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Iterates Properties for gq-Bernstein-Stancu Operators

Yali Wang and Yinying Zhou

Abstract—In 2009, Nowak introduced g-Bernstein-Stancu
polynomials Br‘jv“(f;x). Wheng =0, Bgva(f;x) reduces to the

well-known g-Bernstein polynomials introduced by Phillips in
1997; when =1, Br‘jv“(f;x) reduces to Bernstein-Stancu

polynomials  introduced by Stancu in1968; when
q=1and ¢ =0, we obtain classical Bernstein polynomials. This

paper deals with iterates properties of g-Bernstein-Stancu
operators ann(f,q;x) in the case qe(O,l), o >0, fe(C[O,l],
where both jy > and n—oo .

Index Terms—q-Bernstein-Stancu polynomials, iterates

properties, uniform convergence.

|. INTRODUCTION
Let >0, for each nonnegative integer r, we define the
q-integer[r] as

(1-a7)
[r]=[r], =4 @a) ' * 7"
r, g=1

We then define q - factorial [r]t as

[r]t=[r],t=[r][r-1]...[1].[0]!=1.

We next define a q — binomial coefficient as

[n]in-1]...[n-r-1] _ [n]!

e

For f e (C[071:|7 q>0,a>0and each positive integer n,

we shall investigate the following g-Bernstein-Stancu
operator introduced by Nowak in 2009 [1].

BE< ( £;x) =an(L)B;‘:k (x)f G"ﬂ ®
where
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k-1 n—k-1

5 . i:O(x+oc[i])lj:!(l—qjx+oz[j]) 2
P (X)z{k} i:(1+a[j]) |

Note that empty product in (2) denotes 1.
In this case, when ¢ =0,B%“ ( f;x) reduces to the well-

known g-Bernstein polynomials introduced by Phillips [2]

in1997:
e treen(f)

when =1, B#(f;x) reduces to Bernstein-Stancu
polynomials introduced by Stancu [3] in 1968:

n—k-:

,_.

o

?

+

when q=1, «=0, we obtain the classical Bernstein
polynomials defined by
n—k k
—X fl =
) ( nj

@51

Now, we review and state some general properties of
g-Bernstein-Stancu operators.

It follows directly from the definition that
g-Bernstein-Stancu  operators possess the end-point
interpolation property, i.e.,

B (f;0)=1f(0),B3(f;1)=f(1), g>0, ne ()

and leave invariant linear function, that is
Br?'“(at+b):ax+b g>0, ngc (@)

They are also degree-reducing on polynomials, that is if

7, is a polynomial of degree m, then B (7)) is a
polynomial of degree < min(m,n).
Taking a =0, b=1 in (4), we conclude that
D> Bl (x)=1, neN )
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In 2009, Nowak proved that the g-Bernstein-Stancu
operators can be expressed in terms of g-differences [1]:

n(n] ok, S x+afs]
B (f:x)= f 6
n ( ’X) §|:k:|Aq OS:0 1+a[S]’ ()
where
oo _ [k D {.1. [k]}
Afo=2=0a 2 flO0— ...
[n] [n]" " [n]
Then
qa(f-y)_ " on i M 1 X+0[[i] 7
B (f,x)_kz_(;lk'qf{o,[n],. , n]]_o rali] (7)
where
m._|N M @: 1_i 1_M (8)
s M[nr )L )
Note that
A =43 =1, ©)
and
0<A4.,<] k=01,...,n (10)
at the same time, he still prove that for o< q<1, & >0,
B (L,x)=1,B(t;x) =X, 1)

and

x(1-x)

e

He also proved some other approximation properties [1].

In recent years, g-Bernstein polynomials have been studied
intensively by a number of authors. They investigated
iterates properties of the Bernstein operator from a different
point of view [4]-[6].

We will deal with iterates properties of q-Bernstein-Stancu
operators B) (f,q;x) in the case qe(01), a>0, feC[0.],

where both j — w0 and n—oo in this paper.

B ()=
o

(x(x+a)+

It can be readily seen that for g €(0,1), polynomials Br?lf‘
are non negative on the interval [0,1]. Therefore, we get from

> Bl (x) =1 that
k=0

qe(0,1). (13)

o] -1

363

In this paper we always assume that B on (c[o,1] exists.

