



Abstract—A parallel algorithm called P-scheme/G is

proposed for solving recurrence equations on GPGPU systems.

This is based on P-scheme algorithm that has been originally

developed for distributed memory multicomputers. In order to

achieve a high performance computation on GPGPU systems,

our method alleviates branch divergences by reducing the

stride data accesses. We also illustrate the effectiveness of the

optimal thread configuration for the recurrence equation. Our

experiments with GTX 590 show that the implementation of the

rearrangement using the shared memory improves the

performance by 200\% to 300\% and the validity of the policy of

the thread configuration is confirmed for both the constant and

the non-constant parameter cases. We achieve the speedup of

around 400 as a recurrence equation solver with non-constant

parameters.

Index Terms—CUDA, GPU, multithreading, tridiagonal

matrix solver.

I. INTRODUCTION

Recently, the peak performance of GPU (Graphic

Processing Unit) has increased very much and outperforms

that of general-purpose processors. Since past GPUs

consisted of special-purpose hardware, they were used only

for graphic processing and image processing. However,

recent GPUs are composed of general-purpose unified

shaders, so by using CUDA (Compute Unified Device

Architecture) [1], they are used for general purpose

processing like numerical calculations as well as graphic

processing.

Linear first-order recurrence equations are expressed as

wi=si×wi-1+ti, but these cannot be parallelized

straightforwardly by dividing domains because the value of

wi is determined by using wi-1. The recurrence equations are

used frequently on many applications like Gauss elimination,

the tridiagonal matrix solver and DPCM (Differential

Pulse-Code Modulation) codec, so it is very important to

implement the recurrence equation solver on GPGPU

systems in order to achieve a high performance [2]-[5]. Then,

we modify the parallel algorithm of a recurrence equation

solver (called “Pscheme”) so that it is suitable for GPGPU

system and we evaluate the performance comparison of our

improved method (called “P-scheme/G”) on GPU and CPU.

Note that P-scheme has been originally developed for

distributed memory computers by the authors [6].

In this paper, we show the effectiveness of the

Manuscript received February 20, 2013; revised June 22, 2013. This work

was supported in part by MEXT, Japan.

Akiyoshi Wakatani is with Faculty of Intelligence and Informatics, Konan

University, Kobe, Japan (e-mail: wakatani@konan-u.ac.jp).

rearrangement of array configurations that improves the

efficiency of accesses to the global memory by using

coalesced communications. We also illustrate the

effectiveness of the optimal thread configuration for the

recurrence equation with constant parameter and

non-constant parameter cases.

The rest of this paper is organized as follows: Section II

presents the P-scheme algorithm for the recurrence equations

and Section III summarizes the two optimization methods.

Section IV presents the experimental method and discusses

the results and Section V concludes this paper with a

summary.

II. RECURRENCE EQUATIONS

The following system is considered:

0 w C (1)

 1 1     i i i iw s w t i N (2)

P-scheme method is a recurrence equation solver suitable

for parallel processing [6]-[8]. The P-scheme consists of

three phases. Here N (the size of array) is assumed to be a

multiple of P (the number of threads), M is defined as N/P

and each thread)0(Pkk  is in charge of the

computation of array element
iw (k M 1 i (k 1) M)      .

First of all, wk×M is assumed to be zero. Then (2) is

calculated and ai=sk×M+1*sk×M+2*...*si is also calculated. This

phase is called “pre-computation” and it can be carried out

independently. The computational complexity of the

pre-computation phase is O(N/P). As mentioned, since wk*M

is assumed to be zero, wi should be corrected. The element wi

is corrected by using the relation of wi=wi+ai*wk×M, so the

elements wM, w2M...w(P-1)M can be corrected with the cost of

O(P). This phase is called “propagation.” Finally, each thread

corrects other elements by using the corrected k Mw

independently. This phase is called “determination” and the

complexity of this phase is O(N/P). It should be noted that

this method can be used for linear recurrence equations as

well as non-linear recurrence equations.

The pre-computation and determination phases can be

completely parallelized. Meanwhile the propagation phase is

still sequential but the cost of the propagation phase is in

proportion to the number of threads. Thus the total execution

time is estimated by O(N/P)+O(P)+O(N/P). It is general that

O(P) is absolutely less than O(N), because P is supposed to

be much less than N.

Although the pre-computation and determination phases

Evaluation of P-Scheme/G Algorithm for Solving

Recurrence Equations

Akiyoshi Wakatani

311

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

DOI: 10.7763/IJMO.2013.V3.288

312

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

can be parallelized, the computational complexity is larger
than the original substitution. Execution times of the original
substitution and P-scheme on PC (Pentium III (1 GHz), 1 GB
memory, GCC 4.1.1 with the option of O3) are shown in Fig.
1. The graph shows that the execution time of P-scheme is
about twice slower than that of the original substitution.

