



Abstract—The combination of embedded systems with

physical components, termed Cyber-Physical Systems (CPSs),

poses important challenges in the design, modelling, simulation

and verification of systems, also why they combine discrete

software elaborations with analogues time evolutions and

different engineering disciplines. In this domain, the software

part is increasing the dimension and has a more important role.

An important formalism for describing continuous and

discrete systems is the hybrid system formalism. We present

our approach based on the FOCUS modelling theory to model

hybrid systems, which have discrete transitions and continuous

differential equations. The modular and logical structure of

FOCUS components combined with hybrid systems improves

the support for the modelling of CPSs. Anyway, a fully

continuous simulation may be too complex and not represent

the final hardware where the model will be deployed.

Therefore, we propose two sampling techniques to transform

the continuous time in discrete steps, in which the length of the

sampling period it is dynamically changed.

Index Terms—Hybrid systems, embedded systems,

model-based development, sampling, hybrid systems

simulation.

I. INTRODUCTION

Nowadays, safety-critical embedded systems are in use in

vehicles, machines aircraft or medical instruments. In these

domains, the combination of embedded systems with

physical components determines the necessity of a suitable

design that unite continuous and discrete behaviour. In fact,

software components operate in discrete program steps,

meanwhile the physical components evolve over time

intervals following physical constraints. An important

formalism for describing CPS from the perspective of

computer scientists is known as hybrid automaton [1]. In

some cases, specialised methodologies or languages are

introduced to deal with CPSs, where the already existing

techniques could be suitable to represent them, especially

after an extension or adaptation to cover some special domain

features.

FOCUS [2] is a modelling theory for the formal

specification of distributed, discrete-event systems. It forms

the basis foundation for our work to extend the support of the

modelling also to hybrid automata. FOCUS defines a

hierarchical and interconnected net of components, each with

a typed i/o interface, as depicted in the Fig. 1.

Manuscript received May 9, 2013; revised July 2, 2013. This work was

partially funded by the German Federal Ministry of Education and Research

(BMBF), grant ``SPES XT, 01IS12005M''. The responsibility for this article

lies with the authors.

Alarico Campetelli is with the Technische Universität München, Institut

für Informatik, Garching bei Müunchen, 85748, Germany (e-mail:

campetel@in.tum.de).

Fig. 1. An example of FOCUS component architecture.

The internal behaviour of each component can be

implemented with different formalisms, as for instance

functional specifications or finite state machines.

We present not only the formalization of the modelling

theory for hybrid systems, but also aspects that are related to

tool support and execution of them. Our models represent

CPSs with a FOCUS on the software behaviour. A full

continuous simulation may be too complex and anyway may

not represent the final hardware, where the model will be

deployed, that is basically a discrete component. We propose

sampling techniques to transform the continuous time in

discrete steps. The term sampling in mathematics means the

transformation of an analogue signal in a digital one. We

used sampling over continuous time, whereas some

approaches do the sampling of the state space. Our ideas are

mainly based on the work of Petreczky et al. [3], where is

presented a static sampling over the continuous time. It is

static because the discrete time step remains constant, that is

usually called "equidistant sampling". Instead, we introduce

two new solutions based on dynamic sampling, dynamic it is

referred to the discrete time step, which is variable during the

simulation. Our algorithms make the step shorter or longer,

according to the values that are reached from the continuous

variables or their slope. We think that such variations can

produce a better simulation with respect to static sampling,

because we can select important value intervals for each

variable, from the requirements, and establish a

corresponding length for the sampling period. On the other

hand analysing the slope of the values of the variables and

use a shorter period when the slope changes too repentantly

can permit to better follow the variation of the variable

producing more values in the same time, so in some sense

increasing the precision of the simulation.

II. FOCUS HYBRID COMPONENTS

The FOCUS approach covers the specification of

distributed, discrete systems with communication histories or

traces represented by infinite sequences of messages. As

consequence, FOCUS modelling approach has the time

represented with a discrete granularity. This can represent a

Alarico Campetelli

Dynamic Sampling for FOCUS Hybrid Components

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

402DOI: 10.7763/IJMO.2013.V3.308

limiting restriction for reactive systems, which interact in

continuous real-time with physical components and their

environment. Consequently, the system has to have

continuous data types and to be able to provide an instrument

to define the continuous evolution of such data types.

