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Abstract—The combination of embedded systems with 

physical components, termed Cyber-Physical Systems (CPSs), 

poses important challenges in the design, modelling, simulation 

and verification of systems, also why they combine discrete 

software elaborations with analogues time evolutions and 

different engineering disciplines. In this domain, the software 

part is increasing the dimension and has a more important role. 

An important formalism for describing continuous and 

discrete systems is the hybrid system formalism. We present 

our approach based on the FOCUS modelling theory to model 

hybrid systems, which have discrete transitions and continuous 

differential equations. The modular and logical structure of 

FOCUS components combined with hybrid systems improves 

the support for the modelling of CPSs. Anyway, a fully 

continuous simulation may be too complex and not represent 

the final hardware where the model will be deployed. 

Therefore, we propose two sampling techniques to transform 

the continuous time in discrete steps, in which the length of the 

sampling period it is dynamically changed. 

 
Index Terms—Hybrid systems, embedded systems, 

model-based development, sampling, hybrid systems 

simulation.  

 

I. INTRODUCTION 

Nowadays, safety-critical embedded systems are in use in 

vehicles, machines aircraft or medical instruments. In these 

domains, the combination of embedded systems with 

physical components determines the necessity of a suitable 

design that unite continuous and discrete behaviour. In fact, 

software components operate in discrete program steps, 

meanwhile the physical components evolve over time 

intervals following physical constraints. An important 

formalism for describing CPS from the perspective of 

computer scientists is known as hybrid automaton [1]. In 

some cases, specialised methodologies or languages are 

introduced to deal with CPSs, where the already existing 

techniques could be suitable to represent them, especially 

after an extension or adaptation to cover some special domain 

features.  

FOCUS [2] is a modelling theory for the formal 

specification of distributed, discrete-event systems. It forms 

the basis foundation for our work to extend the support of the 

modelling also to hybrid automata. FOCUS defines a 

hierarchical and interconnected net of components, each with 

a typed i/o interface, as depicted in the Fig. 1. 
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Fig. 1. An example of FOCUS component architecture. 

 

The internal behaviour of each component can be 

implemented with different formalisms, as for instance 

functional specifications or finite state machines.  

We present not only the formalization of the modelling 

theory for hybrid systems, but also aspects that are related to 

tool support and execution of them. Our models represent 

CPSs with a FOCUS on the software behaviour. A full 

continuous simulation may be too complex and anyway may 

not represent the final hardware, where the model will be 

deployed, that is basically a discrete component. We propose 

sampling techniques to transform the continuous time in 

discrete steps. The term sampling in mathematics means the 

transformation of an analogue signal in a digital one. We 

used sampling over continuous time, whereas some 

approaches do the sampling of the state space. Our ideas are 

mainly based on the work of Petreczky et al. [3], where is 

presented a static sampling over the continuous time. It is 

static because the discrete time step remains constant, that is 

usually called "equidistant sampling". Instead, we introduce 

two new solutions based on dynamic sampling, dynamic it is 

referred to the discrete time step, which is variable during the 

simulation. Our algorithms make the step shorter or longer, 

according to the values that are reached from the continuous 

variables or their slope. We think that such variations can 

produce a better simulation with respect to static sampling, 

because we can select important value intervals for each 

variable, from the requirements, and establish a 

corresponding length for the sampling period. On the other 

hand analysing the slope of the values of the variables and 

use a shorter period when the slope changes too repentantly 

can permit to better follow the variation of the variable 

producing more values in the same time, so in some sense 

increasing the precision of the simulation. 

 

II.  FOCUS HYBRID COMPONENTS 

The FOCUS approach covers the specification of 

distributed, discrete systems with communication histories or 

traces represented by infinite sequences of messages. As 

consequence, FOCUS modelling approach has the time 

represented with a discrete granularity. This can represent a 
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limiting restriction for reactive systems, which interact in 

continuous real-time with physical components and their 

environment. Consequently, the system has to have 

continuous data types and to be able to provide an instrument 

to define the continuous evolution of such data types. 

Considering the discrete character of FOCUS models and the 

continuous dynamic of the hybrid automata, we define hybrid 

components based on dense streams [4]. The internal 

behavior of each hybrid component is implemented by a 

special version of hybrid automaton [2]. The channels are 

described with stream functions over continuous time. 