Fig. 1. Comparison of execution times.

It should be noted here that we consider three cases of si:

light computation (case L), medium computation (case M)
and heavy computation (case H). Namely, si in the case L is a
constant parameter, so no floating point calculations are
required. However, it is assumed that the calculation of si for
the case M and case H requires 400 floating point operations
per data 1000 floating point operations per data, respectively.

III. OPTIMIZATION

A. Rearrangement of Array Configurations
As mentioned before, the pre-computation and

determination phases can be completely parallelized between
threads, but the array assignment determines whether the
global memory accesses can be done by the coalesced
communication or not. On the P-scheme algorithm for
distributed memory computers, the i-th thread is in charge of
the computations between wi×(N/P) and w(i+1)×(N/P)-1 when wi is
distributed into P threads. On GPGPU systems, w0+k, w(N/P)+k,
w2×(N/P)+k, w3×(N/P)+k, ... are concurrently accessed at the k-th
step since calculations on GPUs are in principle SIMD
calculations. However, these are accessed using the
non-coalesced communication, so the access cost is very
large.

 In order to cope with this difficulty, array elements that
are accessed simultaneously should be rearranged so that
they are adjacent to each other.

()i 0 1, 0 1 × + +′ = ≤ ≤ − ≤ ≤ −P j iw w i s j Pj s×

where s = N/P . Namely, this rearrangement is equal to the
transposition of a sP × two-dimensional array into a Ps ×
two-dimensional array.

The computation of the P-scheme utilizes the adjacent data
(previous data), then the so-called SOA (Structure Of Array)
transformation works very well [9]. However, our method
(the rearrangement of array configurations) differs from the
SOA in the point described later.

We call the P-scheme method with the rearrangement of
array configuration P-scheme/G. Note that our
rearrangement method requires an array with the size of N +P

instead of N +1.
Fig. 2 shows a simple SOA (Structure Of Array)

transformation. At first, thread 0 gets the value of w0 that is
stored at the location w1-1 while thread 1 get the value of wM
that is stored at the location wM+1+P×(M-1)-1. This situation
causes the branch divergence. For the rest of the steps, each
thread gets the value that is stored at (the current location -P).
Therefore, the simple SOA results in many branch
divergences because some calculations of this parallel
scheme need adjacent data.

Fig. 2. Simple SOA transformation.

However, by duplicating the elements of the last index, the

branch divergences can be alleviated. As shown in Fig. 3, wi-1
is always stored at the location wi-P so the program can be
created easily with less branch divergences.

Fig. 3. Rearrangement of array configurations.

In order to rearrange the array located in the global

memory, the array should be fetched and stored, but one of
the memory accesses is non-coalesced communication. But,
using the shared memory in the intermediate form and
rearranging the array within the shared memory, both
memory accesses can be done in a coalesced communication
way.

B. Optimal Thread Configurations
We discuss the optimal combination of G and T when the

rearrangement of array configurations is used. G is the
number of thread blocks and T is the number of threads in a
thread block.

As shown in previous sections, the execution times of all
the phases are roughly estimated as follows:

pre comp α− = ⋅
N
P

 (3)

 propagation β= ⋅ P (4)

determination  
N

P
 (5)

where  ,  and  are the execution costs per data for the

pre-computation phase, the propagation phase and the

determination phase, respectively.

On our experimental environment, the values of ,  and

 are measured as follows:

1.6 : 1.0 : 1.1 (case L)

: : 20.0 : 1.0 : 1.1 (case M)

91.7 : 1.0 : 1.1 (case H).

  




 



 (6)

The parallelism is in proportion to P, so, in order to

achieve the maximum speedup by increasing P, the following

policy should be applied: 1) G should be maximized first and

2) the optimal T should be selected.

By using (3), (4), and (5), the execution time t and the

optimal parallelism Popt with the minimum execution time are

determined as follows:

()

  

 



     


opt

N N
t P

P P

N
P

 (7)

When N is 106 and the computation of si is light (constant

case), Popt is around 1643.17, so T should be 128, 64, 32 and

16 for the cases with the value of G of 16, 32, 64 and 128,

respectively. Moreover, when N is 106 and the computation

of si is medium, Popt is around 4593.5, so T should be 256,

128, 64 and 32 for the cases with the value of G of 16, 32, 64

and 128, respectively. Finally, when N is 106 and the

computation of si is heavy, Popt is around 9633.3, so T should

be 512, 256, 128 and 64 for the cases with the value of G of

16, 32, 64 and 128, respectively.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Environment

Our experiments are carried out on the GPGPU system that

consists of Intel Core i7 875K, 8.0 GB memory and GTX 590

GPU under Yellow Dog Linux and CUDA 4.1. It should be

noted that the GTX 590 consists of two sets of 16 multi

processors having 32 cores, but we utilize only one of two

sets by using one process, so the number of CUDA cores

used in the experiment is 512. Regarding the CPU, we use

nvcc compiler for compilation of CPU codes in order to keep

the fairness of the quality of the optimization. The CPU codes

do not use multithreading and the SSE extension.

