

Abstract—Problem solving is vital in the computer

programming course. It is the earliest topic that is emphasized
and more time is allocated to teach the topic. Problem solving
requires the problem understanding knowledge that novice
students usually lacks. In order to assist novice students in
computational problem solving, a multi-agent model is designed.
The proposed model is different from existing model in terms of
the unique architecture that utilizes agents for information
processing, specifically to extract, transform and generate
information. Five agents are designed for this purpose namely
the GUI, PAC, IPO, Flowchart and Algorithm agents. The
model is tested with three different kinds of problem statement
and produced correct results.

Index Terms—Computational problem solving, information
processing, multi-agent, problem understanding.

I. INTRODUCTION
Problem solving is essential not only in the computer

science field, but also in other fields such as medical [1],
engineering [2] and mathematics [3]. Problem understanding
is very important before execution of any procedure.

The problem solving topic is taught in most of the courses
that are offered in the universities. In the fundamental of
computer programming course, problem solving is a topic
that is given emphasis and more time allocation before
proceeding with the technical topic. However, students
especially novices face difficulties in problem understanding
[4]-[6]. Therefore, the implementation of a procedure can go
wrong due to lack of knowledge in problem solving, for
example, the misunderstanding of novices in computational
problem solving, results in unexpected output due to wrong
concept application.

There should be a guide for students to assist them in
problem solving. It can be an intelligent system that can sense
the environment, process the input, give recommendation to
the students on how to solve the problem and perform a sort
of communication to send related information. These are the
features of a multi-agent system that exhibits the autonomous,
reactive, proactive and social ability features. Agents have
been widely applied in various applications such as

Manuscript received June 11, 2013;
This research is supported by the Kementerian Pengajian Tinggi (KPT)

Malaysia under the grant of Institut Pengajian Tinggi Awam (IPTA),
Fundamental Research Grant Scheme (FRGS), project code
02-12-10-1000FR.

M. A. Teh Noranis is with the Department of Computer Science,
Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, MALAYSIA
(e-mail: nuranis@fsktm.upm.edu.my).

N. Shahrin Azuan is with the Telekom Malaysia Research and
Development, Lingkaran Teknokrat Timur, 63000 Cyberjaya, Selangor,
MALAYSIA (e-mail: shahrin@tmrnd.com.my).

interactive tutoring [7], medical diagnosis [8] and image
analysis [9].

The motivation of this research work is to support novice
difficulties in computational problem solving by utilizing the
multi-agent technology.

This paper is organized into seven sections. Section two
explains about the works that are related to our research.
Section three presents our proposed model and section four
describes our proposed algorithm to extract, transform and
generate information. The experimental results are explained
in section five where our proposed model is tested with three
different problem statements. Section six discusses about the
results findings and finally the last section which is section
seven is the conclusion and future works.

II. RELATED RESEARCH

A. Agent-Based Computational Problem Solving Models
Many existing multi-agent computational problem solving

models are based on visualization models. These
visualization models visualize pseudo-code language [10],
expression in C programming [11] and object parameters
[12]. Social agents are used to support the understanding of
program visualization through discussion with the user and
explanation from the agent [10], [11] adapt the level of
details in the visualizations based on the learner’s knowledge
and focus on topic that are not understood by the user. An
approach to change the visualization parameters for example
shape, colors and style is used to help novices in
programming [12]. Jeliot 3 [13] integrates multi-agents
namely Student Agent, Record Agent, Modeling Agent,
Learning Object Agent and Evaluation Agent to provide
dynamic and adaptive learning materials to individual users.

B. Information Extraction and Retrieval
Several research works on multi-agent technique that

perform information extraction have been implemented.
Authors have proposed Wisconsin Adaptive Web Assistant
(WAWA) that used the reinforcement learning technique and
created a home-page finder agent and a
seminar-announcement extractor agent for retrieving and
extracting information [14], [15] proposed a keyword-based
patent map using the text mining technique for information
extraction, visualization and analysis in the web. An
information agent shell consisting of four main components
namely the OntoCrawler, OntoExtractor, OntoClassifier and
OntoRecommender is designed for information searching,
information extracting, information classifying and
information representing/ranking applying Protégé and
relevant Application Programming Interface (API) to

A Multi-Agent Model for Information Processing in
Computational Problem Solving

M. A. Teh Noranis and N. Shahrin Azuan

490

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

revised August 23, 2013.