Definition 1 (Hybrid stream): Let M be the set of all 

messages (potentially infinite) and M* a finite sequence of 

messages, a hybrid discrete stream x over M is described by 

the following total function:  

*: Mx R  

where as a hybrid continuous stream y  over a set N of 

messages is:  

Ny R:  

We assign to each channel a data type by a function 

Tct : , where c  is a channel and T  is a set of types 

T . M  is the universe of all messages: 

}:{= TM   

 We define now a hybrid component based on the 

definition of hybrid automata and our notion of component in  

FOCUS .  

Definition 2 (I/O Hybrid Component): An I/O hybrid 

component is a tuple 

),,,,,,,,,(= RGfEDomOIInitVarH   

1) A state space ∑ = (Q × V) where Q is a set of discrete      

states Q = {q1, q2, …} and V a set of continuous states 




 
RRRR

)()()()( 1

**

1 nll MMMMV 
to 

each element of V corresponds a hybrid stream as 

specified in Definition 1, that is associated to a variable in  

the set Var.  

2) A set of initial states Init .  

3) A set of input VI   and output VO   state space,  

respectively for input and output channels, whereas 

VInt   are the internal continuous state space and 

VIntd   the internal discrete state space both with no 

channels associated, any variable in Var can only be in one 

of these set. OOd   and OOc  , with  =dc OO  are 

respectively the continuous and discrete output state 

space, we denote with 
cOIntW =  the set of internal 

and output state spaces. 

4) A domain function )(: VQDom P . 

A set of edges QQE   that represent the discrete state 

transition.  

5)  A vector field function WVQf : .  

6)  A guard condition function )(: VEG P .  

7) A reset map function )(: dOWVER  P  that       

represent with the vector field the continuous dynamics.  

The set V of continuous state space is subdivided in 

internal variables, output and input subsets. Continuous 

states are defined considering each discrete state plus the 

Dom function, when the system is in one of these states the 

system evolves in the continuous space according to such 

function. From an initial state ),( 00 vq  the evolution of the 

system is guided from the differential equation over Ww   

),(= 0 vqfw  

0=(0) vv  

and remain constant the discrete state q   

.=)( 0qtq  

If the actual state v  remains in )( 0qDom  then the 

continuous elaboration is active and executed. A discrete 

transition to 
1q  is determined for the current value of v , 

when is in the guard 




 
RRRR

)()()()(),( 1

**

110 nll MMMMqqG   of some 

edge Eqq ),( 10
. After a discrete transition the reset function 

sets some values in 




 
RRRR

)()()()()),,(( 1

**

110 mkk MMMMvqqR   for the 

variables in 
dOW   with nm  , this way the continuous 

evolution can be reset. 

 

III. STATIC SAMPLING ARCHITECTURE 

In communication/signal theory the term sampling 

indicates the operation to make an analogue signal to be a 

discrete signal. The sampling may be periodic if the period is 

constant, denoted as  , and variable if the period is not 

constant, denoted )(n  with 
Nn . We build an approach 

based on the work in [4], where the authors apply a sampling 

approach to hybrid automata with a constant period, but we 

introduce a variable period. We define now the architecture 

of our sampling approach, defining the hybrid component 

and the controller. We start defining sequences of sampled 

values from a continuous stream, which represent the input or 

output data produced in the discretized architecture. 

Definition 3 (Sampled Stream): Considering a finite set 

M  where M  and a finite or infinite timed sequence of 

elements of M  associated to a continuous stream:  

 ),(),)(,(= 2211 kk tmtmtms  

where ,<<<<0 21  kttt Mmi 1
 ( *

1 Mmi 
 if 

associated to a discrete stream), 
 R1it  for Ni , |<| si . 

The sequence s  may be infinite or finite and we associate a 

continuous stream x  as specified in Definition 1 to a 

sampled sequence:  
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 This time-event function   returns at each time instance 

values of the message set M  and   in case of absence of 

messages. We denote with 
MS  the set of all such sampled 

streams. We define now the architecture of our sampling 

approach, defining the hybrid component and the controller. 

Definition 4 (Sampled Hybrid Component): A hybrid 

sampled i/o hybrid component corresponding to the i/o 

hybrid component H  is the following map 

m
MM

n
NNHv SSSS  

11
:  

 
Fig. 2. Sampling architecture for hybrid components. 

 

Definition 5 (Hybrid Controller):  A hybrid controller is 

a map 

n
NN

m
MM SSSSC  

11
:  

where the 
iN  and 

iM  are respectively the input and output 

message sets for i/o channels of H . 

