International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

Discoverable Digital Clone Repository for Improved
Knowledge Transfer and Productivity

Moses L. Gadebe and George E. M. Ditsa

Abstract—Code clone is a result of copy and paste of source
codes to solve similar problems. Currently most automated
clone detection techniques produce indexed statistical reports
showing locations of clones. This paper propose a Discoverable
Digital Clone Repository to enhance Clone Wrapper Detection
Technique to detect, extract and transform clone source code
metadata into Clone Family Tree Ontology model stored in
Fedora Repository. This is aimed at improving reuse,
shareability and reliability of potential clones by software
developers and maintenance programmers. The preliminary
results show that the Discoverable Digital Clone Repository can
store valid Clone Family Tree Ontology which is accessible to
developers via Simple HTTP SPARQL queries.

Index Terms—Clone family tree ontology, clone wrapper
detection technique, discoverable, shareability.

I. INTRODUCTION

Software developers repeatedly copy and paste source
codes to solve similar problems within organizations. Copy
and paste development is intended to meet software project
deadlines instigated by marketing teams who demand
just-in-time solutions. This type of software development is
lucrative to developers but sore to maintenance programmers,
because they need to go through all duplicate codes to make
required changes. Currently automated clone detection tools
proposed indicate clone locations as indexed statistical
reports that lack design patterns, reusability and shareability
features [1], [2]. Thus potential clones lose their knowledge
and consequently become meaningless to software
developers: as most developers understand design patterns
rather than index statistical reports.

Design patterns are high level conceptual models of
software application design. Currently Object Oriented
Design pattern is the dominant design pattern, which follows
Abstraction process popularized by Object Management
Group (OMG) [3]. The Abstraction process taxonomy
(inheritance, composition and associations) of software
application is currently formalized in OMG UML diagrams
[3] [4]. Standard UML diagrams do not support variables to
define design patterns as metadata that could be catalogued
and published as a sharable, reusable and discoverable
metadata. Resource Description Framework (RDF) and
Ontology Web Language (OWL) provides cataloguing and
publication of design patterns as high level conceptual model

Manuscript is received June 18, 2013; revised September 23, 2013. This
work is supported by Tshwane University of Technology in Department of
Computer Science to improve reuse of software components. The research
title is Implementation of Discoverable Digital Clone Repository for
Knowledge Transfer and Improved Productivity.

The authors are with Tshwane University of Technology, Pretoria, 0001,
South Africa (e-mail: GadebeML@tut.ac.za, DitsaGE@tut.ac.za).

DOI: 10.7763/1JM0.2013.V3.329

499

of software components that can be gathered and shared
among software developers and maintenance programmers
[4], [5].

The absence of discoverable, reusable and sharable
structural clone reports diminishes knowledge transfer
between software developers and maintenance programmers
[3]-[5]- Hence this paper proposed Discoverable Digital
Clone Repository (DDCR) that implements Clone Wrapper
Detection Technique as discussed in [6] to detect and store
structural clones in Fedora Repository as discoverable,
sharable and reusable Clone Family Tree Ontology to support
program maintenance and knowledge transfer between
software developers and maintenance programmers.

The remainder of this paper is organized as follows.
Section II presents the Background of the study and Section
IIT the Implementation and the System Architecture. The
benefits of DDCR are provided in Section IV and section V
presents the Validation of DDCR. Lastly the Contribution,
Conclusion and Acknowledgements are presented in Section
VI, VII and VIII respectively.

II. BACKGROUND

Most of clone detection techniques detect clones and
produce indexed statistical reports as textual file reports;
indicating clone locations, line numbers of cloned source
codes and clone pairs or clone classes (see Fig. 1) [2], [7].

Source File ~ Starting Line Ending Line

76397-C:\...\CMPFieldMetaData.]a\\/a\i r‘

76296-C:\...\CMPFieldMetaData.java:117-129
[433729-C:\ .. .\UsersRolesLoginModuleTest . java: 64-68—Clone
420696-C:\...\LoginModulesTest.java:312-316
164262-C:\...\ServerDataCollector.java:230-265,
231230-C:\...\Scheduler.java:552-587
248103-C:\...\EJBVerifierll.java:448-480,
249898-C:\. .. \EJBVerifierll.java:1073-1109,—Clone Group
250532-C:\...\EJBVerifierll.java:1297-1337

Fig. 1. Statistical indexed text clone report [7].

