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Abstract— Aytar, Mammadov and Pehlivan have introduced 

the concepts of statistical limit inferior and limit superior for 

sequences of fuzzy numbers. In this paper, we define 

lamda-statistical limit inferior and limit superior for sequences 

of fuzzy numbers. Also we will discuss the relations among  ̧

lambda-statistical limit inferior and limit superior for 

sequences of fuzzy numbers 

 

Index Terms—Fuzzy number, lambda-statistical limit 

inferior, lambda-statistical limit superior. 

 

I. INTRODUCTION 

The idea of statistical convergence of a sequence was 

introduced by Steinhaus [1] and Fast [2]. Statistical 

convergence was generalized by Buck [3]. 

Matloka [4] was defined bounded and convergent 

sequences of fuzzy numbers, also showed that every 

convergent sequence is bounded. Later, Nanda [5] studied the 

spaces of bounded and convergent sequences of fuzzy 

numbers and shoved that these are complete metric spaces. 

Then, Nuray and Savas [6] have extended and also discussed 

the concepts of statistically convergent and statistically 

Cauchy sequences of fuzzy numbers. Lambda-statistically 

Cauchy sequences of fuzzy numbers have been introduced by 

Tuncer and Benli [7]. Also, Tuncer and Benli [8] have 

defined lambda-statistical limit and lambda-statistical cluster 

points of a sequence of fuzzy numbers and the concepts of 

lambda-statistically monotonic and lambda-statistically 

bounded sequences of fuzzy numbers have been given in [9]. 

Recently, sup and inf notions have been given only for 

bounded sets of fuzzy numbers ( [10] and [11] ). Then in [12] 

Aytar, Mamedov and Pehlivan have introduced the concepts 

of statistical limit inferior and limit superior for statistically 

bounded sequences of fuzzy numbers. 

In this paper we will define lamda-statistical limit inferior 

and limit superior for sequences of fuzzy numbers, then we 

will prove that some results established for sequences of real 

numbers [13] are also valid for sequences of fuzzy numbers. 

Shortly, we recall some of the basic notations in the theory 

of fuzzy numbers. 

Let D  denote the set of all closed bounded intervals 

],[ AAA  on the real line R . For DBA ,  define  

                    

                   BAandBABA  , 
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                      BABABAd  ,max,  

It is easy to see that d  defines a metric on D  and ),( Dd  

is a complete metric space. Also   is a partial order in D . 

A fuzzy number is a fuzzy subset of real line R which is 

bounded, convex and normal. Let )(RL  denote the set of all 

fuzzy numbers which are upper semicontinuous and have 

compact support. In other words, if )(RLX , then for any 

]1,0[ , X  is compact, where 

  




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
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.00)(:
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Define  a map     RRLRLd :  by  

 

 
 

),(sup,
1,0





YXdYXd


 . 

It is known that ( [14] ) )(RL  is a complete metric space 

with the metric .d  

For )(, RLYX   define YX   if and only if  YX   

for any ]1,0[ . 

The fuzzy numbers X  and Y are said to be incomparable 

if neither YX   nor XY  . We use the notation YX ~  in 

this case. 

For every )(,, RLZYX  , we say that Z is the sum of 

X  and Y , written YXZ  , if for every ]1,0[ , 


YXZ   and 


YXZ  . 

Consider a fuzzy number )(RL . Let 

],,[
   ]1,0[ , be  - level sets of  . Given a 

positive number 0a , we define the fuzzy numbers 1a  

and 1a  as follows [15] 

,],[],[],[)( 1 aaaaa 
   

,],[],[],[)( 1 aaaaa 
   

where 



 


.,0

,1
)(1

otherwise

ax
xa  

 

Clearly 1a , )(1 RLa  . In addition, we have 

11 aa    and .),(),( 11 aadad    
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A sequence  kXX   of fuzzy numbers is said to be 

bounded if the set  NkX k :  of fuzzy numbers is bounded. 

Definition 1.1. The sequence  kXX   is said to be 

convergent to the fuzzy number  0X , written as 

0lim XX kk   [6], if for every 0  there exists a positive 

integer )(0 nn  such that 

  0, XXd k for every 0nk  . 