DOI: 10.7763/IJMO.2013.V3.327

construct the domain ontology and its related ontology
services to support all of the ubiquitous services of the shell
[16], [17] suggested using a text mining techniques for
biomedical text on cancer to extract novel knowledge from
scientific text. Information retrieval and recommender
system techniques are applied to access music information
services that support music navigation discovery, sharing and
formation of user communities [18].

C. Discussion
Conventional computational problem solving techniques

consists of Problem Analysis Chart (PAC), Input Process
Output (IPO) chart, flowchart, algorithm/pseudocode,
structure chart, Nassi-Shneiderman chart and Warnier-Orr
diagram. Existing multi-agent computational problem
solving visualization models applied these techniques in their
models as mentioned. However, existing models are different
from what we proposed because our model provide a
step-by-step way from the very beginning to understand the

problem statement, converts the problem statement to PAC,
PAC to IPO, IPO to flowchart and flowchart to algorithm
where multi-agents are used as knowledge representation.
This way provides extraction from one problem solving
technique and transformation to another problem solving
technique. In addition, module number is generated to show
the sequence of processing. Multi-agents communicate by
passing information, giving a clear understanding of the
problem to be solved.

As mentioned, information extraction and retrieval have
been applied in web-based system, ubiquitous services,
biomedical system and music application. Information
extraction related to our multi-agent computational problem
solving model is novel. Moreover, we combine the
transformation and generate module number implemented by
multi-agents. The next section will explain in detail about our
proposed model.

Fig. 1. Proposed multi-agent computational problem solving model.

III. PROPOSED MODEL
Our multi-agent computational problem solving model is

very different from other proposed research works in terms of
the unique architecture and algorithm. In our work, we
designed the Problem Solving Comprehension Module and
the Assignment Module as shown in Fig. 1. The left part of
the dotted lines is the Problem Solving Comprehension
Module and the right side of the dotted lines is the
Assignment Module. These agents are modeled using the
Prometheus notation [19], [20].

The Problem Solving Comprehension Module consist of
five agents namely GUI, PAC, IPO, Flowchart and
Algorithm agents which are responsible to extract and
transform information. Additionally, to produce the IPO, the
IPO agent role is to generate module number that shows
sequential processing for the problem statement. Each of the
agents represent the techniques of computational problem

solving that is related to each other. For example, to produce
an IPO chart, information needs to be extracted from the PAC
and module number needs to be generated so that information
can be transformed to the IPO chart.

The Assignment Module consists of four agents namely
Editor, Novice, Assessment and Guidance agents which are
responsible to interact with the user. This paper focus on the
Problem Solving Comprehension Module and the
Assignment Module will be designed in detail for future
works.

The agent class diagram is presented in Fig. 2. The
Problem Solving Agent GUI extends the AgArch class and
communicates with the gui Agent, pac Agent, ipo Agent,
flow chart Agent and algorithm Agent. The gui Agent reads
the problems given in text form and acts as an interface with
the user. This paper focuses on the design of subagent,
packaging and ipoAgent. The flowchart Agent and algorithm
Agent design is still under construction. The

491

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

ProblemSolvingAgentGUI constructor displays the interface
containing a button that is used by the novice to start the
problem understanding process. The act method executes an
action by the agent and the stop method is called by the
infrastructure tier when the agent is about to be killed. The
agents are programmed using Jason Agent Speak interpreter.
Our proposed algorithm is integrated in the process method
which will be explained in the next section.

Fig. 2. Multi-agent class diagram.