From the current observations of code clone detection
research, there is little work done in detecting structural
clones, which have potentials to be stored and reused through
inheritance, composition and associations [2]. The issue of
documentation in respect of source code’s components
shareability, interoperability and reuse capabilities is entirely
not solved. Most software projects were developed using
primitive use of copy and paste which neglects conceptual
modeling and documentation of previous application source
codes that can be catalogued and published [5]. Lack of
conceptual model and repository prevents other developers to

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

reuse existing source codes following proper design pattern
methodology. Recently, clone visualization techniques have
been developed to visualize clones metadata in a form of
clones’ genealogy. The genealogy depicts version history of
clones’ evolution to keep track of changes on clone pairs over
a given period [8], [9].

An approach for software maintenance using Sematic Web
techniques was proposed by [10]. The approach represents
software components and information metadata in Resource
Description Language (RDF) graph, to enable
language-neutral relationship navigation and to facilitate ease
navigation and comprehension of software components to
improve maintenance. Hyland-wood ef al., [10] developed an
automated system to automatically generate ontology
represented in RDF graphs from existing software
component sources. This technique generates RDF graph of
all replicated software components without filtering most
commonly used software component that can be reused and
shared by both software developers and maintenance
programmers. Thus maintenance programmers are
overwhelmed by the existence of clones that are not properly
documented. Kleinvaloo et al., [11] proposed a much
improved technique called Source code ECOsystem Linked
Data (SECOLD) framework to provide source code facts that
are usable by both human and machines for browsing and
querying.

The above technique uses Linked Data to support
interoperability and sharing of open datasets that allow on the
fly inter-linking and using basic layers of Semantic Web and
HTTP protocol. SECOLD provides Uniform Resource
Locator (URL) generation schema that supports ontological
representation for the interlinking of data extracted from
source code ecosystems. The SECOLD lacks collaboration of
which is the core for knowledge transfer between software
maintenance programmers and software developers [11].
Software developers and maintenance programmers can use
shared open metadata without knowing the originator of the
software components, thus create the chances of software
copyright violations and software plagiarism, as no-one can
confirm the origin of software component.

III. IMPLEMENTATION AND SYSTEM THE ARCHITECTURE

The Discoverable Digital Clone Repository (DDCR)
comprises the Clone wrapper Detection Technique (CWDT)
[6], Fedora Clone Repository, Development Server and two
users - who are maintenance programmer and software
developer as depicted in Fig. 2. Both users interact with
DDCR system using the web browser and Owl protégé
viewer as shown in Fig. 3. The maintenance programmer
firstly detects commonly used structural clones by reading
Java project sources from the development server. Then the
structural clones are transformed into Clone Family Tree
Ontology and stored into MySQL RDF Triple Store.

To detect commonly used structural clones from the
development server, the maintenance programmer uses
CWDT detection tool in the following orderly steps:

Firstly the Pre-processing step of the clone detection tool
reads Java project source code files from the development
server. Then converts each Java project source code files
method’s statements into equivalent Rectangular Matrix of

500

multi-dimensional array of zeroes and ones, and then stores it
into a data structure called Class Vector as shown in the
pre-processing column in a Table in Appendix 1.

Secondly in the Transformation step, each Class Vector
data structure of Rectangular Matrix is aggregated into a
reduced Class Column Vector of matrices based on system of
linear equations. Each method Rectangular Matrix 4 is
multiplied by its transposed method Rectangular Matrix 4™' to
calculate a method hash code and stored in the Class Column
Vector (CCV) data structure as shown in the Transformation
column in a Table in Appendix 1.

Thirdly, the Matching process compares CCVs of
aggregated method hash codes based on intersection
matching relation according to proposition z,= [x,, V] as
indicated on the intersection matching truth as Table I below.
Two class column vectors are structural clones if they
evaluate to be Perfect set or Subset or Proper sets and not
Disjoint set based on the given threshold. Both their original
source code are stored in a temporary storage for further
processing.

In fourth process, all stored structural clones metadata are
extracted and interwoven into a hierarchy called Clone
Family Tree Ontology (CFTO), which is based on
Abstraction process principles Inheritance (IS-A),
Composition (HAS-A) and Associations (USES-A). This is
transformed into OWL Lite as an aggregated hierarchical
logical file called Digital Object Model (DOM). DOM is a
group of related entities identifiable by a persistent ID shown
in Fig. 4.