We denote the operator of linear interpolation at 0 and 1
by L, i.e.,

L(f;x):=(1-x)f(0)+xf (1)-

Now we give the statement of main results in this paper.
Theoreml. For qe(0,1), >0, let {j }be a sequence of

positive integers such that j —co. Then forany f eC[0,1],

(Bﬁ,q)jnz L(f;x) for xe[0,1] as n—>o0.

I
Lemmal. Let f=t", m>1 then

(Bﬁ'“)(f;x)

PROOF OF THEOREM 1

o X+ali] L X+ali] L x+afi] _—
“al Lo el g ol gy d=mn(mn)
(14)
where
all aiZO(izl,...,j).
ota,+..+a; =1
Besides, for n>m, we have
Cim
o < —= i=1..., m.
[n],
a, :4{‘;’ am—l:/’{’(’-I—)l,q1+[2]+“.+[m_l]'

[n]

Proof. It was already noticed in the introduction
Bg)a(tm;x) is a polynomials of degree min (m,n). The

end-point interpolation property (3) implies that for m>1,
the free term of gi« (tm;x) equals 0. Therefore, (14) is
justified.

1) Representation (7) of g-Bernstein-Stancu polynomials
gives the following values of coefficients in (14)

where Ogﬂ{:)gl are given by  (10) Since for
1

f=t" ¢ {0,—, M} >0, the statement is proved.
[n]"[n]
2) This follows readily from the end-point interpolation
properties (3) if we putx=1in (14).



International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

3) Using (15) and (10) we get m- { } 11 o (e,
_— | ) e
o< f{o,l ..... [']}f_("g'), where é-e[O,Mj
[n]" "[n] il ' [n Lemma 3. For all qe(0,1), «>0, the operator B« has

n+1 linearly independent moni eigenvectors Prgm(x),deg

. ]mi . Prﬁn)(x):m, (m=0....,n), corresponding to the eigenvalues

Ay =2y =1

as required. .
Aoy 1 JEl)
il

m-1

2] _[m-1]
4) The proof see [7]. m1(1+a[]) (1+a[i] [n] H] [1 [n] ]

i=0 i=0

Lemma 2. For all qe(0,1), «>0, the following identity

holds: for
n-llm-—-1 f . m:2,...,n. (17)
BY“ tm; _ X . n-1 ]Br?ia tl;
) G e o) e ):
Proof. For m=0,1, the statement is obvious due to
S j J+ a (+j+l. 16
[](14_["]1)2;[ :|q] [n_l]] lBg—l (t] 1'X)' (16) Br?'“(at+b,q;x):ax+b.
Proof. Let B2 (x) be defined by (2) Then For nzm=2, using lemma 1, we write
m ()
0 (k] B (t",q;x) = X"+ P (X).
B (t";x) = (k] B (x o . mt
(o)-E{ ) e o (veafi)
k-1 n—k-1 i=0
o ([ (k] (x+afi) [T (1-ax+a]s])
=Z£m] (WJL‘} =0 1 where p(" )(x)e A, and ,1 are given by (8).
k=1 1
] (1+afi]) To find an eigenvector pm (X)e 7, of the operator B
0 (Tk m-1 1 k71(X+0[ ])” 1(1 q X+0![S]) we write P(n)_xm+am1 "y lem72+...+a1X and solve a
= [U] {n— } i=0 — linear system in unknown a,..., -
ln]) Lk (L+afi])
(k)1 " s « (un Am -t
(--g'x+a[s]) Bry (X", X" a) = (X" +a, X"+ +ax)

i=0

e oo e L )

e By lemma 1 and by letting the coefficients of x*in the left
equals the coefficients of x*in the right, s=1... m-1, and

nl[m1|:m—1:|£q[k][n—1]Jj](X+a[k])Br?;‘ik (x) arrange, we have:

_k:O =0 i [n—l]
) [n]"" (1+a[n-1]) ) : .
e CUR DL J(xm[k])sqa 0 e
0| ) | k=0 [n—l] n i=0

[n]" (1+a[n —1]) A0, xmt

) e me

j=0
= [ ]m*1(1+a[n—1]) /1(”) .
{ }( [n-1])’ B¢ (t';x)+ sz,T“( ) | Vi X Vo X Vg X
i

iR

m-

" (1+a[n )=

364
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Corollary 1. For 2<m<n, and all ¢¢(0.1), a>0,

(n)
alBr?ra(X):al Oﬂi—q ) the operator ﬂ«,i]n()] a.« Where I is the identity
[1(t+eli]) Y
TT(+ali])
i-0

operator, is invertible on 2 .

