


Abstract—Web applications have become steadily increased

in daily routines activities and continue to integrate them.

On-line reservations, paying bills and on-line shopping expect

these web applications to be secure and reliable; the fear of

SQL–Injection Attacks has become increasingly frequent and

serious. SQL Injection Attacks (SQLIAs) are one of the topmost

threats for web application security. Using SQL Injection

attackers can leak confidential information; such as credit card

numbers from web applications and even corrupt the database.

This paper presents a new technique to protect Web

applications against SQL injection Attacks. SQL Injection

Attacks are a class of attacks that many of these systems are

highly vulnerable to, and there is no known foolproof defense

against such attacks. The new innovative technique ―Service

-Oriented Authentication‖ is to prevent SQL–Injection Attacks

in database the deployment of this technique is by appending

first level Service has the functionality of Tame-card detection

and Prevention. The Second level Service has the functionality

of Authentication Checker also dataset (the temporary storage

of database) of application scripts additionally allowing

seamless integration with currently-deployed systems.

Index Terms—Database security, world-wide application

security, SQL–injection attacks, runtime monitoring.

I. INTRODUCTION

Attackers have developed a wide array of sophisticated

attack techniques that can be used to exploit SQL injection

vulnerabilities. In SQL injection attack, an attacker attempts

to exploit vulnerabilities in custom Web applications by

entering SQL code in an entry field such as a login. If

successful, such an attack can give the attacker access to data

on the database used by the application and the ability to run

malicious code on the Web site. Malicious attacks occur

when developers combine hard-coded strings with user

provided input to create dynamic queries. Intuitively, if user

input is not properly validated, attackers may be able to

change the developer‟s intended SQL command by inserting

new SQL keywords or operators through specially crafted

input strings [1]. Many enterprise applications deal with

sensitive data due to the extraordinary growth of World Wide

Web. SQL-Injection Attacks constitute an important class of

attack against web applications. Web applications that are

vulnerable to SQL attacks user inputs the attacker‟s embeds

commands and gets executed . The attackers directly access

the database underlying an application and leak or alter

confidential information and execute malicious code. The

resulting security violations can include identity theft, loss of

Manuscript received March 9, 2013; revised May 29, 2013.

Indrani Balasundaram and E. Ramaraj are with the Madurai Kamaraj

University, Madurai, India (e-mail: indrani.phd@ gmail.com,

eramaraj@rediffmail.com).

confidential information, and ultimately fraud. In some cases,

attackers even use an SQL Injection vulnerability to take

control and corrupt the system that hosts the Web application.

The increasing number of web applications falling prey to

these attacks is alarmingly high prevention of SQLIA‟s is a

major challenge. It is difficult to implement and enforce a

rigorous defensive coding discipline. Many solutions based

on defensive coding address only a subset of the possible

attacks. The evaluation of “Service Oriented Authentication

Technique” does not have any code modification as well as

automation of detection and prevention. In fact; SQLIA‟s

have been included in list of top 10 threats to web

applications. U.S. industry regulations such as the

Sarbanes-Oxley Act pertaining to information security, try to

enforce strict security compliance by application vendors.

A. Example of SQL Injection Attack

1) Tautology

A website uses this source (figure: 1), which would be

vulnerable to SQLIA. For example, if a user enters“‟ OR

1=1--” and“”, instead of User1 =“indra” and Pass1 = “rani”,

the resulting query is: SELECT * from FROM data_master

WHERE user1=‟‟ OR 1=1 --‟ AND pass1=‟‟ The database

interprets everything after the WHERE token as a conditional

statement, and the inclusion of the “OR 1=1” clause turns this

conditional into a tautology. As a result, the database returns

the records for all users in the database. An attacker could

insert a wide range of SQL commands via this exploit,

including commands to modify or destroy database tables.

