. Symbol [*]+ 
stands for operation Max(0, *) in this paper. 

B.  Ray-linear One-branch Super-hyperbolic Function 
Let v and u be unit vectors in R2, v • u be 0, dv, du, and m all 

are greater than 0. Therefore, a ray-linear one-branch 
super-hyperbolic function fsh(x,y) with a single iso-curve as 
shown in Fig. 7(b) is defined by 

fsh(x,y)= mm
u

m
v yxfyxf /1]),()],([[ ++ − ,     (8) 

  fv(x, y)=( v • [x, y] ) / dv, fu(x, y)=| u • [x, y] | / du ,  

where like those in (6), v and u control the orientation of the 
curve, dv decides the shortest distance from the origin to the 
curve and m controls how much square the curve is. It can be 
proved that functions in (7)-(8) are ray-linear. 

C.   Asymmetric contour and profile curve 
When used as fi (x, y) in (4), fsp (x, y) and fsh (x, y) in (7)-(8) 

generate asymmetric contour and profile curves whereas fp (x, 
y) and fh (x, y) in (5)-(6) symmetric contour and profile curves. 
This is shown in the following examples. In a case that: h (x, y) 
is an intersection of four pairs of two-branch super- 
hyperbolas fh (x, y) in (6), whose shape is shown in Fig. 8 and 
which is written by 

H (x,y)=(fh1(x, y)n1+ fh2(x, y)n1+fh3(x, y)n1+fh4(x, y) n1)1/n1,  

where    fh1(x, y):     fv1(x, y)=|x/12|  and  fu1(x, y)=|y/12|, 
fh2(x, y):     fv2(x, y)=|y/12|  and  fu2(x, y)=|x/12|, 
fh3(x, y):     fv3(x, y)=| 2/x + 2/y |/12  and  

fu3(x, y)=| 2/x− + 2/y |/12, 
fh4(x, y):     fv4(x, y)= |- 2/x + 2/y |/12  and 

                         fu4(x, y)= | 2/x + 2/y |/12, 

And parameters m of fh1 , fh2 , fh3 and fh4 are set close to 1;  
M (x, z) is an intersection of two pairs of parallel lines defined 
by fp (x, y) in (5), and it is written by 

M (x, z)= (fp1(x, z)1.1+ fp2 (x, z) 1.1)1/1.1, 

where  fp1 (x, z)=|x|  and   fp2 (x, z)=|z/12|; 

Then, based on h (x, y) and m (x, z) stated above, surfaces 
m (x, z)⊗h (x, y)= 1 where n1 of h(x, y) is set 100, 8, 2, 1.5, 1.1 
and 0.7, respectively, are shown in Fig. 9. These surfaces 
have symmetric contours because two-branch functions are 
applied. 

In another case that h (x, y) is an intersection of four one- 
branch functions fsp (x, y) and fsh (x, y) in (7)-(8) and one 
two-branch function fh (x, y) in (6), whose shapes is shown in 
Fig. 10 and which is written by 

H (x, y)= (fh1(x, y)n1+fsh2(x, y)n1+fsh3(x, y)n1+fsh4(x, y)n1+fsp5(x, y) 

n1)1/n1, 
where    fh1(x, y)  :   fv1(x, y)=|x/12|  and  fu1(x, y)=|y/12|, 

fsh2(x, y) :   fv2(x, y)=(y/12)  and  fu2(x, y)=|x/12|, 
fsh3(x, y) :   fv3(x, y)=( 2/x + 2/y )/12  and 

                           fu3(x, y)=| 2/x− + 2/y |/12, 
 

fsh4(x, y):    fv4(x, y)=(- 2/x + 2/y )/12  and 
                           fu4(x, y)=| 2/x + 2/y |/12, 
        fsp5(x, y):    fp5(x, y)=(-y/12),  

And m of fh1 , fsh2 , fsh3 and fsh4 are set close to 1; m (x, z) is an 
intersection of two pairs of parallel lines defined by fp(x,y) in 
(5),  

m(x,z)= (fp1(x, z)1.1+ fp2(x, z)1.1)1/1.1, 

where              fp1(x, z)=|x|   and  fp2(x, z)=|z/12| ; 

Then, based on h (x, y) and m (x, z) stated above, surfaces 
m (x, z)⊗h (x, y)=1 where n1 of h (x, y)  is set 20, 4, 2, 1.5, 1.1 
and 0.7, respectively, are shown in Fig. 11. These surfaces 
indicate that they have asymmetric contours because 
one-branch functions are applied. 

 

   
(a)                                                 (b) 

Fig. 7. (a). The shape of the iso-curve of a one-branch lineal function. (b). 
The shape of the iso-curve of one-branch super-hyperbolic functions, a 

single solid line bounded between red dotted curves 
 

 
Fig. 8. The intersection of four pairs of two-branch functions, fh1=1, fh2=1, 

fh3=1 and fh4=1 defined by fh(x, y) in (6).  
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Fig.  9. The shapes of m(x, z)⊗h (x, y)=1 where the curve in Fig. 8 defines 
contour curve h(x, y)=1 and n1 of h (x, y) is set 100, 8, 2, 1.5, 1.1, and 0.7, 

respectively, for the objects from top left to bottom right. 

 
Fig. 10. The intersection of four one-branch functions, fsh2=1, fsh3=1, 

fsh4=1 and fsp5=1, and one two-branch function fh1=1. 

 
Fig. 11. The surfaces m (x, z)⊗h (x, y)=1 where the curve in Fig. 10 defines 
the contour curve h (x, y)=1 and n1 of h(x, y) are set 20, 4, 2, 1.5, 1.1 and 0.7, 

respectively, for the objects from top left to bottom right. 
 

VI. CONCLUSION 

To create new primitive defining functions with shapes 
more diverse than or different from existing defining 
functions, spherical product functions have been proposed to 
define implicit spherical product surfaces in this paper. A 
spherical product function is the composition of a contour 
function and a profile function, whose level curves determine 
the shapes of the contour and the profile of the implicit 
spherical product surface.  

Besides, this paper has proposed a theorem that if both 
contour and profile functions are ray-linear, then the implicit 
spherical product surface has a parametric representation, 
which means it has both the advantages of implicit and 
parametric surfaces. According to the theorem, this paper 
also helps create new ray-linear contour functions and profile 
functions with more diverse shapes by the following: 
1) This paper has proposed ray-linear two-branch lineal 

and super-hyperbolic functions, whose iso-curve is a 
pair of symmetric curves. 

2) This paper has proposed ray-linear one-branch lineal and 
super-hyperbolic functions, whose iso-curve is a single 

curve. 
3) This paper has also shown that ray-linear contour 

functions and profile functions can be created by 
performing ray-linear super-ellipsoidal intersection 
blend on ray-linear lineal and super-hyperbolic functions 
stated above.  

Thus, an implicit spherical product surface can have 
symmetric contour and profile if ray-linear two-branch lineal 
and super-hyperbolic functions are used to create new 
contour and profile functions, and it can has asymmetric 
contour or profile if ray-linear one-branch lineal and 
super-hyperbolic functions are used. Especially, it can be 
parameterized, too. 
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