IV. THE PROCESS METHOD
Our proposed algorithm is presented in Fig. 3. The

algorithm is extended from our previous work [21] which is
integrated inside the process method in the
ProblemSolvingAgentGUI class as in Fig. 2.

The document contains problems in text form. Currently,
we cater for simple sequential problems. We intend to extend
the problems using looping or iterations in our future works.
The problems in text form needs to be read by tokens and
stored in array a, that controls the loop. “KeyA” – “KeyF” in
Fig. 3 are important keyword representing the process, input
and output in the problem. Words that are extracted from the
problems based on “KeyA” – “KeyF” by the pacAgent to be
transformed to the PAC. Information that is stored in arrays b
and c are used later by the ipoAgent that involves the
extraction, transformation to IPO and generate module
number processes.

 The Problem Solving Comprehension Module consist of
five agents namely GUI, PAC, IPO, Flowchart and
Algorithm agents which are responsible to extract and
transform information. Additionally, to produce the IPO, the
IPO agent role is to generate module number that shows
sequential processing for the problem statement. Each of the
agents represent the techniques of computational problem
solving that is related to each other. For example, to produce
an IPO chart, information needs to be extracted from the PAC
and module number needs to be generated so that information
can be transformed to the IPO chart.

Fig. 3. Multi-agent class diagram.

V. EXPERIMENTAL RESULTS
The proposed model is tested with three different problem

statements which are in text form.

Fig. 4. Problem statement one results.

Fig. 5. Problem statement two results.

A. Problem Statement One
The first problem is as follows:
Write a Problem Analysis Chart (PAC) to read test1 and

test2 of a student. Calculate sum=test1+test2 and
average=sum/2. Display average.

The results are shown below in Fig. 4.

process() algorithm
1. read the problem token by token and store in array a
2. initialize j to 0
3. extract PAC information:
 3.1 loop (j < array length a)
 3.1.1 if (a[j] = = “KeyA” to “KeyF”)
 3.1.1.1 extract WordA to WordF and transform to PAC
 3.1.1.2 store wordA to wordF in array b to be used later by IPO
 3.1.1.3 capture related word in PAC in array c to be used by IPO
 3.1.2 j++
 3.2 end loop
4. extract IPO information:
 4.1 initialize variable j, k, l to be used in loop
 4.2 loop (k < array length b && k < array length c)
 4.2.1 if (b[j] = = null) go out of the loop
 4.2.2 extract data, generate module number and transform to IPO
 4.3 j++, k++, l++
 4.4 end loop

Problem Solving Agent GUI

+Problem Solving Agent GUI()
+act (Action Exec ac, List<Action Exec> fb)
+stop(): void
+process(): void

AgArch

Problem
statement

gui Agent pacAgent

flowchart Agent ipoAgent algorithmAgent

492

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

B. Problem Statement Two
The second problem is as follows:
Write a Problem Analysis Chart (PAC) to get length and

width of a rectangle. Compute area=length*width. Print area.
The results are shown below in Fig. 5.

C. Problem Statement Three
The third problem is as follows:
Write a Problem Analysis Chart (PAC) to input totalbill

and payment by customers in a supermarket. Process
changedue=payment-totalbill. Output changedue.

The results are shown below in Fig. 6.

Fig. 6. Problem statement three results.

D. User Interface
Fig. 7 shows the user interface controlled by the novice to

start understanding the problem statements.

VI. RESULT FINDINGS
Our algorithm that has been improved from our previous

work [21] used samples of sequential problem and succeeded
to produce accurate results as expected. The input, process
and output are extracted and transformed correctly by the
PAC agent following the correct sequence by the IPO agent
and the module number generated accordingly. The results
also illustrate communication between guiAgent, pacAgent
and ipoAgent that demonstrate the visualization of
knowledge representation by these agents.

Fig. 7. Problem understanding user interface.

In our research work, we are using the existing

conventional problem solving techniques consisting of PAC,
IPO, flowchart and algorithm techniques. Our contribution is
mainly on the new model that is different from other
visualization problem solving model which starts from the
very beginning of the problem statement that shows an exact

flow of information from one agent to another which gives a
clear explanation of the problem statement.