 

If K is a subset of positive integers N , then nK  denotes 

the set  .: nkKk   The natural density of K is given by 

n

K
K

n

n 
 lim)( , where nK denotes the number of 

elements in nK . Clearly, finite subsets have zero natural 

density and )(1)( KK c   where, KNK c  is the 

complement of K . If ,21 KK   Then )()( 21 KK   (see 

[16] ). For a sequence of real numbers  kxx  , the notions 

of statistical limit superior and limit inferior are defined as 

follows [13]; 

 










otherwise

BB
xst

xx

,

,sup
suplim


 










otherwise

AA
xst

xx

,

,inf
inflim


 

where   0):(:  axNkRaA kx  and 

  .0):(:  bxNkRbB kx   

 

Definition 1.2. The sequence of fuzzy numbers  kXX   

is statistically convergent to 0X  if the set 

  ),(: 0XXdNk k  has natural density zero for every 

0 . We will use the notation 0lim XXst k   as in [6]. 

The sequence  kXX  is said to be statistically bounded 

from above if there exists a fuzzy number  ( called the 

statistical upper bound) such that 

     0:: ~    kk XNkXNk   

The statistical lower bound can be defined similarly. 

If the sequence  kXX   is both statistically bounded 

from above and statistically bounded from below then it is 

called statistically bounded [17]. 

Definition 1.3. ( [18] ) Let  nnI nn ,1   ,  n   

be a non-decreasing sequence of positive numbers tending to 

 , 1,1 11   nn and  kXX   be a sequence of 

fuzzy numbers. A sequence  kXX   of fuzzy number is 

said to be  -statistically convergent or s -convergent to 

fuzzy numbers 0X , written as 0lim XXs k   if for every 

0  

   0,:
1

lim 0  


XXdIk kn
n

n
 or 

     0,: 0   XXdIk kn  

 
The sequence  kXX  is said to be  -statistically 

bounded from above if there exists a fuzzy number M ( 

called the  -statistical upper bound) such that 

     0:: ~   MXIkMXIk knkn   

The  -statistical lower bound can be defined similarly. 

If the sequence  kXX   is both  -statistically bounded 

from above and  -statistically bounded from below then it is 

called  -statistically bounded [9]. 

 

II. LAMBDA STATISTICAL LIMIT INFERIOR AND LIMIT 

SUPERIOR FOR SEQUENCES OF FUZZY NUMBERS 

In this section, we introduce the concepts of 

 -statistically limit superior and limit inferior for 

 -statistically bounded sequences of fuzzy numbers. Given 

a sequence  kXX   let us define: 

   








 0:
1

lim: MXIkRLMA kn
n

n
X



  

   








 1:
1

lim: MXIkRLMA kn
n

n
X



  

   








 0:
1

lim: MXIkRLMB kn
n

n
X



  

   








 1:
1

lim: MXIkRLMB kn
n

n
X



 . 

 

The sets 

XA  and 


XB  are the sets of   -statistical lower 

bound and  -statistical upper bounds, respectively. 

Theorem 2.1. If the sequence  kXX   is  -statistically 

bounded, then 

XX AA supinf  and 

XX BB infsup  . 

Proof.  We will prove the first equality. Let 

XAm inf  

and 
XAM sup . By definition of 


XA  and 

XA  we have 

mm ~  for 

XAm ~  and MM

~
  for 

XAM
~

. 

For every 
XAm~  and 

XAM
~

, we have 

  0~:
1

lim  mXIk kn
n

n 
  and 

  1
~

:
1

lim  MXIk kn
n

n 
. This means that 

     0
~

:~:  MXIkmXIk knkn  . In other 

words , there is a number nIk   such that mXM k
~~

 . 

Therefore,  
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mM ~~
  for all 


XAm~ , 

XAM
~

            (2.1) 

From (2.1), it follows that M
~

is a lower bound of the set 


XA .Then by definition of infimum we have 
XAmM inf

~
  

This inequality holds for all 
XAM

~
. Then by definition of 

supremum we have        

                mM                         (2.2) 

Now we show that the case mM   cannot be place. 

To the contrary, assume that mM  . This means that 

there is a number  1,0  such that  mM    or  

 mM  . For 

The sake of definiteness we will consider the case 

            mM                             (2.3) 

 

and then we will show that this leads to a contradiction. 

Denote  Mmb  . It is clear that b  ( b can be zero). 

Moreover, for all   ,b  the inequality  mM  holds. 

