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Abstract—A parallel algorithm called P-scheme/G is 

proposed for solving recurrence equations on GPGPU systems. 

This is based on P-scheme algorithm that has been originally 

developed for distributed memory multicomputers. In order to 

achieve a high performance computation on GPGPU systems, 

our method alleviates branch divergences by reducing the 

stride data accesses. We also illustrate the effectiveness of the 

optimal thread configuration for the recurrence equation. Our 

experiments with GTX 590 show that the implementation of the 

rearrangement using the shared memory improves the 

performance by 200\% to 300\% and the validity of the policy of 

the thread configuration is confirmed for both the constant and 

the non-constant parameter cases. We achieve the speedup of 

around 400 as a recurrence equation solver with non-constant 

parameters. 

 
Index Terms—CUDA, GPU, multithreading, tridiagonal 

matrix solver.  

 

I. INTRODUCTION 

Recently, the peak performance of GPU (Graphic 

Processing Unit) has increased very much and outperforms 

that of general-purpose processors. Since past GPUs 

consisted of special-purpose hardware, they were used only 

for graphic processing and image processing. However, 

recent GPUs are composed of general-purpose unified 

shaders, so by using CUDA (Compute Unified Device 

Architecture) [1], they are used for general purpose 

processing like numerical calculations as well as graphic 

processing. 

Linear first-order recurrence equations are expressed as 

wi=si×wi-1+ti, but these cannot be parallelized 

straightforwardly by dividing domains because the value of 

wi is determined by using wi-1. The recurrence equations are 

used frequently on many applications like Gauss elimination, 

the tridiagonal matrix solver and DPCM (Differential 

Pulse-Code Modulation) codec, so it is very important to 

implement the recurrence equation solver on GPGPU 

systems in order to achieve a high performance [2]-[5]. Then, 

we modify the parallel algorithm of a recurrence equation 

solver (called “Pscheme”) so that it is suitable for GPGPU 

system and we evaluate the performance comparison of our 

improved method (called “P-scheme/G”) on GPU and CPU. 

Note that P-scheme has been originally developed for 

distributed memory computers by the authors [6]. 

In this paper, we show the effectiveness of the 
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rearrangement of array configurations that improves the 

efficiency of accesses to the global memory by using 

coalesced communications. We also illustrate the 

effectiveness of the optimal thread configuration for the 

recurrence equation with constant parameter and 

non-constant parameter cases. 

The rest of this paper is organized as follows: Section II 

presents the P-scheme algorithm for the recurrence equations 

and Section III summarizes the two optimization methods. 

Section IV presents the experimental method and discusses 

the results and Section V concludes this paper with a 

summary. 

 

II. RECURRENCE EQUATIONS 

The following system is considered: 

0   w C                                   (1) 

 1     1      i i i iw s w t i N         (2) 

P-scheme method is a recurrence equation solver suitable 

for parallel processing [6]-[8]. The P-scheme consists of 

three phases. Here N (the size of array) is assumed to be a 

multiple of P (the number of threads), M is defined as N/P 

and each thread )0( Pkk  is in charge of the 

computation of array element
iw  (k M 1 i (k 1) M)      . 

First of all, wk×M is assumed to be zero. Then (2) is 

calculated and ai=sk×M+1*sk×M+2*...*si is also calculated. This 

phase is called “pre-computation” and it can be carried out 

independently. The computational complexity of the 

pre-computation phase is O(N/P). As mentioned, since wk*M 

is assumed to be zero, wi should be corrected. The element wi 

is corrected by using the relation of wi=wi+ai*wk×M, so the 

elements wM, w2M...w(P-1)M can be corrected with the cost of 

O(P). This phase is called “propagation.” Finally, each thread 

corrects other elements by using the corrected  k Mw  

independently. This phase is called “determination” and the 

complexity of this phase is O(N/P). It should be noted that 

this method can be used for linear recurrence equations as 

well as non-linear recurrence equations. 

The pre-computation and determination phases can be 

completely parallelized. Meanwhile the propagation phase is 

still sequential but the cost of the propagation phase is in 

proportion to the number of threads. Thus the total execution 

time is estimated by O(N/P)+O(P)+O(N/P). It is general that 

O(P) is absolutely less than O(N), because P is supposed to 

be much less than N. 

