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Abstract—In this paper, we apply the modified trial equation 

method to fractional partial differential equations. The 

fractional partial differential equation can be converted into the 

nonlinear non-fractional ordinary differential equation by the 

fractional derivative and traveling wave transformation.  So, we 

get some traveling wave solutions to the time-fractional 

Sharma–Tasso–Olever (STO) equation by the using of the 

complete discrimination system for polynomial method. The 

acquired results can be demoted by the soliton solutions, 

single-king solution, rational function solutions and periodic 

solutions.  

 
Index Terms—The modified trial equation method, fractional 

Sharma–Tasso–Olever equation, soliton solution, periodic 

solutions.  

 

I. INTRODUCTION 

In recent years, the fractional differential equations play an 

important role in various applications in physics, biology, 

engineering and control theory. The nonlinear fractional 

partial differential equations represent the mathematical 

modelling of various real life problems. In order to solve 

these problems, a general method cannot be defined even in 

the most useful works. Also, a remarkable progress has been 

become in the construction of the approximate solutions for 

fractional nonlinear partial differential equations [1]-[3]. 

Several powerful methods have been proposed to obtain 

approximate and exact solutions of fractional differential 

equations, such as the Adomian decomposition method [4], 

[5], the homotopy analysis method [6], [7], the homotopy 

perturbation method [8], and so on. The exact solutions of 

these problems, when they exist, are very important in the 

understanding of the nonlinear fractional physical 

phenomena.  

Liu introduced a new approach called the complete 

discrimination system for a polynomial to classify the 

traveling wave solutions as nonlinear evolution equations and 

applied this idea to some nonlinear partial differential 

equations [9]-[11]. Furthermore, some authors [12], [13] 

used the trial equation method proposed by Liu. However, we 

established a new trial equation method to obtain 1-soliton, 

singular soliton, elliptic integral function and Jacobi elliptic 

function solutions or the others to nonlinear partial 

differential equations with generalized evolution in [14]-[16].  

In Section II, we give some useful definitions and 

properties of the fractional calculus and also produce a 
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modified trial equation method for fractional nonlinear 

evolution equations. 

In Section III, as an application, we solve the nonlinear 

fractional partial differential equation such as the 

time-fractional Sharma–Tasso–Olever equation [17], [18] 
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where a  is arbitrary constants and  is a parameter 

describing the order of the fractional time-derivative.  

In this research, we obtain the classification of the wave 

solutions to Eq. (1), and derive some new solutions. Using the 

modified trial equation method, we find some new exact 

solutions of the fractional nonlinear physical problem. The 

purpose of this paper is to obtain exact solutions of nonlinear 

fractional Sharma–Tasso–Olever equation by modified trial 

equation method.  

 

II. PRELIMINARIES 

In this section of the paper, it would be helpful to give 

some definitions and properties of the modified 

Riemann-Liouville derivative. For an introduction to the 

classical fractional calculus we indicate the reader to [1]-[3]. 

Here, we shortly review the modified Riemann-Liouville 

derivative from the recent fractional calculus proposed by 

Jumarie [19]-[21]. Let   1,0:f  be a continuous 

function and  1,0 . The Jumarie modified fractional 

derivative of order   and f  may be defined by expression 

of [22] as follows:  
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In addition to this expression, we may give a summary of 

the fractional modified Riemann-Liouville derivative 

properties as follows:  
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In this paper, a new approach to the trial equation method 

will be given. In order to apply this method to fractional 

nonlinear partial differential equations, we consider the 

Modified Trial Equation Method to the Nonlinear 

Fractional Sharma–Tasso–Olever Equation 
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following steps. 

Step 1. We consider time fractional partial differential 

equation in two variables and a dependent variable u   

  0,,,,, xxxxxxt uuuuDuP                   (4) 

and take the wave transformation 
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where 0 . Substituting Eq. (5) into Eq. (4) yields a 

nonlinear ordinary differential equation 

  0,,,,  uuuuN                      (6) 

Step 2. Take trial equation as follows:  
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and 
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where  uF  and  uG  are polynomials. Substituting above 

relations into Eq. (6) yields an equation of polynomial  u  

of u : 

  001   uuu s

s 
                    (9) 

According to the balance principle, we can get a relation of 

n  and l . We can compute some values of n  and l .  

Step 3. Let the coefficients of  u  all be zero will yield 

an algebraic equations system: 

sii ,,0,0                    (10) 

Solving this system, we will specify the values of 

naa ,,0   and 
lbb ,,0  . 

Step 4. Reduce Eq. (7) to the elementary integral form 

 
 
 

du
uF

uG
 0                       (11) 

Using a complete discrimination system for polynomial to 

classify the roots of  uF , we solve Eq. (11) with the help of 

MATHEMATICA and classify the exact solutions to Eq. (6). 

In addition, we can write the exact traveling wave solutions to 

Eq. (4), respectively.  

 

III. APPLICATION TO THE SHARMA-TASSO-OLEVER 

EQUATION 

In this section, we apply the method developed in Section 

2 to the nonlinear fractional Sharma–Tasso–Olever equation. 

In the case of 1 , Eq. (1) reduces to the classical 

nonlinear Sharma–Tasso–Olever equation. Many researchers 

have tried to get the exact solutions of this equation by using 

a variety of methods [23]-[25].  