Then
20 A0 Lemma 4. For qe(0,1), a>0, the following equality
%arﬂ—l =V +ﬁam4v holds:
H(1+a[|]) | (1+ali])
i=0 i=0 m(m—l)
/’L(n) q 2
A /I(n)z L'_[Q m-1 - =1 :
T, =Via0 tVin218na a8, H(1+a ) (1+a )
0

(1+a[ ) 1_0[(1+a[i]) i=0 =

Proof. The statement follows from Formula (17)

PO 1 [

i=0

= ViptVig@na tVily o oot 5— & lim ——4 -
[1(1+afi) g(lm[]) ] (eali]) [0[(1+a[ )
Then, q(l_qn—l) qZ (1_qn—2) qm—l(l_qn—m+l)
. 1-q 1-q 1-q
lim
D A R U
Vo 7| w2 ' e 1 1 1+ali
[{(+l) [fal) 10+
1 m(m-1)
B = m-1 q 2 :
A 2oy (L+ali)
_Vm— Vin- Zla' + m-3 : T m1 : a'm—Z' i=0
1+ afi l+alfi
l:ol( []) 1._01( []) Lemma 5. Let qe(0,1),a >0, then for every m=0,1...,
the operator B%* has an eigenvector P, (%) which is a
monic polynomial of degree m, corresponding to the
eigenvalue
) 20
Vip = Viglna TVip8np +ooF ﬁ(ﬂlq [])_ m—l( - []) a. ﬂr(nn; (1- l_i
1+ali 1+ali I ——
=0 =0 (l+a[i]) 1-gq+a-aq
i=0
We get a triangular system whose determine equals
Proof. Taking the limit in
m-1 2m 2m m-1 -
[ #0. g (¢ _X,Z;'L' }(q[n l]) 1a (19:%) in(16), as
“| TI @+afi) T1@+afi) ) T )
i=0 i=0
n—oo,
Hence there exists a unique monic polynomial of degree and we note that
2<m<n which is a eigenvector of B®« with the eigenvalue i i ) i
q’[n—1] q’'(1-q)
A0 [ (raln-1) | 1-ava
-
1+ i

365



International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

XZ[T_l}qj[n—l] _M(tJ q; x)
[n]" (1+a[n-1])
—>X§{m 1}—(1_(‘)%' B

tha:x).
1-q+a w’q( a )
Similarly, taking the limit in

m-1

o3 -1 e )

TR R
Rl TS k)
' [n]m‘l(lm[n—l])q 1) l1-qg+a

. _j=0

[n]" (1+afn-1))

m-1

S} oo e e

i=0

%
1-g-«

Taking the limit in  (16) , we have

oeoeig] e

il ) 1-q+a

+ai{m 1}

:I(-l_qq-i_)mjl Ba~ (tj+l; X).
-q+a

n)
Ana

The coefficience of X" in B (tm;x)

m-1

(1+a[ )

equals
¢M-a) A aq™ A
m-2 m—1 ’
120 Tasali) Y] (1+ali)
i=0 i=0
This means
A (-@)g™t A,

m-1 m-2

[T(+ali])

i=0

li“j(lm[i]) 1-g+a-aq

Recursively

/1(”) m m-1
m-1 = :(1_q l m 1
(1+0([ ]) i=1 q+a-— OCq
i=0
We have shown that
l(n) Xm
BY o (t7, 05 x) = 2 ——+ R{" (X), R} (X) € &

[ [(a+efi])

i=0

The statement now follows from considering the equation

Bl (Pm (X)) = M

i (1+a[i])

,m=2,3,...