2) Union Query

By using UNION: SELECT query the attacker can retrieve

information from a specified table. The result of this attack is

that the database returns a dataset that is the union of the

results of the original first query and the results of the

injected second query. “‟ UNION SELECT pass1 from

data_master where user1 =‟indra‟- -„into the login field,

which produces the following query: SELECT pass1 FROM

data_master WHERE user1=‟ ‟ UNION SELECT pass1 from

data_master where user1=‟indra‟- –„ AND pass1=‟‟

Assuming that there is no login equal to “”, the original first

query returns the null set, whereas the second query returns

data from the “data_master” table. In this case, the database

would return column “pass1” for account “100001”.

Database takes the results of these two queries, unions them,

and returns them to the application. In many applications, the

effect of this operation is that the value for “pass1” is

displayed along with the account information.

II. REALTED WORK

There are some existing techniques that can be used to

Prevention of SQL Injection Attacks by Using Service

Oriented Authentication Technique

Indrani Balasundram and E. Ramaraj

302

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

DOI: 10.7763/IJMO.2013.V3.286

detect and prevent input manipulation vulnerabilities

A. Defense Mechanism

Halfond et al. [2] presented an extensive review for the

different types of SQL Injection Attacks known up to date.

This paper presented the techniques of various attack and

shows how the attacks gain information from web

application. This work shows the intent of the attacker and

Injection mechanism of SQL Injection. This review classified

and analyzed existing detection and prevention techniques

against SQL Injection Attacks. They provide strengths and

weaknesses for each technique in addressing the entire range

of SQL Injection Attacks.

Eliminating SQL Injection Attacks Ke Wei [3] shows that

static analysis is processed by using SQL Graph

representation using Finite State Machine (FSM).

Halfond et al. [4] proposed a new highly automated

approach for dynamic detection and prevention of SQLIA‟ s.

Intuitively, this work is by identifying “trusted” strings in an

application and allowing only these trusted strings to be used

to create the semantically relevant parts of a SQL query such

as keywords or operators. Dynamic tainting is a mechanism

used to implement this approach. The advantage of this

approach is highly automated and requires minimal

intervention does not require additional infrastructure and

can be automatically deployed.

Attacks occur when developers combine hard-coded

strings with user-provided input to generate dynamic

queries. In AMNESIA[5]built SQL-query models by

Non-deterministic Finite State Automation (NDFA) in which

the transition labels consist of SQL tokens (SQL keywords

and operators), delimiters and place holders for string

values.. Intuitively, if user input is not properly validated, the

attackers may be able to change the developer‟s intended

SQL command by inserting new SQL keywords or operators

through specially crafted input strings.

B. Prepare Statement

Stephen Thomas et al. [6] proposed an automated method

for removing SQL Injection Vulnerabilities from JAVA code

by converting plain text SQL statements into prepared

statements. Prepared statements restrict the way that input

can affect the execution of the statement. An automated

solution allows developers to remove SQL Injection

Vulnerabilities by replacing the vulnerable code with

generated secure code. The prepared statement separates the

values in a query from the structure of SQL. The programmer

defines a skeleton of an SQL query and then fills in the holes

of the skeleton at runtime. The prepared statement makes it

harder to inject SQL queries because the SQL structure

cannot be changed. To use the prepared statement, the web

application has to modify entirely; all the legacy web

application must be re-written to reduce the possibility of

SQL injections

The Software poses a particularly difficult problem

because of the cost and complexity of reworking on the

existing code. Many techniques [7] rely on complex static

analysis in order to find potential vulnerabilities in the code.

A recent penetration testing study of more than 250 Web

applications concluded that at least 92% of Web applications

are vulnerable to some form of malicious intruders.

C. Instruction – Set Randomization

SQL rand [8] provides a framework that allows developer

to create SQL Queries using randomized keywords instead of

the normal SQL keywords. A proxy between the web

application and the database intercepts SQL queries and

de-randomizes the keywords. The SQL keywords injected by

an attacker would not have been constructed by the

randomized keywords, and thus the injected commands

would result in a syntactically incorrect query. Since SQL

rand uses a secret key to modify keywords, its security relies

on attackers not being able to discover this key. SQL rand

requires the application developer to rewrite code.