Although the pre-computation and determination phases 

Evaluation of P-Scheme/G Algorithm for Solving 

Recurrence Equations 

Akiyoshi Wakatani 

311

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

DOI: 10.7763/IJMO.2013.V3.288



  

312

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013  

can be parallelized, the computational complexity is larger 
than the original substitution. Execution times of the original 
substitution and P-scheme on PC (Pentium III (1 GHz), 1 GB 
memory, GCC 4.1.1 with the option of O3) are shown in Fig. 
1. The graph shows that the execution time of P-scheme is 
about twice slower than that of the original substitution. 

 
Fig. 1. Comparison of execution times. 

 
It should be noted here that we consider three cases of si: 

light computation (case L), medium computation (case M) 
and heavy computation (case H). Namely, si in the case L is a 
constant parameter, so no floating point calculations are 
required. However, it is assumed that the calculation of si for 
the case M and case H requires 400 floating point operations 
per data 1000 floating point operations per data, respectively.  

 

III. OPTIMIZATION 

A. Rearrangement of Array Configurations 
As mentioned before, the pre-computation and 

determination phases can be completely parallelized between 
threads, but the array assignment determines whether the 
global memory accesses can be done by the coalesced 
communication or not. On the P-scheme algorithm for 
distributed memory computers, the i-th thread is in charge of 
the computations between wi×(N/P) and w(i+1)×(N/P)-1 when wi is 
distributed into P threads. On GPGPU systems, w0+k, w(N/P)+k, 
w2×(N/P)+k, w3×(N/P)+k, ... are concurrently accessed at the k-th 
step since calculations on GPUs are in principle SIMD 
calculations. However, these are accessed using the 
non-coalesced communication, so the access cost is very 
large. 

 In order to cope with this difficulty, array elements that 
are accessed simultaneously should be rearranged so that 
they are adjacent to each other. 

( )i     0 1,   0 1  × + +′ = ≤ ≤ − ≤ ≤ −P j iw w i s j Pj s×
 

where s = N/P . Namely, this rearrangement is equal to the 
transposition of a sP × two-dimensional array into a Ps ×  
two-dimensional array. 

The computation of the P-scheme utilizes the adjacent data 
(previous data), then the so-called SOA (Structure Of Array) 
transformation works very well [9]. However, our method 
(the rearrangement of array configurations) differs from the 
SOA in the point described later.  

We call the P-scheme method with the rearrangement of 
array configuration P-scheme/G. Note that our 
rearrangement method requires an array with the size of N +P 

instead of N +1. 
Fig. 2 shows a simple SOA (Structure Of Array) 

transformation. At first, thread 0 gets the value of w0 that is 
stored at the location w1-1 while thread 1 get the value of wM 
that is stored at the location wM+1+P×(M-1)-1. This situation 
causes the branch divergence. For the rest of the steps, each 
thread gets the value that is stored at (the current location -P). 
Therefore, the simple SOA results in many branch 
divergences because some calculations of this parallel 
scheme need adjacent data.  

 
Fig. 2. Simple SOA transformation. 

 
However, by duplicating the elements of the last index, the 

branch divergences can be alleviated. As shown in Fig. 3, wi-1 
is always stored at the location wi-P so the program can be 
created easily with less branch divergences. 

 
Fig. 3. Rearrangement of array configurations. 

 
In order to rearrange the array located in the global 

memory, the array should be fetched and stored, but one of 
the memory accesses is non-coalesced communication. But, 
using the shared memory in the intermediate form and 
rearranging the array within the shared memory, both 
memory accesses can be done in a coalesced communication 
way.  

B. Optimal Thread Configurations 
We discuss the optimal combination of G and T when the 

rearrangement of array configurations is used. G is the 
number of thread blocks and T is the number of threads in a 
thread block. 

