
 

 

 

Abstract—An exact solution of unsteady flow past a 

uniformly accelerated infinite vertical plate with variable 

temperature and mass diffusion, in the presence of thermal 

radiation is presented here. The dimensionless governing 

equations are solved using Laplace-transform technique. The 

velocity profiles, temperature and concentration are studied 

for different physical parameters like thermal Grashof 

number, mass Grashof number, Schmidt number, Prandtl 

number and time. It is observed that the velocity increases with 

increasing values of thermal Grashof number or mass Grashof 

number. But the trend is just reversed with respect to the 

thermal radiation parameter. It is also observed that there is a 

fall in plate temperature due to high thermal radiation. 

 
Index Terms—Accelerated, vertical plate, heat and mass 

transfer, variable temperature, radiation. 

 

I. INTRODUCTION 

Heat and mass transfer in the presence of thermal 

radiation play an important role in manufacturing industries 

for the design of fins, steel rolling, nuclear power plants, gas 

turbines and various propulsion device for aircraft, 

combustion and furnace design, materials processing, 

energy utilization, temperature measurements, food 

processing and cryogenic engineering, as well as numerous 

agricultural, health and military applications. If the 

temperature of the surrounding fluid is rather high, radiation 

effects play an important role and this situation does exist in 

space technology. 

England and Emery [1] have studied the thermal radiation 

effects of a optically thin gray gas bounded by a stationary 

vertical plate. Radiation effect on mixed convection along a 

isothermal vertical plate were studied by Hossain and 

Takhar [2]. Raptis and Perdikis [3] studied the effects of 

thermal radiation and free convection flow past a moving 

vertical plate. The governing equations were solved 

analytically. Das et al. [4] have analyzed radiation effects on 

flow past an impulsively started infinite isothermal vertical 

plate. The dimensionless governing equations were solved 

by the usual Laplace-transform technique. 

Gupta et al. [5] studied free convection on flow past a 

linearly accelerated vertical plate in the presence of viscous 

dissipative heat using perturbation method. Kafousias and 

Raptis [6] extended the above problem to include mass 
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transfer effects subjected to variable suction or injection. 

Mass transfer effects on flow past a uniformly accelerated 

vertical plate was studied by Soundalgekar [7]. Again, mass 

transfer effects on flow past an accelerated vertical plate 

with uniform heat flux was analyzed by Singh and Singh 

[8]. Basant Kumar Jha and Ravindra Prasad [9] analyzed 

mass transfer effects on the flow past an accelerated infinite 

vertical plate with heat sources. Recently, 

Muthucumaraswamy et al. [10] studied heat and mass 

transfer effects on flow past an accelerated vertical plate 

with variable mass diffusion with in absence of thermal 

radiation. 

Hence, it is now proposed to study heat and mass transfer 

effects on unsteady flow past a uniformly accelerated 

infinite vertical plate with variable temperature in the 

presence of thermal radiation. The dimensionless governing 

equations are solved using the Laplace-transform technique. 

The solutions are in terms of exponential and 

complementary error function. Such a study found useful 

process industries such as wire drawing, fibre drawing, food 

processing and polymer production. 

 

II. MATHEMATICAL FORMULATION 

The unsteady flow of a viscous incompressible fluid past 

a uniformly accelerated  vertical infinite plate with variable 

temperature and uniform mass diffusion has been 

considered. The x-axis is taken along the plate in the 

vertically upward direction and the y-axis is taken normal to 

the plate. At time 0t , the plate and fluid are at the same 

temperature T and concentration 
C . At time 0>t , the 

plate is accelerated with a velocity u = t
v

u


3

0  in its own 

plane and the temperature from the plate is raised to wT  and 

the mass is diffused from the plate to the fluid linearly with 

time. Then under usual Boussinesq's approximation the 

unsteady flow is governed by the following dimensionless 

equations as discussed in Muralidharan and 

Muthucumaraswamy [11]. 
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    The initial and boundary conditions in non-

dimensional quantities are 
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The dimensionless governing equations (1) to (3), subject 

to the initial and boundary conditions (4) are solved by the 

usual Laplace-transform technique and the solutions are 

derived as follows:   
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III. RESULTS AND DISCUSSION 

For physical understanding of the problem, numerical 

computations are carried out for different physical 

parameters Gr, Gc, Sc, Pr and t upon the nature of the flow 

and transport. The value of the Schmidt number Sc is taken 

to be 0.6 which corresponds to water-vapour. Also, the 

value of Prandtl number Pr is chosen such that they 

represent air (Pr = 0.71). The numerical values of the 

velocity, temperature and concentration are computed for 

different physical parameters like thermal radiation, Prandtl 

number, thermal Grashof number, mass Grashof number, 

Schmidt number and time. 