In order to evaluate our approach on the GPGPU system,

we focus on the linear recurrence equation shown in (1) and

(2) and we construct G thread blocks having T threads and

execute them in parallel on GPUs, that is, the total number of

threads is GTP  .

The elements of arrays are fetched from the global memory

to registers of cores and the results are directly stored to the

global memory, so the shared memory is not used because no

data is repeatedly used in our method. Thus, the usage of the

shared memory does not affect the performance very much.

Therefore we do not care the bank conflict of the shared

memory. The global synchronization is implemented by

invoking individual kernels. Since our method consists of

three phases, only two global synchronizations are required

between the phases. So, since the overhead of the

synchronization is quite small, the usage of plural kernels

does not affect the total performance.

B. Effectiveness of the Rearrangement of Array

Configurations

In order to illustrate the effectiveness of the rearrangement

of array configurations, Fig. 4 shows the speedups with and

without the rearrangement when N is 256K and the number

of thread blocks (G) is 32. The speedup is the ratio of elapsed

times of CPU computation and GPU computation. The GPU1

shows the speedup without the rearrangement and the GPU2

shows that with the rearrangement. When the computation of

si is medium (case M), the maximum speedup is achieved at T

of 128 and the result of the GPU2 is 1.45 (=92.91/63.68)

times larger than the GPU1. Moreover, when the

computation of si is heavy (case H), the maximum speedup is

achieved at T of 64 and the result of the GPU2 is 1.23

(=233.58/189.87) times larger than the GPU1. Therefore,

since the effectiveness of the rearrangement of array

configurations is obviously confirmed, we only consider the

cases with the rearrangement hereafter.

Fig. 4. Effectiveness of the rearrangement of array configurations.

In addition to the rearrangement, we consider the overhead

of matrix transposition, by which the rearrangement of array

configurations is implemented. The matrix transposition can

be simply implemented by using the memory accesses within

the global memory, but its memory access cost is large

because half of the memory accesses are non-coalesced

communication. In order to alleviate the memory access cost,

we should utilize the shared memory and all the memory

accesses to the global memory can be done in the coalesced

communication. First of all, the matrix is divided into the sub

matrix with the size of 3232 and the sub matrix is fetched

into the shared memory by using the coalesced

communication in a row orientation. Then, the sub matrix is

fetched from the shared memory in a column orientation and

it is stored in the global memory by using the coalesced

communication.

TABLE I: ELAPSED TIME OF THE REARRANGEMENT OF ARRAY

CONFIGURATIONS

 Without the shared mem. With the shared mem.

N=256K 0.33 ms 0.11 ms

N=1M 0.751 ms 0.376 ms

313

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

It should be noted that the size of the sub matrix is limited

by the size of the shared memory. The elapsed times of the

matrix transposition with the value of N of 310256 and 106

are shown in Table I. As shown in the table, by using the

shared memory, the rearrangement can be carried out two to

three times faster than that without the shared memory.

C. Effectiveness of the Optimal Thread Configurations

1) Light computation case: When si is the light

computation case (constant case), Fig. 5 shows the speedups

for several combinations of G and T. As described in the

previous section, the best speedup can be achieved at

TG of about 2048. For example, the best speedup of 7.1 is

achieved at T of 32 when G is 64, and the best speedup of

6.84 is achieved at T of 16 when G is 128. So, the validity of

the estimation of the optimal number of threads is confirmed

when the parameter of the recurrence equation is constant.

Fig. 5. Results in the case L.

2) Medium and heavy computation cases: When si is

non-constant cases (the case M and the case H), Fig. 6 and

Fig. 7 show the speedups for several combinations of G and

T.

Fig. 6. Results in the case M.

As described in the previous section, when the parameter

calculation is medium (the number of single precision

multiplications and divisions is 200 each),

1.1:0.1:0.20::  , so Popt is N582.4 according to (7).

Thus, when N = 106, Popt is calculated as 4691.9.

As shown in the figure, whatever the value of G is, the best

speedup is achieved at)(TGP  of 4096. However, when G

= 128, the effectiveness of the parallelism is slightly

degraded and then the value of the speedup is smaller than

others.

The value of the speedups for the case M (around 183) is

larger than that for the case L (around 7), because the

principal term of the elapsed time is the floating point

operations instead of the global memory accesses and so the

effectiveness of the parallelization is enhanced.