V. B. Livshits [9] proposed a static analysis approach

based on a scalable and precise point to analysis. In this

system, user-provided specifications of vulnerabilities are

automatically translated into the static analyzers. This

approach finds all vulnerabilities matching a specification in

the statically analyzed code. Context sensitivity, combined

with improved object naming, proved instrumental in

keeping the number of false positives low.

D. Proxy Filter

Scott and Sharp [10] use a proxy to filter input and output

data streams for a web application although this technique

can be effective against SQLIA; it requires developers to

correctly specify filtering rules for each application input.

This step of the process is prone to human error and leaves

the application vulnerable if the developer has not adequately

identified all injection points and correctly expressed the

filtering rules. Like defensive coding practices this

techniques cannot provide guarantees of completeness and

accuracy.

III. PROPOSED TECHNIQUE

This approach addresses SQLIA‟s with runtime

monitoring. The details of this technique is described in

subsequent section: (1) the source code contains enough

information to infer models of the expected, legitimate SQL

queries generated by the application, and (2)By injecting

additional SQL statements into a query, would violate the

model. Proposed technique (Fig. 1) monitors dynamically

generated queries with Tame-card detector model and

Authentication Checker model at runtime and check them for

compliance. If the Data Comparison violates the model then

it represents potential SQLIA‟s and prevented from

executing on the database. For each application, when the

login page is redirected to our checking page, it was to detect

and prevent attacks without stopping legitimate accesses.

Moreover, this technique proved to be an efficient, imposing

only a low overhead on the Web applications. This technique

consists of two levels of filtration to prevent SQLIA‟S. First

level is Tame-card Detector and the second level is

Authentication Checker. The steps are summarized and then

describe them in more detail in subsequent sections.

A. Tame-card Detector

Tame-card detector is a first level filtration method at

303

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

Service1 in (Fig. 1). It detects the Wildcard characters or

Meta characters from the User input and prevents the

malicious attacks

Fig. 1. Proposed architecture of (service- oriented authentication

technique)

B. Authentication Checker

Authentication Checker validates user input from Data-Set

where the Sensitive data‟s are stored from the Database at

second level filtration method in Service. The user input

fields compare with the data existed in Dataset if it is

identical then the legitimate user is allowed to proceed.

C. Identify Hotspot

Fig. 2. Example VB code in .NET application

Scan the application code to identify hotspots points in the

application code that issue SQL queries to the underlying

database. It performs a simple scanning of the application

code to identify hotspots. For example .NET in Fig. 2, the set

of hotspots would contain a single element: the statement at

line 4. (In .NET based applications, interactions with the

database occur through calls to specific methods in the

System.Data.Sqlclient namespace, 1 such as Sqlcommand- .

ExecuteReader (String))

The injection process works by prematurely terminating a

text string and appending a new command. Because the

inserted command may have additional strings appended to it

before it is executed, the malefactor terminates the injected

string with a comment mark "--". Subsequent text is ignored

at execution time. The proposed technique contributes a

Tame-card Detector, to validate the user input fields to detect

the wild card character (patch file) and prevent the wild -card

attacker. Transact-SQL statements will be prohibited directly

from user input. For each hotspot, build a wildcard model, to

check any Wild-card strings or characters append SQL

tokens (SQL keywords and operators), delimiters, or string

tokens to the legitimate command.