The effect of velocity for different values of the radiation 

parameter (R = 0.2, 5, 20) are shown in Fig. 1. The trend 

shows that the velocity increases with decreasing radiation 

parameter. It is observed that the velocity decreases in the 

presence of high thermal radiation. Fig. 2, demonstrates the 

effects of different thermal Grashof number (Gr =2, 10), 

mass Grashof number (Gc = 2, 5) on the velocity at time t = 

0.3. It is observed that the velocity increases with increasing 

values of the thermal Grashof number or mass Grashof 

number. The velocity profiles for different (t = 0.2, 0.3, 0.4) 

are studied and presented in Fig. 3. It is observed that the 

velocity increases with increasing values of t.  

The temperature profiles are calculated for different 

values of thermal radiation parameter (R = 0.2, 2, 5, 10)  are 

shown in Fig. 4, in the presence of air (Pr = 0.71). The 

effect of thermal radiation parameter is important in 

temperature profiles. The trend shows that the temperature 

increases with decreasing radiation parameter. Fig. 5 is a 

graphical representation which depicts the temperature 

profiles for different values of the time (t = 0.2, 0.4, 0.6, 1) 

in the presence of thermal radiation. It is clear that the 

temperature increases with increasing values of the time t.  

Fig. 6 represents the effect of concentration profiles at 

time t = 0.2 for different Schmidt number (Sc = 0.16, 0.3, 

0.6, 2.01). The effect of Schmidt number plays an important 

role in concentration field. The profiles have the common 

feature that the concentration decreases in a monotone 

fashion from the surface to a zero value far away in the free 

stream. It is observed that the wall concentration increases 

with decreasing values of the Schmidt number. 

 

 
                   Fig. 1. Velocity profiles for different values of R 

                                       

 
Fig. 2. Velocity profiles for different values of Gr, Gc 
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Fig. 3. Velocity profiles for different values of t                                   

 
Fig. 4. Temperature profiles for different values of R 

 

 
Fig. 5. Temperature profiles for different values of t                                

 
               Fig. 6. Concentration profiles for different values of Sc 

IV. CONCLUSION 

The theoretical solution of flow past a uniformly 

accelerated infinite vertical plate in the presence of variable 

temperature and uniform mass diffusion has been studied. 

The dimensionless governing equations are solved by the 

usual Laplace-transform technique. The effect of different 

parameters like thermal Grashof number, mass Grashof 

number, Schmidt number and time t are studied graphically. 

It is observed that the velocity increases with increasing 

values of Gr, Gc and t. But the trend is just reversed with 

respect to the thermal radiation parameter. The plate 

temperature decreases due to high thermal radiation. 

 

V. NOMENCLATURE, GREEK SYMBOLS 

 

a* absorption coefficient   

  

C'      species concentration in the fluid   

  

C       dimensionless concentration  

   

C w    wall concentration   

   

C     concentration in the fluid far away from the plate

  

Cp      specific heat at constant pressure   

  

D       mass diffusion coefficient    

   

Gc              mass Grashof number                       

Gr         thermal Grashof number   

   

g       acceleration due to gravity 

k             thermal conductivity of the fluid   

                               

       cofficient of viscosity    

  

Pr      Prandtl number    

  

Sc      Schmidt number    

  

qr         radiative heat flux in the y-direction 

   

R     radiation parameter   

  

T       temperature of the fluid near the plate  

  

T w     temperature of the plate   

  

t'      time 

t        dimensionless time 

u       velocity of the fluid in the x-direction 

u 0       velocity of the plate 

U       dimensionless velocity component in x-direction 

x       spatial coordinate along the plate 

y′            spatial coordinate normal to the plate 

0B           transverse magnetic field of uniform strength 

           volumetric coefficient of thermal expansion 
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 *       volumetric coefficient of expansion with 

concentration 
            kinematic viscosity 

           density of the fluid 

           Stefan-Boltzmann constant 

        dimensionless temperature  

erfc        complementary error function 

T           temperature of the fluid far away from the plate 

            similarity parameter 
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