Considering the discrete character of FOCUS models and the

continuous dynamic of the hybrid automata, we define hybrid

components based on dense streams [4]. The internal

behavior of each hybrid component is implemented by a

special version of hybrid automaton [2]. The channels are

described with stream functions over continuous time.

Definition 1 (Hybrid stream): Let M be the set of all

messages (potentially infinite) and M* a finite sequence of

messages, a hybrid discrete stream x over M is described by

the following total function:

*: Mx R

where as a hybrid continuous stream y over a set N of

messages is:

Ny R:

We assign to each channel a data type by a function

Tct : , where c is a channel and T is a set of types

T . M is the universe of all messages:

}:{= TM 

 We define now a hybrid component based on the

definition of hybrid automata and our notion of component in

FOCUS .

Definition 2 (I/O Hybrid Component): An I/O hybrid

component is a tuple

),,,,,,,,,(= RGfEDomOIInitVarH 

1) A state space ∑ = (Q × V) where Q is a set of discrete

states Q = {q1, q2, …} and V a set of continuous states




 
RRRR

)()()()(1

**

1 nll MMMMV 
to

each element of V corresponds a hybrid stream as

specified in Definition 1, that is associated to a variable in

the set Var.

2) A set of initial states Init .

3) A set of input VI  and output VO  state space,

respectively for input and output channels, whereas

VInt  are the internal continuous state space and

VIntd  the internal discrete state space both with no

channels associated, any variable in Var can only be in one

of these set. OOd  and OOc  , with  =dc OO are

respectively the continuous and discrete output state

space, we denote with
cOIntW = the set of internal

and output state spaces.

4) A domain function)(: VQDom P .

A set of edges QQE  that represent the discrete state

transition.

5) A vector field function WVQf : .

6) A guard condition function)(: VEG P .

7) A reset map function)(: dOWVER  P that

represent with the vector field the continuous dynamics.

The set V of continuous state space is subdivided in

internal variables, output and input subsets. Continuous

states are defined considering each discrete state plus the

Dom function, when the system is in one of these states the

system evolves in the continuous space according to such

function. From an initial state),(00 vq the evolution of the

system is guided from the differential equation over Ww

),(= 0 vqfw

0=(0) vv

and remain constant the discrete state q

.=)(0qtq

If the actual state v remains in)(0qDom then the

continuous elaboration is active and executed. A discrete

transition to
1q is determined for the current value of v ,

when is in the guard




 
RRRR

)()()()(),(1

**

110 nll MMMMqqG  of some

edge Eqq ),(10
. After a discrete transition the reset function

sets some values in




 
RRRR

)()()()()),,((1

**

110 mkk MMMMvqqR  for the

variables in
dOW  with nm  , this way the continuous

evolution can be reset.

III. STATIC SAMPLING ARCHITECTURE

In communication/signal theory the term sampling

indicates the operation to make an analogue signal to be a

discrete signal. The sampling may be periodic if the period is

constant, denoted as  , and variable if the period is not

constant, denoted)(n with
Nn . We build an approach

based on the work in [4], where the authors apply a sampling

approach to hybrid automata with a constant period, but we

introduce a variable period. We define now the architecture

of our sampling approach, defining the hybrid component

and the controller. We start defining sequences of sampled

values from a continuous stream, which represent the input or

output data produced in the discretized architecture.

Definition 3 (Sampled Stream): Considering a finite set

M where M and a finite or infinite timed sequence of

elements of M associated to a continuous stream:

),(),)(,(= 2211 kk tmtmtms

where ,<<<<0 21  kttt Mmi 1
 (*

1 Mmi 
 if

associated to a discrete stream),
 R1it for Ni , |<| si .

The sequence s may be infinite or finite and we associate a

continuous stream x as specified in Definition 1 to a

sampled sequence:

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

403















 





otherwise

streamdiscreteifMm

isomeforttifMm

t i

ii

)(

=

: *

1

11 N

R  (1)

 This time-event function  returns at each time instance

values of the message set M and  in case of absence of

messages. We denote with
MS the set of all such sampled

streams. We define now the architecture of our sampling

approach, defining the hybrid component and the controller.

Definition 4 (Sampled Hybrid Component): A hybrid

sampled i/o hybrid component corresponding to the i/o

hybrid component H is the following map

m
MM

n
NNHv SSSS  

11
:

Fig. 2. Sampling architecture for hybrid components.