Fig. 3. Functions generated in tame-card detector, Web service and dataset

D. Comparison of Data at Runtime Monitoring

In Fig. 1: At runtime, If the user input is given to a web

application, input is received from the client side at first level

Service and passed through protocol SOAP (Simple Object

Access Protocol) to Tame-card Detector which is located in

web service such that Web services are typically application

programming interfaces (API) or web APIs that can be

accessed over a network, such as the Internet, and executed

on a remote system hosting the requested services. If there is

any Meta character concatenated with user input then the

Tame-card Detector check the dynamically generated queries

to prevent the malicious user. If the pattern matching is

identical with the patch file then it is termed as a legitimate

user, through the SOAP protocol the validated data is sent

back to the client side at Service1. From first level Service the

validated User input is sent to second level of Service in

client side, through the SOAP protocol to Authentication

Checker which is located in web service. Authentication

Checker at second level Service also consists of Dataset

which is a collection of data usually presented in tabular

form. Each column represents a particular variable. Each row

corresponds to a given member of the data set in question its

values for each of the variables, such as height and weight of

an object or values of random numbers. Each value is known

as a datum. The data set may comprise data for one or more

members, corresponding to the number of rows. This is used

to store the sensitive data from the valid database so the

validated data is compared with the sensitive data‟s stored in

the dataset. The validations occur in dataset with out

affecting directly to the database. The user input and sensitive

data are identical then legitimate data will be back to second

level Service from the web service level to client side and

allowed to access the web application and hence the invalid

input will be discarded. Here there is no Query validation

occurs only the data will be validated in Dataset. If the script

builds an SQL query by concatenating hard-coded strings

Protected sub btnsubmit()

cn.Open()

cmd = New SqlCommand("select * from data_master where User1='" &

t1.Text &"' and Pass1=" & t2.Text & "", cn)

rd = cmd.ExecuteReader

If rd.Read Then

Response.Redirect("valid_user. aspx")

Else

Response.Redirect("Login_err.aspx")

End If

cn.Close()

cmd.Dispose()

rd.Close()

End sub

304

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

together with a string entered by the user, As long as injected

SQL code is syntactically correct, tampering cannot be

detected programmatically. String concatenation is the

primary point of entry for script injection Therefore; all user

inputs are carefully validated with Authentication Checker

(Second filtration method). If the user input and Sensitive

data‟s are identical then executes constructed SQL

commands in the Application server. Fig. 3 shows that the

application architecture level of Service Oriented

Authentication Technique.

IV. EVALUATION

The proposed technique is deployed and tried few trial

runs on the web server

A. SQLIA Prevention Accuracy

Both the protected and unprotected web Applications are

tested using different types of SQLIA‟s; namely use of

Tautologies, Union, Piggy-Backed Queries, Inserting

additional SQL statements, Second-order SQL injection and

various other SQLIA s. Table I shows that the proposed

technique prevented all types of SQLIA s in all cases. The

proposed technique is thus a secure and robust solution to

defend against SQLIA‟s.

TABLE I: SQLIA‟S PREVENTION ACCURACY

B. Execution Time at Runtime Validation

The runtime validation incurs some overhead in terms of

execution time at both the Service Oriented Authentication

Technique and SQL-Query based Validation Technique.

Taken a sample website E-Transaction measured the extra

computation time at the query validation, this delay has been

amplified in the graph (Fig. 4 and Fig. 5) to distinguish

between the Time delays using bar chart shows that the data

validation in dataset performs better than query validation. In

Query validation(Fig. 5) the user input is generated as a query

in script engine then it gets parsed in to separate tokens then

the user input is compared with the statistical generated data

if it is malicious generates error reporting. Service Oriented

Authentication technique (Fig. 4) states that user input is

generated as a query in script engine then it gets parsed in to

separate tokens, and send through the protocol SOAP to

Tame-card Detector, then the validated user input is

sequentially send the user input field to Authentication

Checker through the protocol SOAP then the user input is

compared with the sensitive data, which is temporarily stored

in dataset. If it is malicious data, it will be prevented

otherwise the legitimate data is allowed to access the Web

application. Existing techniques directly allows accessing the

database in database server after the Query validation.

Current technique does not allow directly to access database

in database server because here, the Service Oriented

Authentication Technique using dataset the sensitive data‟s

from database and compare with the user input if user data is

legitimate then it allows accessing the database in database

server.

V. DISCUSSION

Proposed technique was able to correctly identify the

malicious user as SQLIA‟s, while allowing all legitimate

queries to be performed and no false positives and no false

negatives are generated. The results of our study may be

related to the specific subjects considered and may not

generalize to other web applications. To minimize this risk,

Service Oriented Technique uses a set of web applications

and an extensive set of realistic attacks. Therefore, although

this strategy helps to eliminate certain attacks such as SQL

Injection, it will not work against attacks such as cross-site

scripting, where sanitization requires escaping a different set

of characters according to HTML character entity references.