Let us consider the travelling wave solutions of Eq. (1), 

and we perform the transformation    ,, utxu   

 








1

t
kx  where ,k  are constants. Then, 

integrating this equation with respect to η and setting the 

integration constant to zero, we get 

3 3 2u ak u aku 3ak u u 0                (12) 

Substituting, Eqs. (7) and (8) into Eq. (12) and using 

balance principle yields 

2 ln  

This resolution procedure is applied and we obtain results 

as follows: 

Case 1: 

If we take 0,l   then 2n ,  

,
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uauaa
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where 02 a , 00 b . Thus, we have a system of algebraic 

equations from the coefficients of polynomial of u . Solving 

the algebraic equation system (10) yields the following: 

Case 1.1 

3 2

0 1
0 1 1 2 0 0 2

0

b ak a
a 0, a a , a , b b ,

k b
        (14) 

Substituting these coefficients into Eq. (6) and (11), we 

have 

   
 du

uaua

b

1

2

2

0

0

                   

 (15) 

Integrating eq. (15), we procure the solution to the Eq. (1) 

as follows: 

 

 

.

1
exp

,

202

0

2

1

3

0

1

1

a
b

taka
kx

b

a

a
txu






























   (16) 

If we take 
00 

 and 121  aa , then the solutions 

(16) can reduce to single king solution, 
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width of the solitons. 
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Fig. 1. Graph of the solution (17) corresponding to the values 5.0,01.0  

and 85.0  from left to right when 

,10 bk  and .25.2a  

Case 1.2: 

2

0 0
0 0 1 2 0 0

0

b ak a
a a , a 0, a , b b ,

k b
       (18) 

Substituting these coefficients into Eq. (6) and (11), we 

have 

   
 du

aua

b

0

2

2

0

0                         (19) 

Integrating eq. (19), we procure the solution to the Eq. (1) 

as follows: 

 
 

2
0 20 0
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2 0 0

a aa a k a t
u x, t tan kx

a b b 1






  
          

(20) 

If we take 00  , then the solutions (20) can reduce to 

periodic solution, 

    2u x, t M tan B x t           (21) 

where 
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B  is the inverse width of the solitons. 
 

   
 

 
Fig. 2. Graph of the solution (21) corresponding to the values 5.0,01.0  

and 85.0   from left to right when 

2,1 200  abak  and 25.2a  

 

Remark 1. If we let the corresponding values for some 

parameters, solution (21) is in full agree with the solution 

(53) mentioned in Ref. [17]. 

Remark 2. The solutions (17) and (21) obtained by using 

the modified trial equation method for Eq. (1) have been 

checked by Mathematica. To our knowledge the rational 

function solution and periodic solution that we find in this 

paper are new traveling wave solutions of Eq. (1). 

Case 2: 

If we take 1l  and 3n , then  
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where 03 a , 01 b . Respectively, solving the algebraic 

equation system (10) yields the following: 

Case 2.1: 

,,,, 1
3

0
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Substituting these coefficients into Eq. (6) and (11), we 

have 

   


 du

auauaua

ubb
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Integrating eq. (25), we procure the solution to the Eq. (1) 

as follows: 
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Also 
1 , 

2 and 
3  are the roots of the polynomial 

equation  
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Substituting the solutions (26) into (11), then we find 

solution 
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If we take 00  , then the solution (30) can reduce to 

rational function solution 
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For simplicity we rewrite for the solution (31) as follows:  
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where  
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Fig. 3. Graph of the solution (32) corresponding to the values 5.0,01.0  

and 85.0   from left to right when 

,11011  bbak   and 25.25a  

 

Remark 3. The solutions (26)–(28) computed in case 2.1 

have been checked by Mathematica. We think that these 

solutions have not been found in the literature of Eq. (1).  

Case 2.2: 
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Substituting these coefficients into Eq. (6) and (11), we 

have 

   


 du

uauaua

ubb
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Integrating eq. (34), we procure the solution to the Eq. (1) 

as follows: 
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where .4 2

231 aaaN   

 

Case 2.3: 
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Substituting these coefficients into Eq. (6) and (11), we 

have 

   


 du

uaua

ubb
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Integrating eq. (37), we procure the solution to the Eq. (1) 

as follows: 
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For a better understanding, we plot solutions (17), (21) and 

(32) of the nonlinear fractional Sharma–Tasso–Olever 

equation in Fig. 1-3, which shows the dynamics of solutions 

with suitable parametric choices. 
 

IV. CONCLUSIONS 

In this paper, the modified trial equation method is studied 

for the nonlinear fractional differential equations. We used it 

to obtain some soliton and rational function solutions to the 

time-fractional nonlinear Sharma–Tasso–Olever equation. 

This method is reliable and effective, and gives several new 

solution functions such as rational function solutions, single 

king solution and periodic solutions. We think that the 

proposed method can also be applied to other generalized 

fractional nonlinear differential equations. In our future 

studies, we will solve nonlinear fractional partial differential 

equations by this approach. It is interesting to point out that 

the fractional derivative parameter α plays an important role 

in modulating the amplitude of the soliton solution. 
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