As shown in previous sections, the execution times of all 
the phases are roughly estimated as follows: 

pre comp α− = ⋅
N
P

                           (3) 

 propagation  β= ⋅ P                          (4) 



  

determination    
N

P
                    (5) 

where  ,  and  are the execution costs per data for the 

pre-computation phase, the propagation phase and the 

determination phase, respectively. 

On our experimental environment, the values of ,  and 

 are measured as follows: 

1.6 : 1.0 : 1.1 (case L)

: : 20.0 : 1.0 : 1.1 (case M)  

91.7 : 1.0 : 1.1 (case H).

  




 



              (6) 

The parallelism is in proportion to P, so, in order to 

achieve the maximum speedup by increasing P, the following 

policy should be applied: 1) G should be maximized first and 

2) the optimal T should be selected. 

By using (3), (4), and (5), the execution time t and the 

optimal parallelism Popt with the minimum execution time are 

determined as follows: 

( )
         

  

 



     


opt

N N
t P

P P

N
P

             (7) 

When N is 106 and the computation of si is light (constant 

case), Popt is around 1643.17, so T should be 128, 64, 32 and 

16 for the cases with the value of G of 16, 32, 64 and 128, 

respectively. Moreover, when N is 106 and the computation 

of si is medium, Popt is around 4593.5, so T should be 256, 

128, 64 and 32 for the cases with the value of G of 16, 32, 64 

and 128, respectively. Finally, when N is 106 and the 

computation of si is heavy, Popt is around 9633.3, so T should 

be 512, 256, 128 and 64 for the cases with the value of G of 

16, 32, 64 and 128, respectively. 

 

IV. EXPERIMENTS AND DISCUSSION 

A. Experimental Environment 

Our experiments are carried out on the GPGPU system that 

consists of Intel Core i7 875K, 8.0 GB memory and GTX 590 

GPU under Yellow Dog Linux and CUDA 4.1. It should be 

noted that the GTX 590 consists of two sets of 16 multi 

processors having 32 cores, but we utilize only one of two 

sets by using one process, so the number of CUDA cores 

used in the experiment is 512. Regarding the CPU, we use 

nvcc compiler for compilation of CPU codes in order to keep 

the fairness of the quality of the optimization. The CPU codes 

do not use multithreading and the SSE extension. 

In order to evaluate our approach on the GPGPU system, 

we focus on the linear recurrence equation shown in (1) and 

(2) and we construct G thread blocks having T threads and 

execute them in parallel on GPUs, that is, the total number of 

threads is GTP  . 

The elements of arrays are fetched from the global memory 

to registers of cores and the results are directly stored to the 

global memory, so the shared memory is not used because no 

data is repeatedly used in our method. Thus, the usage of the 

shared memory does not affect the performance very much. 

Therefore we do not care the bank conflict of the shared 

memory. The global synchronization is implemented by 

invoking individual kernels. Since our method consists of 

three phases, only two global synchronizations are required 

between the phases. So, since the overhead of the 

synchronization is quite small, the usage of plural kernels 

does not affect the total performance. 

B. Effectiveness of the Rearrangement of Array 

Configurations 

In order to illustrate the effectiveness of the rearrangement 

of array configurations, Fig. 4 shows the speedups with and 

without the rearrangement when N is 256K and the number 

of thread blocks (G) is 32. The speedup is the ratio of elapsed 

times of CPU computation and GPU computation. The GPU1 

shows the speedup without the rearrangement and the GPU2 

shows that with the rearrangement. When the computation of 

si is medium (case M), the maximum speedup is achieved at T 

of 128 and the result of the GPU2 is 1.45 (=92.91/63.68) 

times larger than the GPU1. Moreover, when the 

computation of si is heavy (case H), the maximum speedup is 

achieved at T of 64 and the result of the GPU2 is 1.23 

(=233.58/189.87) times larger than the GPU1. Therefore, 

since the effectiveness of the rearrangement of array 

configurations is obviously confirmed, we only consider the 

cases with the rearrangement hereafter. 

 
Fig. 4. Effectiveness of the rearrangement of array configurations. 