In the fifth and last process, the interwoven Digital Object
Model is stored into a CFTO RDF triple store in Fedora
Clone Repository shown in Fig. 5. The CWDT connects to
the Fedora Repository Server via the Access API to store the
CFTO on RDF Triple store. The CFTO RDF triple store is
implemented in MySQL database as shown in Fig. 5. All
generated CFTO are stored in the RDF triple database based
on their persistent Uniform Resource Identifier (URI) as
depicted in Fig. 4 and 5. All users query the CFTO using this
URI to access the online structural clone metadata. The
CFTO is stored in the RDF triple store as DOMs as shown in
Fig. 4, whereas the persistent ID is the URI and the data
streams are all interwoven structural clone’s metadata and
their relationship as part digital object model items as in [12].

TABLE I: INTERSECTION MATCHING TRUTH TABLE

The proposition z,= [x,, ¥,,] is true if CCV1 and | Intersection
CCV2 contains: Relation

All elements { xq,X,, X3 ,X,} in CCV1 are | Perfect set
contained as elements {y;,¥,,V3, ..., } in CCV2. CCVi=CCr2.
All elements { x1,%X3,X3 oo ,X,} in CCV1 are Subset

glélxl;ged as part of all elements {y,,y,,¥3,...,¥p} in covi S Cev
CCVlcontains the same set of elements

(X1, X2, X3 e ,Xp} in as in {y;,¥5,¥3,..¥n} of | Proper subset
CCV2, but CCV2 contains at least one elementy, | CCVICTCCV2.
not in CCV1.

All Elements.{xl,lexl,xg,xlv ,Xn}in CCVI are Disjoint set.

not elements in {y,,y,,¥3,..,Yn} of CCV2.

The maintenance programmer can retrieve and view the
generated CFTO using the OWL Protégé viewer or the Web
browser by sending a simple HTTP SPARQL query to the
RDF triple store. The maintenance programmer also can

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

initiate a collaboration session with the software developer to
pose questions about the digital objects model of CFTO.

The software developer responds back to any questions
posed by the maintenance programmer online using a web
browser. Moreover the software developer can reuse existing
software components to solve similar problems. Both the
software developer and maintenance programmer accesses
the stored Clone Family Tree Ontology (CFTO) by sending a
simple HTTP SPARQL query via the Access API of the
Fedora repository server.

owory
a. Pre-processing

P
b. Transformation
T

Maintenance Programmer Software Developer

cwor
WebBrowser
Ow Protigé

(Java Source Codes)

Development Server

Fig. 2. DDCR system architecture.

Java Source
Repositary
\

CWDT Web Interface System

Detect, Store and
Transform Structural
Clones To CFTO

- g

ﬁ RDF Tripe
CFTO Store

< =

Retrieve CFTO
Items Using SPARQL

Initiate Collaboration
with Developer

Maintenance Programmer

Acknowledge Collaboration
And Reuse Components
Software Developer

Fig. 3. DDCR use case diagram.

Fig. 4. Fedora digital object model [12].

Persistent ID - PID

Object Properties &
Manage and Track the object

DataStream (Item)

DataStream (Item) Item Perspective:
Set of content or metadata items and
relationship among items

Aggregation of content items

DataStream (Item)

<?xml version="1.0" encoding="UTF-8"?>
<rdf:RDF...

<?xml version="1.0" encoding="UTF-8"2>
<rdf:RDF...

5 <rdf:RDF xmlins:ovd="http://vwwi.v3.0rg/2002/07/0ovd...

Fig. 5. CFTO triple store MySQL database table.

501

IV. BENEFITS OF THE DDCR

Most in-house software applications that perform similar
responsibilities are usually replicated within the organization
network to support overlapping business units. These
software applications are tightly created to meet a specific
business unit. Maintaining this replicated applications can
take a long time especially when the maintenance team are
novice programmers. Knowledge transfer between software
developers and maintenance programmers is compromised
due to unavailability of online comprehensive reusable and
sharable conceptual metadata model that is publishable.

The DDCR brings the following benefits: 1) detection of
reusable structural source codes; 2) online publishable,
reusable and sharable conceptual models (i.e. CFTO
metadata); 3) reliability, simple to understand conceptual
model; and 4) the online collaboration between software
developers and maintenance programmers. These will
subsequently improve information sharing, knowledge
transfer and cohesion among team members. Thus bridging
the gap between time to develop and time to market and
therefore improve productivity of software developers and
software maintainers.