The set of outputs that arrive to the controller are received 

at sampling intervals, so the controller is activated at a 

sampling rate 0>  and provides the corresponding input for 

the next sampled period. We have a representation of the i/o 

sampled component and its controller in Fig. 2, where the 

symbols
I  and 

O  indicates the sampled i/o streams 

deduced from the streams specified in Definition 3. 

 

IV. DYNAMIC SAMPLING ALGORITHMS 

We introduce in this section our approach based on a 

variable period. The basic idea is to adapt the length of the 

period, in the sampled architecture, to the necessary precision 

for the elaboration of the values produced from the 

differential equations and therefore for the continuous output 

of the component. At the beginning the period is set to the 

maximum value 
0d . 

The first approach is based on the calculation of the slope 

for the functions defined by differential equations and a 

correspondent acceptance value for it. The sampling is 

considered stable if the slope is smaller or equal than 

acceptance value. As shown in Fig. 3, when the slope 

between the value at time 2t  and at the actual time 3t  is not 

in the acceptance value, the period is halved. At time 9t  

since the slope was in the acceptance value for a period of 

time greater to the stabilization time the period is again 

doubled, until eventually the maximum value. In this 

architecture we associate a hybrid component H  to the 

dynamic sampling controller 
HC . 

Definition 6 (Period variation based on the slope): Given a 

hybrid component H , a set of acceptance values iL  and a 

set of stabilization times 
iS , with |<|0 Wi  we define the 

dynamic variation of the period as follows: we calculate the 

slope from the second step at time 
02= dt  and consequently 

for the following steps. The evolution of the system is guided 

from the differential equation over the variable in Ww , 

that is ),(= vqfw , where ),( vq  is the actual state and 

1)( n  is the actual period of the component H  for the 

n -step of elaboration. At the elaboration step n  for each 

variable Ww  we use the precedent value of w  at the 

computation step 1n  to compute the slope:  

1)(

1)()(
=),(





n

nwnw
nwslope


 

We update the period for the next computation step only if 

the slope is greater than the acceptance value 
wL  or was in 

such interval for the stabilization time 
wS  and the slope is not 

the maximum value 0d . This control is done for each 

variables Ww  and at the end is chosen for the component 

the shortest value for the period. The map   is so 

inductively defined, for an initial state ),( 00 vq  the map is set 

for the first step of elaboration to the maximum value 
0d :  

0=(0) d  

 

w

w

w w

i 1
w

0

(i)/2 if | slope(w,i) |> L

(i) 2 if (| slope(w,i) | L | slope(w,i 1) |

L | slope(w,i k) | L )
w =

( (i) (i 1) (i k) S )

(i 1) < d with k i

(i) otherwise







  










   

     


      
   







 (2) 

                                                                                           

                                     }|{=1)(
1

Wwwmini
i




   

Acceptance values and stabilization periods for the 

continuous variables has to be based on the range of values 

that the variables reach in the elaboration. The acceptance 

value of the slope for a variable is in fact related to the values 

assumed from the variable. If a variable has a relative small 

interval of values, the slope should also be not too big, in 

order to follow the fluctuations with a finer production of 

values.  

We consider the variables independently from the actual 

differential equation associated to the actual state. In this way 

when a transition is taken and the variable can obtain a 
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different differential equation, the change of values can also 

determine a high slope with the precedent value. Therefore, 

when the state is changed probably the slope determines a 

change in a smaller period, and then there is a higher 

production of values. A change in the state is normally a 

change in the modus of the system, so a better precision can 

guarantee a reactive simulation. 

 

 
Fig. 3. Period variation based on the slope. 

 

The second idea for the period variation is conceived 

around predefined value intervals, said critical. Basically 

during the simulation of the hybrid component, the period 

varies according with the current values of the variables in 

W , respect to predefined critical intervals, as depicted in Fig. 

4.  

 
Fig. 4. Period variation based on the critical intervals. 

If the value of a variable is in a critical interval and the 

actual period is greater than the acceptance period associated 

to the interval, then the period is set to this value, as for 

instance from the step at time 4t  and 10t . On the other hand 

if the value of a variable is no more in a critical interval, then 

the period is set again to the maximum value 
0d , as at time 

7t . The period value for the next computation step is 

calculated as said for each output or internal variable, and 

finally will be chosen the minimum period between the 

values elaborated for each variable. 

Definition 7 (Period variation based on intervals): Given a 

hybrid component H , a set of critical intervals 
iK  and a set 

of period times 
RiP , with |<|0 Wi , we build the 

dynamic variation of the period as follow. For the initial 

states as for instance ),( 00 vq  the period is set to the 

maximum value 0d , from the second step of elaboration (at 

time 
02= dt ) starts the dynamic choice of the period. The 

evolution of the system is guided from the differential 

equation over the variable in Ww , that is ),(= vqfw , 

where ),( vq  is the actual state. 