Definition 5 (Hybrid Controller): A hybrid controller is

a map

n
NN

m
MM SSSSC  

11
:

where the
iN and

iM are respectively the input and output

message sets for i/o channels of H .

The set of outputs that arrive to the controller are received

at sampling intervals, so the controller is activated at a

sampling rate 0> and provides the corresponding input for

the next sampled period. We have a representation of the i/o

sampled component and its controller in Fig. 2, where the

symbols
I and

O indicates the sampled i/o streams

deduced from the streams specified in Definition 3.

IV. DYNAMIC SAMPLING ALGORITHMS

We introduce in this section our approach based on a

variable period. The basic idea is to adapt the length of the

period, in the sampled architecture, to the necessary precision

for the elaboration of the values produced from the

differential equations and therefore for the continuous output

of the component. At the beginning the period is set to the

maximum value
0d .

The first approach is based on the calculation of the slope

for the functions defined by differential equations and a

correspondent acceptance value for it. The sampling is

considered stable if the slope is smaller or equal than

acceptance value. As shown in Fig. 3, when the slope

between the value at time 2t and at the actual time 3t is not

in the acceptance value, the period is halved. At time 9t

since the slope was in the acceptance value for a period of

time greater to the stabilization time the period is again

doubled, until eventually the maximum value. In this

architecture we associate a hybrid component H to the

dynamic sampling controller
HC .

Definition 6 (Period variation based on the slope): Given a

hybrid component H , a set of acceptance values iL and a

set of stabilization times
iS , with |<|0 Wi we define the

dynamic variation of the period as follows: we calculate the

slope from the second step at time
02= dt and consequently

for the following steps. The evolution of the system is guided

from the differential equation over the variable in Ww ,

that is),(= vqfw , where),(vq is the actual state and

1)(n is the actual period of the component H for the

n -step of elaboration. At the elaboration step n for each

variable Ww we use the precedent value of w at the

computation step 1n to compute the slope:

1)(

1)()(
=),(





n

nwnw
nwslope



We update the period for the next computation step only if

the slope is greater than the acceptance value
wL or was in

such interval for the stabilization time
wS and the slope is not

the maximum value 0d . This control is done for each

variables Ww and at the end is chosen for the component

the shortest value for the period. The map  is so

inductively defined, for an initial state),(00 vq the map is set

for the first step of elaboration to the maximum value
0d :

0=(0) d

w

w

w w

i 1
w

0

(i)/2 if | slope(w,i) |> L

(i) 2 if (| slope(w,i) | L | slope(w,i 1) |

L | slope(w,i k) | L)
w =

((i) (i 1) (i k) S)

(i 1) < d with k i

(i) otherwise







  










   

     


      
   







 (2)

 }|{=1)(
1

Wwwmini
i






Acceptance values and stabilization periods for the

continuous variables has to be based on the range of values

that the variables reach in the elaboration. The acceptance

value of the slope for a variable is in fact related to the values

assumed from the variable. If a variable has a relative small

interval of values, the slope should also be not too big, in

order to follow the fluctuations with a finer production of

values.

We consider the variables independently from the actual

differential equation associated to the actual state. In this way

when a transition is taken and the variable can obtain a

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

404

different differential equation, the change of values can also

determine a high slope with the precedent value. Therefore,

when the state is changed probably the slope determines a

change in a smaller period, and then there is a higher

production of values. A change in the state is normally a

change in the modus of the system, so a better precision can

guarantee a reactive simulation.

Fig. 3. Period variation based on the slope.

The second idea for the period variation is conceived

around predefined value intervals, said critical. Basically

during the simulation of the hybrid component, the period

varies according with the current values of the variables in

W , respect to predefined critical intervals, as depicted in Fig.

4.

Fig. 4. Period variation based on the critical intervals.

If the value of a variable is in a critical interval and the

actual period is greater than the acceptance period associated

to the interval, then the period is set to this value, as for

instance from the step at time 4t and 10t . On the other hand

if the value of a variable is no more in a critical interval, then

the period is set again to the maximum value
0d , as at time

7t . The period value for the next computation step is

calculated as said for each output or internal variable, and

finally will be chosen the minimum period between the

values elaborated for each variable.