Since the functions  xM  and  xm  are upper 

semi-continuous then there exists a point  ,z  such that 

  mMz , ,   ,b  and  

 

zM  ,  zm      for all    ,               (2.4) 

Let us define the fuzzy numbers 1  and 2  as 

 

   























zx

zx

zXx

Xx

x

,0

,1

,,

,0

0

0

1


          






























0

0

0

2

,0

,1

,,

,0

Xx

Xx

Xzx

zx

x



  

 

where the numbers  

1inflim 00  kXsX   and 

1suplim 00  kXsX  arefinite. It is not difficult to observe 

that 

    

      21 ~~ ,   mM                      (2.5) 

 

This follows from  
  1

00infliminflim  XXsXsM kk
, 

 1 zM  and bb zMm 2
  ,     2 zm . 

Now let us consider the sets 

   ,,:1  someforzXIkC kn  

   ,,:2  someforzXIkC kn . 

Clearly nICC 21  and therefore, 

    121  CC                         (2.6) 

First we assume that   01 C . Taking in to account the 

structure of the fuzzy number 2  and the real number 
0X , 

we can obtain that 2kX  for all 
11 K\Ck , where 

  1,0,: 0
1   someXXIkK kn . It is clear that 

  01 K , hence we have    111 K\ CC    . Thus, 

    0:
1

lim 12  CXIk kn
n

n



. This means that 

 XA2  and therefore, by definition of 

XAinf  we obtain 

that 
 XAm inf2  . This contradicts (2.5) (that is 

2~ m ). 

Hence, we have shown that   01 C . 

Now from (2.6), it follows that   12 C . Taking into 

account the structure of the fuzzy number 1  and the real 

number 0X , we obtain that 1kX  for all 

 212 KC\ Ck  , 

where    ,0,: 0
2  someXXIkK kn . 

It is obvious that   02 K , hence we conclude 

   1KC\ 212 C . This implies 

      1KC\ :
1

lim 2121  CXIk kn
n

n



, 

Which means that  XA1 . Thus  XAM sup1  . This 

contradicts (2.5) (that is, 
1~ M ).  

This completes the proof. 

Definition 2.1. If   kXX   is a  -statistically bounded 

sequence of fuzzy numbers, then the  -statistical limit 

inferior of   kXX  is given by  XAXs infinflim  . 

Also, the  -statistical limit superior of  kXX   is given 

by  XBXs supsuplim  . 

By Theorem 2. 1. we get  XAXs supinflim   and 

 XBXs infsuplim  . A simple example will help to 

illustrate the concepts just defined. 

Theorem 2.2. Let  kXX   be a  -statistically bounded 

sequence of fuzzy numbers. If Xsm inflim   then  

  0:
1

lim 1  


mXIk kn

n
n

              (2.7) 

and 

    0::
1

lim 11 ~   


mXIkmXIk knkn

n
n

  

                                                                                        (2.8) 

for every 0 . 

Proof. To the contrary, we asuume that there exists 0  

such that   0:
1

lim 1  


mXIk kn

n
n

. This means 
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that 
 XAm  1 . Then we get 1mm  which is a 

contradiction. 

Now let us show that inequality (2.8) holds. Assume that it 

is not true, that is, there exists 0  such that  

 

 

 
















 0:
1

lim

0:
1

lim

1

1

~ 





mXIk

mXIk

kn
n

n

kn
n

n
               (2.9) 

 

For each Nk , only the following three cases are 

possible: 

1mX k ,  1mX k ,  1~  mX k . Then 

      nknknkn ImXIkmXIkmXIk   111 ~:::    

Thus, from (2.9), we have 

  1:
1

lim 1  


mXIk kn

n
n

. This means that 

 XAm  1 .  

Hence we can write mAAm XX   infsup1 .  

This is a contradiction. So we get, 

    0::
1

lim 11 ~   


mXIkmXIk knkn
n

n
  

Theorem 2.3. Let  kXX   be a  -statistically bounded 

sequence of fuzzy numbers. If XsM suplim   then  

 

   
















 0::
1

lim

0:
1

lim

11

1

~ 





MXIkMXIk

MXIk

knkn

n
n

kn

n
n



 

                                                                                       (2.10) 

for every 0 . 

This can be proved similarly as Theorem 2.2. In addition, 

the converse of  Theorem 2.3. does not hold in general. 

Now we have the following assertion. 

Theorem 2.4.  For any  -statistically bounded sequence 

of fuzzy numbers  kXX  , 

XsXs supliminflim   . 

Proof.  We have  XAXs supinflim   and 

 XBXs supsuplim  . By definition of the sets 
XA  and 


XB , we see that 

XX BA  . Hence we get 
XX BA supsup   

which completes the proof. 
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