Fig. 7. Results in the case H.

Moreover, when the parameter calculation is large (the

number of single precision multiplications and divisions is

500 each), 1.1:0.1:0.91::  , so Popt is N633.9

according to (7). Thus, when N = 106, Popt is calculated as

9864.5.

As shown in the figure, whatever the value of G is, the best

speedup is achieved at)(TGP  of 9192. As well as the case

M, the larger G is, the smaller the value of the speedup is. The

value of the speedups for the case H (over 370) is much larger

than the other cases because the main part of the elapsed time

is the parameter calculation and so the effectiveness of the

parallelism is determined by the number of active cores. We

achieve the speedup of up to 400 for this case on GTX 590

GPU.

V. CONCLUSION

We implemented a parallel recurrence equation solver on

GPGPU systems by using CUDA and evaluated the

effectiveness of the rearrangement of array configuration in

order to utilize the coalesced communication. We also

proposed a policy to decide the optimal number of threads per

thread block and the optimal number of thread blocks in

order to maximize the efficiency of parallelism and

empirically confirmed the validity of the policy by our

experiments. Then we achieve the speedup of around 400 by

using two optimization methods. In the near future, we will

implement a non-linear recurrence equation on GPGPU in

order to solve the tridiagonal matrix equations by using the

Thomas method. We will also try to implement our approach

using OpenCL that recently attracts a lot of attention and

evaluate it on other accelerators.

REFERENCES

[1] D. Kirk and W. Hwu, Programming Massively Parallel Processors: A

Hands-on Approach, Massachusetts: Morgan Kaufmann, 2010.

[2] Y. Zhang, L. Cohen, and J. D. Owens, “Fast tridiagonal solvers on the

GPU,” in Proc. PPoPP 2010, Bangalore, 2010, pp. 10.

[3] D. Goddeke and R. Strzodka, “Cyclic reduction tridiagonal solvers on

GPUs applied to mixed precision multigrid,” IEEE Trans. on Parallel

and Distributed Systems, vol. 22, pp. 22-32, 2011.

[4] D. Lee and W. Sung, “Multi-core and SIMD architecture based

implementation of recursive digital filtering algorithms,” in Proc.

ICASSP 2010, Dallas, 2010, pp. 1550-1553.

[5] E. Dekker and L. Dekker, “Parallel minimal norm method for

tridiagonal linear systems,” IEEE Trans. on Computer, vol. 44, pp.

942-946, 1995.

[6] A. Wakatani, “A parallel and scalable algorithm for ADI method with

pre-propagation and message vectorization,” Parallel Computing, vol.

30, pp. 1345-1359, 2004.

314

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

315

International Journal of Modeling and Optimization, Vol. 3, No. 4, August 2013

[7] A. Wakatani, “A parallel scheme for solving a tridiagonal matrix with

pre-propagation,” in Proc. 10th Euro PVM/MPI Conference, Venice,

2003, pp. 222-226.

[8] A. Wakatani, “A parallel and scalable algorithm for calculating linear

and non-linear recurrence equations,” in Proc. Int’l Conf. Parallel and

Distributed Computing and Networks, Las Vegas, 2004, pp. 446-451.

[9] J. A. Stratton et al., “Algorithm and data optimization techniques for

scaling to massively threaded systems,” IEEE Computer, vol. 45, no. 8,

pp. 26-32, 2012.

Akiyoshi Wakatani was born in Osaka City, Osaka

Pref., Japan, on February 3, 1962. He received the B.

Eng. degree from the Department of Applied

Mathematics and Physics, Faculty of Engineering,

Kyoto University, Kyoto, Japan, in 1984. He received

the M. Eng. degree from the Division of Applied

Systems Science, Faculty of Engineering, Kyoto

University in 1986. He also received the Dr. Eng.

degree from the Division of Information Engineering, Faculty of

Engineering, Kyoto University in 1996.

He was with Matsushita Electric Industrial (currently Panasonic) from

1986 to 2000, as a researcher and a senior researcher. From 1992 to 1994,

he was a visiting scholar of Oregon Graduate Institute of Science and

Technology, OR, USA. From 2000 to 2006, he was an associate professor

of Department of Information Science and Systems Engineering, Faculty of

Science and Engineering, Konan University. From 2006 to 2008, he was a

Full Professor of the same department in the same university. Since 2008,

he has been a Full Professor of Department of Intelligence and Informatics,

Faculty of Intelligence and Informatics, Konan University, Kobe, Japan.

His research interests include parallel processing and parallel architecture.

Prof. Wakatani is a member of the IEEE, the Information Processing

Society of Japan, and the IEICE of Japan.