N

I
o

Corollary 2. For m=>2, and all qe(01),a>0, the

operator
(m)
_fma g

(l+a[ )

i=0

is invertibleon 7, ;.

m

Proof of Theorem 1. Because of (3) it suffices to prove
that (Bgﬂ)(f)g ax+b forsome a and bhas n—oo.

(1) First we consider the case f =x".
We will use induction on m. For m=0,1, the statement is

obvious due to  (4) . Assume that (Bgva(x‘))j”j g€ A for

n)
t=0,1,...,m-1,and IetmlL A(n?)q_Consider
(1+ali])
i=0
B (X™) = ARex" + Ry, (18)
where A(m”)q isgiven by (17)and p!”, e 7 .. Then

(Be(x))" =(A<,;,>q)"" X" +
() e

where | denotes identity operator. It follows from Lemma 4
that

o=
~—
UJ
=)

N
—_
uy]

S a
N
~~—
—
|
-
| I—
—_—
59
RE
LN
~—

m,q

(A(n) )jn —>0as noo.

The expression in the brackets is a linear operator on the
space. 2
Consider the sequence of polynomials in 2 _,

= | (A" e ()" B (B0) | (R)
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Then,
(A -8 )y = (A, )" R - (B3) " B,
It follows from (13) and (18) that Png)l‘<2. Since

A(”)

jﬂ
mq) — 0 as N — oo, we have

(

it can be readily seen from (18) and Lemma 4 that

(

A

m,q

) P20 as n— o,

m(m-1)
P ()18 ()1 2q (e, now
.:o(1+a[])
i.e.
Pnﬂﬂ(x)sz_l(x)+5n(x),

where Q ,e7 . and 5 (x)30 as N —>oo.

Ths, (B2“)" PO} =(B%)" Q,, +(B2)" (5,

),

where H < ||5 || because of (13) . This means

(B2)"

that (an) (5n )3 0. 8 N—>00,
By the induction assumption

(Br?*“)'”Qm_chd eR a N—ow

Therefore, (A,:LI - Br?‘“)yfn”)ljcx+d as N —> o0,
or
(A(n:)l Bq“)y =cx+d +a, (X),

where @ 30 as N—>oo,

By corollary 1, the operator Af;")ql — B} are invertible

on A, for n>=mand

'):ml .

ll_ol(l+a )

where by corollary 2, Aﬁqu

m(m-!

q T2 |—Bqﬂ_Aﬁq,

is also invertible on 7 ;. Hence

367

Al

m,

-1
)qI—Br?"’) —> A, & nNoow,

(

and it follows that

I

Therefore,

Al

m,

-1
)q| —B,?'“) HSM for some M > 0.

@,

)

y = (A | - Bq“) (cx+d)+(A

(AD-B) " (w,)

AR Bq“) — A}, as N —>00, we conclude that

)-

Since <M ||a)n|| —s0as h—w

and (

YWSAL (cx+d)=ax+be 7.
Thus, BJY (X" )3 ax+b.

The induction is completed and it follows that for any
polynomial »

(81)" (i)

(1) Let f eC[0,1], and let £>0 be given. Then f(x)=

L(p;x) forxe[o,1] as N—>c0.

p(X)+5(X), where p e 2, and ||5(x)|| < &.We have

(B)" (1)=(B2)" (p)+(B3)" ().

>
-

Since (B,?'“)j" (p)

CONDET

L(p), there exists N, € N such that

P)H< ¢ forall n>n,.

Obviously, ||8]| < &, and finishlly we obtain

Bo“

a) (£)-L
rl]W)J'n

(
I

(D]=ler)” oL (e)

B 5)H+||§||<3g, forall n >n,.

Thus, H( B )j"

Thus,
n—oo,

~L(f)
)" ()

< (Br?’“)j"(p)—L(p)H+

+6] < 3e,

B

n

forall n>n,.

for as

(Bﬁ'“)j"(f;x);’ L(f;x),

Xe[O,l]

[m]
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In this paper, iterates properties for g-Bernstein-Stancu
operators are studied, the result of iterates properties for
g-Bernstein -Stancu operators is obtained. This study is just a
small step in this area. To make further progress in this
direction, one could try to study other properties for
g-Bernstein-Stancu operators, such as shape-preserving and
convergence properties to make this area perfected and
enriched.

CONCLUSION
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