We are currently in the process of extending and
improving the design of the Problem Solving Comprehension
Module for the flowchart and algorithm agents and coding of
the algorithm using Jason AgentSpeak [22], an agent
programming language which is built on top of the Java
programming language.

Our model represent agents role as problem solvers. It is
expected that our agent knowledge representation model can
assist novices in computational problem solving, as problem
solving is very important not only in the computer science
field but also other fields such as medical, engineering and
business. Logically, our algorithm can be extended to be
applied in other fields besides the computer science field.
Moreover, it is expected that this model can enhance the
students’ computational problem solving skills.

VII. CONCLUSION AND FUTURE WORKS
A model based on agents has been constructed for

computational problem solving. The Problem Solving
Comprehension Module function is for extraction,
transformation and module number generation. The
Assignment Module is for interaction with the user. The
agent in the Problem Solving Comprehension Module
consists of GUI, PAC, IPO, flowchart and algorithm agents.
The agent in the Assignment Module consists of the Editor,
Novice, Assessment and Guidance agents. The proposed
model is evaluated using samples of sequential problem
statement and produced correct extraction and transformation
results. In addition, the proposed model illustrates
visualization, communication and knowledge representation
features by software agents.

For future works, the detailed design and coding of the
Problem Solving Comprehension Module and the
Assignment Module will be implemented. In addition, the
proposed algorithm will be extended to provide more
keywords to cover wide problem statements consisting of
looping problems and more advanced object-oriented
problems like inheritance, polymorphism and encapsulation.
Furthermore, we plan to integrate our agent-based algorithm
in a computer programming development environment tool.

ACKNOWLEDGMENT
I would like to thank Kementerian Pengajian Tinggi (KPT)

Malaysia for sponsoring this research work under the grant of
Institut Pengajian Tinggi Awam (IPTA), Fundamental
Research Grant Scheme (FRGS), and project code:
02-12-10-1000FR.

REFERENCES
[1] H. C. Jung and C. Y. Ta, “Supporting the development of collaborative

problem-based learning environments with an intelligent diagnosis
tool,” Expert Systems with Applications, vol. 35, pp. 622-631, 2008.

[2] A. Nouy, “Generalized spectral decomposition for solving stochastic
finite element equations: Invariant subspace problem and dedicated
algorithms,” Computer Methods in Applied Mechanics and
Engineering, vol. 197, pp. 4718-4736, October 2008.

493

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

[3] T. Muir, K. Beswick, and J. Willamson, “I’m not very good at solving
problems: An exploration of students’ problem solving behaviours,”
The Journal of Mathematical Behavior, vol. 27, pp. 228-241, 2008.

[4] P. Guo and H. Qi, “Study on Interactive System for Teaching
Programming (ISTP) based on intelligent agent,” in Proc. 2010 6th
International Conference on Wireless Communications WiCOM 2010,
Shenzhen, China, 2010, pp. 23-25.

[5] K. E. Boyer, W. Lahti, R. Phillips, M. D. Wallis, M. A. Vouk, and J. C.
Lester, “Principles of asking efective questions during student problem
solving,” in Proc. SIGCSE'10 - the 41st ACM Technical Symposium on
adaptive Computer Science Education, 2010, pp. 460-464.

[6] W. Pedrycz and P. Rai, “A multifaceted perspective at data analysis: A
study in collaborative intelligent agents,” IEEE Transactions on
Systems, Man, and Cybernetics, Part B: Cybernetics, vol. 38, pp.
1062-1072, 2008.

[7] S. Yaskawa and A. Sakata, “The application of intelligent agent
technology to simulation,” Mathematical and Computer Modeling, vol.
37, pp. 1083-1092, 2003.

[8] B. L. Iantovics, “Agent-based medical diagnosis systems,” Computing
and Informatics, vol. 27, pp. 593-625, 2008.