Definition 7 (Period variation based on intervals): Given a

hybrid component H , a set of critical intervals
iK and a set

of period times
RiP , with |<|0 Wi , we build the

dynamic variation of the period as follow. For the initial

states as for instance),(00 vq the period is set to the

maximum value 0d , from the second step of elaboration (at

time
02= dt) starts the dynamic choice of the period. The

evolution of the system is guided from the differential

equation over the variable in Ww , that is),(= vqfw ,

where),(vq is the actual state.

The modification of the actual period is made analysing

the actual value of the variables in W , that is if a variable w

is in a critical interval
wK , then the corresponding

wP

acceptance period is the necessary value of w for the period.

It is finally chosen the minimum acceptance period between

the variables that are in a critical interval. The period map 

is inductively over the elaboration steps as follow

determined:

0=(0) d

 

 

 otherwisei

KiwifP
w

ww

i)(

)(
=

1 


 (3)

 }|{=1)(
1

Wwwmini
i






Critical intervals have to be established before the

execution of the sampled hybrid components and they should

have appropriate sampling period, said acceptance periods.

These information is strictly bound to the needs and real-time

restrictions of the variables, therefore they can be delineated

from the formal requirements of each variable of the systems

or from the modelled hybrid component considering the

implementation behaviours.

V. CONCLUSION AND FUTURE WORK

We presented an approach that comprises modelling and

simulation of hybrid systems. The presentation of our results

starts with Focus theory fundamentals, based on these

modelling structure we developed our notion of hybrid

component and then we propose two dynamic sampling

solutions. These solutions consider the values reached from

the variables and adapt the period of the sampling, in order to

follow sudden variations or critical intervals reached from the

variables. Focus theory is supported and implemented in the

modelling tool Auto Focus 3[5], developed at our research

group and specialized for reactive and discrete embedded

systems, it integrates specification and verification tightly

into the model-based development process, based on the

model checker NuSMV [6].

We aim to implement hybrid components, the algorithms

for their sampling and their formal verification in Auto Focus

3. Through these verification techniques may be also useful

for the sampling algorithms, checking value invariants of the

possible value ranges reached from the variables and so

deriving congruent slope acceptance values. Finally, we plan

to conduct more case studies with industrial partners

involved in the automotive and embedded system domain, in

common research projects.

ACKNOWLEDGMENT

I would like to thank Mario Gleirscher and Maximilian

Junker, who provided valuable comments during the

elaboration of the research presented in this work.

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

405

REFERENCES

[1] T. A. Henzinger, “The theory of hybrid automata,” in Proc. The 11th

Annual IEEE Symposium on Logic in Computer Science, LICS '96,

IEEE Computer Society, Washington, DC, USA, 1996, pages 278-.

[2] M. Broy, F. Dederich, C. Dendorfer, M. Fuchs, T. Gritzner, and R.

Weber, “The design of distributed systems - An introduction to

FOCUS,” Technical Report TUM-I9202, Technische Universität

München, 1992.

[3] M. Petreczky, D. A. van Beek, J. E. Rooda, P. J. Collins, and J. H. van

Schuppen, “Sampled-Data control of hybrid systems with discrete

inputs and outputs,” in Proc. the 3rd IFAC Conference on Analysis and

Design of Hybrid Systems, A. Giua, M. Silva, and J. Zaytoon, Eds,

International Federation of Automatic Control, 2009

[4] O. Müller and P. Scholz, “Functional Specification of Real-Time and

Hybrid Systems,” in Proc. Hybrid and Real-Time Systems, pp. 26-28,

Springer-Verlag, 1997.

[5] AF3Wiki. [Online]. Available: http://autofocus.in.tum.de

[6] NuSMV: a new symbolic model checker. [Online]. Available:

http://nusmv.fbk.eu

 Alarico Campetelli received the MSc and BSc

(Hons) degrees in Computer Science, with

specialization in formal languages, from University

"La Sapienza" in Rome, respectively in 2007 and 2004.

I had worked from 2007 to 2008 at Gruppo Repubblica

in Rome as software developer, and from 2008 to 2009

at Artificial Technology in Munich as researcher and

software developer. In 2009 I joined at the Technische

Universität Munich, where I am currently a PhD

student at the chair of Software & Systems Engineering. I had worked in

research projects with industrial partners and I had also lectured. My current

research interests are in formal methods, formal verification, hybrid systems

and model-based development.

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

406