V. VALIDATION OF DDCR

The DDCR was tested using different Java Development
Kits versions. The CWDT implemented by the DDCR
managed to detect a number of true positive structural clone
pairs. The results indicate a balanced precision of 0.64% to
0.81% with a relative recall of 0.80% to 0.96% as shown in
Fig. 6.

The true positive structural clones are transformed to
Clone Family Tree Ontology (CFTO) represented as
Ontology Web Language Lite and stored as Fedora Digital
Object Model. The resultant CFTO must be valid, correct
and consistent hierarchical metadata that can open and be
processed in OWL Protégé viewer. OWL Protégé in Fig. 7
portrays hierarchical structural clone metadata descending
from class “Thing”.

VI. CONTRIBUTION

The main goal of this research is to provide a universal
persistent identification (ID) Digital Object Model for each
reusable and sharable structural source codes as online
conceptual model called Clone Family Tree Ontology
(CFTO). The Objective is to provide an accessible CFTO in a
collaborated manner for both software developers and
maintenance programmers. Commonly used structural source
codes within the organization are mined and transformed
using the CWDT. Each structural clone sets are interwoven
according to their hierarchy level using Abstraction
principles (inheritance, composition and associations)
identified by unique Uniform Resource Identifier (URI) (i.e.
persistent ID) as discussed in [10]-[12] research. Then the
transformed CFTO 1is stored in a discoverable Fedora
repository. The vision is to provide an online conceptual
interlinked metadata to support software developers and
maintenance programmers within an organization to
collaborate in order to improve software component reuse,

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

software components and reliability to eliminate software

plagiarism.

APPENDIX

Parsed Source Code

Pre-processing Transformation

public class Salary
i

private double salary;

calculateSalary Numerical Matrix Vector of size A{5X13)

private double tax;

A | A(L2) | AL3)

A(lL13)

pub) slary(int g
{i Method Pattern Extractor . N
[if {positionLevel »= 7 }] ‘-._ -
[{ salary = 10450 .90 ; }]
i [else if positionLevel > 5]
H lary = 2450.90 ;
H Heabey 1l Il. calculateTax Numerical Matrix Vector of size A{1 X11} e
i
AT [ALY | A3) | AT | A3 | ALE) | ALY | AGE | A3 | AL | ALIT
publicdouble calculateTax(double taxRate)) AR AT AL A, AR A A ALY T [l -=boay
i
Method Pattern Extractor | 1'3
[return salary * taxRate / 100 ;] e =
lll. netlncome Numerical Matrix Vector of size A(1X7) _ .-~
b AT [AL | AL | AL | A3) | A6 | A7) | = 834
public double netincomel() /,% 2
i K

Method Pattern Extractor
[return salary — tax ;]

i

publicdouble commission(})

.

Commission Numerical Matrix Vector of size A[6,18)

,;
/ class Column
Vector(CCV)

AMT | ALY | ALY

'} Method Pattern Extractor

[double comm =0]

[if (salary == 1500 & salary <= 5000)]
[{comm = salary * 5 / 100;}]

[else if (salary = 5000)]

[{ comm = salary * 10/ 100 ;}]

12

0.8

0.6

——— Precision
0.4

e ReCall
0.2

#
’\:‘b:\‘ i
S
¥

.
25
o
$

Fig. 6. CFTO triple store MySQL database table.

| Thing !""&'_ =

—g P4 —~
'\ / \ 3 bém:v!n(/.w
e sy SER
\\ //
y— RS
| Evertbiest -i—hf\ﬁugﬁmuleivenl:;
ity R

{_ g3 s, DragEvent |

Fig. 7. Protégé clone family tree ontology viewer.

The CFTO would be accessible over the Internet via HTTP
Protocol using SPARQL query to retrieve interlinked
metadata based on their unique URI and to view the
interlinked digital object’s super classes, sub classes,
composites classes and associated classes. The conceptual

502

interlinked metadata model also act as online discoverable
structural clone documentation of software components.

VII. CONCLUSION

This paper presented the Discoverable Digital Clone
Library (DDCR) system to help maintenance programmers
and software developers to collaborate with the aim of
transferring knowledge between them and to eliminate
software plagiarism and to improve software reuse and ease
of maintenance. The paper provided system architecture
implemented in Fedora repository to store a Clone Family
Tree Ontology (CFTO) as digital object models that define
super classes, sub classes, composite classes and associated
classes as online hierarchical metadata.