Fig. 4. Execution time based on dataset

Fig. 5. Execution time based on SQL queries

305

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

VI. CONCLUSION

The SQL - Injection Attacks are extremely dangerous in

comparison to other types of Web-based attacks, because the

end result is data manipulation. SQL injection holes can be

easy to exploit, a novel technique against SQLIA‟s. The

web-application code implicitly contains a policy that allows

distinguishing legitimate and malicious queries. This

technique is used to detect and prevent the SQLI flaw (wild

characters & exploiting SQL commands) in Tame-card

Detector and prevent the Tame-card attacker Transact-SQL

statements will be prohibited directly from user input.

Service Oriented Authentication technique checks the user

input with valid database which is stored separately in dataset

and do not affect database directly then the validated user

input field is allowed to access the web application as well as

used to improve the performance of the server side validation

This proposed technique was able to correctly identify the

attacks that we performed on the applications without

blocking legitimate accesses to the database (i.e., the

technique produced neither false positives nor false

negatives). These results show that our technique represents a

promising approach to countering SQLIA‟s and motivate

further work in this direction.

REFERENCES

[1] Top Ten Most Critical Web Application Vulnerabilities. OWASP

Foundation. (2005). [Online]. Available:

http://www.owasp.org/documentation/ topten.html

[2] W. G. H. fond, “A Classification of SQL-Injection Attacks and

Countermeasures,” in Proc. of the Intern. Symposium on Secure

Software Engineering, pp. 1-11, Mar. 2006.

[3] M. Muthuprasanna, "Eliminating SQL Injection Attacks - A

Transparent Defense Mechanism," IEEE International Workshop on,

8th IEEE Inter. Symposium on Web Site Evolution (WSE'06), pp.

22-32, 2006.

[4] W. G. J. H. Fond, “WASP: Protecting Web Applications Using

Positive Tainting and Syntax-Aware Evaluation,” IEEE Trans. on

Software Engineering, vol. 34, Issue. 1, pp. 65-81, 2006.

[5] W. G. J. Halfond, “AMNESIA: analysis and monitoring for

NEutralizing SQL-injection attacks,” in International Proc. 20th

IEEE/ACM international Conference on Automated software

engineering (ASE '05), pp. 174-183, New York, NY, USA, 2005.

[6] S. Thomas, “Using Automated Generation to secure SQL statements,”

3rd International Workshop on software engineering for secure

systems, pp. 9, 2007.

[7] G. Wassermann and Z. Su, “A static Analysis Framework for Security

in Web Applications,” in Proc. of the FSE Workshop on Specification

and Verification of Component-Based Systems , pp. 70–78, 2004.

[8] S. Boyd, “SQLrand: Preventing SQL - Injection Attacks,” in proc. of

the applied cryptography and network security (ANCS), pp. 292-304,

2004.

[9] V. B. Livshits, “Finding Security Errors in Java Programs with Static

Analysis,” in Proc. of the 14th Use nix Security Symposium, pp.

271–286, 2005.

[10] D. Scott and R. Sharp, “Abstracting Application-level Web Security,”

in Proc. of the 11th International Conference on the World Wide Web

(WWW 2002), pp. 396–407, 2002.

B. Indrani received the B.Sc. degree in Computer

Science, in 2002; the M.Sc. degree in Computer Science

and Information Technology, in 2004. She had

completed M.Phil. in Computer Science. She worked as

a research assistant in Smart and Secure Environment

Lab under IIT, Madras. Her current research interests

include Database Security

E. Ramaraj is presently working as a Technology

Advisor, Madurai Kamaraj University, Madurai,

Tamilnadu, India on lien from Director, computer centre at

Alagappa university, Karaikudi. He has 22 years teaching

experience and 8 years research experience. He has

presented research papers in more than 50 national and

international conferences and published more than 55

papers in national and international journals. His research

areas include Data mining, software engineering, database and network

security.

306

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013