The modification of the actual period is made analysing 

the actual value of the variables in W , that is if a variable w  

is in a critical interval 
wK , then the corresponding 

wP  

acceptance period is the necessary value of w  for the period. 

It is finally chosen the minimum acceptance period between 

the variables that are in a critical interval. The period map   

is inductively over the elaboration steps as follow 

determined:  

0=(0) d  

                       

 

 otherwisei

KiwifP
w

ww

i )(

)(
=

1 


  

                                                                              (3) 

        }|{=1)(
1

Wwwmini
i




  

Critical intervals have to be established before the 

execution of the sampled hybrid components and they should 

have appropriate sampling period, said acceptance periods. 

These information is strictly bound to the needs and real-time 

restrictions of the variables, therefore they can be delineated 

from the formal requirements of each variable of the systems 

or from the modelled hybrid component considering the 

implementation behaviours.   

 

V. CONCLUSION AND FUTURE WORK 

We presented an approach that comprises modelling and 

simulation of hybrid systems. The presentation of our results 

starts with  Focus theory fundamentals, based on these 

modelling structure we developed our notion of hybrid 

component and then we propose two dynamic sampling 

solutions. These solutions consider the values reached from 

the variables and adapt the period of the sampling, in order to 

follow sudden variations or critical intervals reached from the 

variables.  Focus theory is supported and implemented in the 

modelling tool Auto Focus 3[5], developed at our research 

group and specialized for reactive and discrete embedded 

systems, it integrates specification and verification tightly 

into the model-based development process, based on the 

model checker NuSMV [6]. 

We aim to implement hybrid components, the algorithms 

for their sampling and their formal verification in Auto Focus 

3. Through these verification techniques may be also useful 

for the sampling algorithms, checking value invariants of the 

possible value ranges reached from the variables and so 

deriving congruent slope acceptance values. Finally, we plan 

to conduct more case studies with industrial partners 

involved in the automotive and embedded system domain, in 

common research projects. 

ACKNOWLEDGMENT 

I would like to thank Mario Gleirscher and Maximilian 

Junker, who provided valuable comments during the 

elaboration of the research presented in this work. 

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

405



  

REFERENCES 

[1] T. A. Henzinger, “The theory of hybrid automata,” in Proc.  The 11th 

Annual IEEE Symposium on Logic in Computer Science, LICS '96, 

IEEE Computer Society, Washington, DC, USA, 1996, pages 278-. 

[2] M. Broy, F. Dederich, C. Dendorfer, M. Fuchs, T. Gritzner, and R. 

Weber, “The design of distributed systems - An introduction to 

FOCUS,” Technical Report TUM-I9202, Technische Universität 

München, 1992. 

[3] M. Petreczky, D. A. van Beek, J. E. Rooda, P. J. Collins, and J. H. van 

Schuppen, “Sampled-Data control of hybrid systems with discrete 

inputs and outputs,” in Proc. the 3rd IFAC Conference on Analysis and 

Design of Hybrid Systems, A. Giua, M. Silva, and J. Zaytoon, Eds, 

International Federation of Automatic Control, 2009 

[4] O. Müller and P. Scholz, “Functional Specification of Real-Time and 

Hybrid Systems,” in Proc. Hybrid and Real-Time Systems, pp. 26-28, 

Springer-Verlag, 1997. 

[5] AF3Wiki. [Online]. Available: http://autofocus.in.tum.de 

[6] NuSMV: a new symbolic model checker. [Online]. Available:  

http://nusmv.fbk.eu 

 

 Alarico Campetelli received the MSc and BSc 

(Hons) degrees in Computer Science, with 

specialization in formal languages, from University 

"La Sapienza" in Rome, respectively in 2007 and 2004. 

I had worked from 2007 to 2008 at Gruppo Repubblica 

in Rome as software developer, and from 2008 to 2009 

at Artificial Technology in Munich as researcher and 

software developer. In 2009 I joined at the Technische 

Universität Munich, where I am currently a PhD 

student at the chair of Software & Systems Engineering. I had worked in 

research projects with industrial partners and I had also lectured. My current 

research interests are in formal methods, formal verification, hybrid systems 

and model-based development. 

 

 

International Journal of Modeling and Optimization, Vol. 3, No. 5, October 2013

406