 

In addition to the rearrangement, we consider the overhead 

of matrix transposition, by which the rearrangement of array 

configurations is implemented. The matrix transposition can 

be simply implemented by using the memory accesses within 

the global memory, but its memory access cost is large 

because half of the memory accesses are non-coalesced 

communication. In order to alleviate the memory access cost, 

we should utilize the shared memory and all the memory 

accesses to the global memory can be done in the coalesced 

communication. First of all, the matrix is divided into the sub 

matrix with the size of 3232 and the sub matrix is fetched 

into the shared memory by using the coalesced 

communication in a row orientation. Then, the sub matrix is 

fetched from the shared memory in a column orientation and 

it is stored in the global memory by using the coalesced 

communication. 

 

TABLE I: ELAPSED TIME OF THE REARRANGEMENT OF ARRAY 

CONFIGURATIONS 

 Without the shared mem. With the shared mem. 

N=256K 0.33 ms 0.11 ms 

N=1M 0.751 ms 0.376 ms 
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It should be noted that the size of the sub matrix is limited 

by the size of the shared memory. The elapsed times of the 

matrix transposition with the value of N of 310256 and 106 

are shown in Table I. As shown in the table, by using the 

shared memory, the rearrangement can be carried out two to 

three times faster than that without the shared memory. 

C. Effectiveness of the Optimal Thread Configurations 

1) Light computation case: When si is the light 

computation case (constant case), Fig. 5 shows the speedups 

for several combinations of G and T. As described in the 

previous section, the best speedup can be achieved at 

TG of about 2048. For example, the best speedup of 7.1 is 

achieved at T of 32 when G is 64, and the best speedup of 

6.84 is achieved at T of 16 when G is 128. So, the validity of 

the estimation of the optimal number of threads is confirmed 

when the parameter of the recurrence equation is constant. 

 
Fig. 5. Results in the case L. 

 

2) Medium and heavy computation cases: When si is 

non-constant cases (the case M and the case H), Fig. 6 and 

Fig. 7 show the speedups for several combinations of G and 

T. 

 
Fig. 6. Results in the case M. 

 

As described in the previous section, when the parameter 

calculation is medium (the number of single precision 

multiplications and divisions is 200 each), 

1.1:0.1:0.20::  , so Popt is N582.4 according to (7). 

Thus, when N = 106, Popt is calculated as 4691.9.  

As shown in the figure, whatever the value of G is, the best 

speedup is achieved at )( TGP   of 4096. However, when G 

= 128, the effectiveness of the parallelism is slightly 

degraded and then the value of the speedup is smaller than 

others. 

The value of the speedups for the case M (around 183) is 

larger than that for the case L (around 7), because the 

principal term of the elapsed time is the floating point 

operations instead of the global memory accesses and so the 

effectiveness of the parallelization is enhanced. 

 
Fig. 7. Results in the case H. 

 

Moreover, when the parameter calculation is large (the 

number of single precision multiplications and divisions is 

500 each), 1.1:0.1:0.91::  , so Popt is N633.9  

according to (7). Thus, when N = 106, Popt is calculated as 

9864.5. 

As shown in the figure, whatever the value of G is, the best 

speedup is achieved at )( TGP   of 9192. As well as the case 

M, the larger G is, the smaller the value of the speedup is. The 

value of the speedups for the case H (over 370) is much larger 

than the other cases because the main part of the elapsed time 

is the parameter calculation and so the effectiveness of the 

parallelism is determined by the number of active cores. We 

achieve the speedup of up to 400 for this case on GTX 590 

GPU. 

 

V. CONCLUSION 

We implemented a parallel recurrence equation solver on 

GPGPU systems by using CUDA and evaluated the 

effectiveness of the rearrangement of array configuration in 

order to utilize the coalesced communication. We also 

proposed a policy to decide the optimal number of threads per 

thread block and the optimal number of thread blocks in 

order to maximize the efficiency of parallelism and 

empirically confirmed the validity of the policy by our 

experiments. Then we achieve the speedup of around 400 by 

using two optimization methods. In the near future, we will 

implement a non-linear recurrence equation on GPGPU in 

order to solve the tridiagonal matrix equations by using the 

Thomas method. We will also try to implement our approach 

using OpenCL that recently attracts a lot of attention and 

evaluate it on other accelerators.  
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