The CWDT is robust and accurate in detecting structural
reusable clone transformed into valid CFTO. In the future we
intend to complete and implement the DDCR in an
organization to perform usability testing. It will also be
interesting to find out the acceptance level and usage level of
DDCR after implementation. Finally we intend to extend the
DDCR to allow the software agents to access and reuse
CFTO to support the business units within the organization as
a central processing point.

ACKNOWLEDGMENT

We thank Tshwane University of Technology the
Department of Computer Science for the financial and other
logistical support for success of this project.

REFERENCES

S. Thummalapenta, L. Cerulo, L. Aversano, and M. Di Penta, “An
empirical study on the maintenance of source code clones,”

(1

(2]

(3]
(4]

(3]

(6]

(7]

(8]

(9]

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

International Journal of Emprical Software Engineering, vol. 15, no. 1,
pp. 1-34, 2010.

K. Roy, J. R. Cordy, and R. Koschke, “Comparison and evaluation of
code clone detection techniques and tools,” Journal Science of
Computer Programming, vol. 74, no. 7, pp. 470-495, 2009.

A. H. Eden, “A theory of object oriented design,” Journal of
Information Systems Frontiers, vol. 4, no. 4, pp. 379-391, 2002.

G. Ganapathy and S. Sarayaraj, “To generate the ontology from Java
Source code: Owl creation,” International Journal of advanced
Science and Applications, vol. 2, no. 2, pp.111-116, 2011.

L. Pavlic, M. Hericko, V. Podgorelec, and I. Rozman, “Improving
design pattern adoption with ontology-based repository,” Journal of
Informatics, vol. 33, pp. 189-197, 2008.

M. L. Gadebe and G. E. Ditsa, “Clone wrapper detection technique:
Clones family tree ontology,” in Proc. 2nd International Conference
on Computer and Software Modeling, Cochin, 2012, pp. 20-31.

R. A. Tairas, “Representation analysis and refactoring techniques to
support code clone maintenance,” Ph.D. dissertation, Dept. Computer
Science, Birmingham Univ. Alabama, 2010.

M. F. Zibran and C. K. Roy. “The Road to Software Clone
Management: A Survey,” A Technical Report, Dept. Computer
Science, Saskatchewan. Univ., Canada. 2012.

L. Barbour, F. Khomh, and Z. Ying, “Late propagation in software
clones,” in Proc. 27th IEEE International Conference on Software
Maintenance, 2011, pp. 273-282.

D. Hyland-Wood, D. Carrington and S. Kaplan, “A semantic web
approach to software maintenance,” presented at ACM EKAW,
Poderbrady, Czech Republic. Oct 2-6, 2006.

1. Keivanloo, C. Forbes, J. Rilling and P. Charland, “Towards sharing
source code facts using linked data,” in Proc. ACM SUITE, Waikiki
Honolulu, 2011, pp. 25-28.

503

[12] A. Grigorov, A. Georgiev, and P. Anagnostou, “Building OWL
ontology in fedora digital repository,” in Proc. Modelling and Control
of Information Processes, Sofia, 2010, pp. 314-2771.

Moses Lesiba Gadebe is a Lecturer at Tshwane
University of Technology in the Department of
computer science. Mr Gadebe holds a BTECH degree
in information technology and currently lecturing
technical programming subjects. He is a member of
SAICSIT an ACM affiliate. He published a number of
conference papers

George Ditsa is currently an associate professor at the
Tshwane University technology in Pretoria, South
Africa. He holds a B.Sc. (Hons) degree in computer
science, an MBA (IS) and PhD (IS) degrees. Dr.
Ditsa worked for many years as a programmer/analyst
and project team leader in various organizations
before joining the academia. Dr. Ditsa currently

lectures and researches in Information Systems (IS)

and related disciplines. Dr. Ditsa has won a number
of research grants and awards. His current research interests include
Strategic IS Management, IS Project Management, Cultural Issues in IS
management, Knowledge management & Knowledge Management Systems,
Mobile & Pervasive Computing, ICT for Development and Human
Computer Interaction (HCI). Dr. Ditsa has supervised a number of
postgraduate students in his research interest areas. Dr. is currently an
Associated Editor of two journals and he is on the editorial review board of
five journals. He also serves as an External Theses Examiner for some
universities. Dr. Ditsa has published a number of scholarly articles including
a book, book chapters, journal papers and many refereed conference papers.