[9] D. A. Bell, A. Beck, P. Miller, Q. X. Wu and A. Herrera, “Video mining
–learning patterns of behaviour via an intelligent image analysis
system,” in Proc. Rio de Janeiro, Brazil, 2007, pp. 460-464.

[10] R. Miraftabi, “Intelligent agents in program visualizations: A case
study with seal,” in Proc. of the First International Program
Visualization Workshop, 2001, pp.53-58.

[11] P. Brusilovsky and H. D. Su, “Adaptive visualization component of a
distributed web-based adaptive educational system,” in Proc. 6th
International Conference on Intelligent Tutoring Systems (ITS‘2002 ,
London, vol. 2363, 2002, pp. 229-238.

[12] M. Lattu, J. Tarhio, and V. Meisalo, “How a visualization tool can be
used – Evaluating a tool in a research & development project,” in Proc.
the 12th Psychology of Programming Interest Group (PPIG)
Workshop, 2000.

[13] M. B. Ari, R. Bednarik, R. B. B. Levy, G. Ebel, A. Moreno, N. Myller,
and E. Sutinen, “A decade of research and development on program
animation: The Jeliot experience,” Journal of Visual Languages and
Computing, vol. 22, pp. 375-384, 2011

[14] T. Eliassi-Rad and J. Shavlik,“A system for building intelligent agents
that learn to retrieve and extract information,” User Modeling and
User-Adapted Interaction, vol. 13, pp. 35-88, 2003.

[15] S. Leea, B. Yoonb, and Y. Parkc, “An approach to discovering new
technology opportunities: Keyword-based patent map approach,”
Technovation, vol. 29, pp. 81–497, 2009.

[16] Y. S. Yuan, “OntoIAS: An ontology-supported information agent shell
for ubiquitous services,” Expert Systems with Applications, vol. 38, pp.
7803–7816, 2011.

[17] F. Zhu, P. Patumcharoenpol, C. Zhang, Y. Yang, J. Chan, A. Meechai,
W. Vongsangnak, and B. Shen, “Biomedical text mining and its
applications in cancer research,” Journal of Biomedical Informatics,
vol. 46, pp. 200–211, 2003.

[18] M. Kaminskas and F. Ricci, “Contextual music information retrieval
and recommendation: State of the art and challenges,” Computer
Science Review, vol. 6, pp. 89-119, 2012.

[20] M. Woorldridge, An Introduction to MultiAgent Systems, U.K.: Wiley,
2009.

[21] T. N. M. Aris, “Object-oriented programming semantics representation
utilizing agents,” Journal of Theoretical and Applied Information
Technology, vol. 31, pp. 10-20, 2011.

[22] M. Gustave. (1865). Jason A Java-based Interpreter for an Extended
Version of Agent Speak. [Online]. Available: http://www.
jason.sourceforge.net/Jason/Jason.html

M. A. Teh Noranis received her bachelor of information technology degree
in 1994 from University Utara Malaysia, M.S. degree in Artificial
Intelligence in 2001 from University Putra Malaysia and Ph.D degree in
Computer Science in 2008 from University Kebangsaan Malaysia. She is
currently a Senior Lecturer at University Putra Malaysia. Her research
interests are Artificial Intelligence, parallel processing, programming science,
software agents and bioinformatics.

 N. Shahrin Azuan received his B.S degree in ccomputer science in 1990
from Clarkson University, NY, U.S.A., M.S. degree in information systems
engineering from UMIST, Manchester, U.K. in 1997 and Ph.D. degree in
electrical engineering from University Teknologi Malaysia, Skudai,
Malaysia, in 2008. His Ph.D. subject was on face recognition problems. He
has been with Telekom Malaysia (TM) since 1990, and is currently holding a
research position at the TM research & development. His research interests
include computational intelligence, biometric technology, information
security and networking.

494

International Journal of Modeling and Optimization, Vol. 3, No. 6, December 2013

[19] L. Padgham and M. Winikoff, Developing Intelligent Agent Systems: A
Practical Guide, Chichester, U.K.: Wiley, 2004.

