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Abstract—In 2009, Nowak introduced q-Bernstein-Stancu 

polynomials  , ;q

nB f x . When 0  ,  , ;q

nB f x  reduces to the 

well-known q-Bernstein polynomials introduced by Phillips in 

1997; when 1,q   , ;q

nB f x reduces to Bernstein-Stancu 

polynomials introduced by Stancu in1968; when 

1q and 0,  we obtain classical Bernstein polynomials. This 

paper deals with iterates properties of q-Bernstein-Stancu 

operators  , ;nj

nB f q x  in the case  0,1 ,q  0,  0,1f , 

where both nj  and n  . 

 
Index Terms—q-Bernstein-Stancu polynomials, iterates 

properties, uniform convergence. 

 

I. INTRODUCTION 

Let 0,q  for each nonnegative integer ,r we define the 

q  integer r  as  
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We then define q  factorial  !r  as  
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We next define a q  binomial coefficient as  
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For f  
  0,1 , 0, 0 q and each positive integer ,n  

we shall investigate the following q-Bernstein-Stancu 

operator introduced by Nowak in 2009 [1]. 
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Note that empty product in (2) denotes 1. 

In this case, when  ,0, ;q

nB f x   reduces to the well- 

known q-Bernstein polynomials introduced by Phillips [2] 

in1997: 
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when 1q  ,  , ;q

nB f x  reduces to Bernstein-Stancu 

polynomials introduced by Stancu [3] in 1968: 
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when 1,q 0,  we obtain the classical Bernstein 

polynomials defined by 
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 Now, we review and state some general properties of 

q-Bernstein-Stancu operators. 

It follows directly from the definition that 

q-Bernstein-Stancu operators possess the end-point 

interpolation property, i.e.,   

 

   , ;0 0q

nB f f  ,    , ;1 1 ,q

nB f f       0,q n    (3) 

and leave invariant linear function, that is  

        

  ,q

nB at b ax b                0,q n        (4) 

 

They are also degree-reducing on polynomials, that is if 

m  is a polynomial of degree ,m  then ,q

nB   m  is a 

polynomial of degree  min ,m n . 

    Taking 0,a 1b  in (4), we conclude that  
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In 2009, Nowak proved that the q-Bernstein-Stancu 

operators can be expressed in terms of q-differences [1]: 
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Note that  
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at the same time, he still prove that for 0 1, q 0,  
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He also proved some other approximation properties [1].  

In recent years, q-Bernstein polynomials have been studied 

intensively by a number of authors. They investigated  

iterates properties of  the Bernstein operator from a different 

point of view [4]–[6]. 

We will deal with iterates properties of q-Bernstein-Stancu 

operators  , ;nj

nB f q x  in the case  0,1 ,q  0,  0,1f , 

where both nj  and n  in this paper. 

It can be readily seen that for  0,1 ,q  polynomials 
,
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q

n kB  

are non negative on the interval   0,1 . Therefore, we get from 
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  In this paper we always assume that ,



qB  on  0,1  exists. 

   We denote the operator of linear interpolation at 0  and 1  

by ,L  i.e., 

             

       ; : 1 0 1  L f x x f xf . 

 

Now we give the statement of main results in this paper. 

Theorem1. For  0,1 ,q 0 , let   nj be a sequence of 

positive integers such that nj . Then for any  0,1 ,f   
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II.      PROOF OF THEOREM 1 

Lemma 1. Let  , mf t  1,m  then  
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where 
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Besides, for n m , we have  
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Proof. It was already noticed in the introduction 

 , ;q m

nB t x  is a polynomials of degree min (m,n). The 

end-point interpolation property (3) implies that for 1m , 

the free term of  , ;q m

nB t x  equals 0 . Therefore, (14) is 

justified. 

1) Representation   (7)   of q-Bernstein-Stancu polynomials 

gives the following values of coefficients in  (14) 
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 the statement is proved. 

            

2) This follows readily from the end-point interpolation 

properties (3)  if we put 1x in  (14). 
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3) Using  (15) and  (10) we get  
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as required. 

 

4) The proof see [7].                                                         

                                                                                                         

Lemma 2. For all  0,1 ,q 0,   the following identity 

holds: 
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Proof. Let  ,
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Lemma 3. For all  0,1 ,q 0,  the operator ,q

nB  has 

1n  linearly independent moni eigenvectors     ,n

mP x deg 

    ,
n
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Proof. For 0,1,m  the statement is obvious due to  
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By lemma 1 and by letting the coefficients of sx in the left 

equals the coefficients of sx in the right, 1, , 1, s m  and 

arrange, we have: 
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We get a triangular system whose determine equals  

 

 

  

 

  

1
, ,

1 1
1

0 0

0.

1 1




  


 

 
 
  
 

  
 


 

 

 

n nm
m k q m q

m k m
k

i i

i i

 

    

Hence there exists a unique monic polynomial of degree 

2  m n  which is a eigenvector of ,q
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operator, is invertible on 
m-1 . 
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Proof. The statement follows from Formula   (17)   
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Lemma 5. Let  0,1 , 0, q  then for every  0,1 , m  

the operator ,



qB  has an eigenvector  mP x  which is a 

monic polynomial of degree m , corresponding to the 
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Then, 
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The induction is completed and it follows that for any 

polynomial  , 
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(II) Let  0,1 ,f  and let 0  be given. Then   f x  

    ,p x x  where ,p  and   . x We have 
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III. CONCLUSION 

In this paper, iterates properties for q-Bernstein-Stancu 

operators are studied, the result of iterates properties for 

q-Bernstein -Stancu operators is obtained. This study is just a 

small step in this area. To make further progress in this 

direction, one could try to study other properties for 

q-Bernstein-Stancu operators, such as shape-preserving and 

convergence properties to make this area perfected and 

enriched. 
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