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Abstract—This paper considers the problem of designing 

robust H output feedback controllers for HIV/AIDS infection 

system with dual drug dosages described by a Takagi-Sugeno 

(TS) fuzzy model. Based on a linear matrix inequality (LMI) 

approach, we develop an H output feedback controller which 

guarantees the L2-gain of the mapping from the exogenous 

input noise to the regulated output to be less than some 

prescribed value for the system. A sufficient condition of the 

controller for this system is given in term of Linear Matrix 

Inequalities (LMIs). The effectiveness of the proposed 

controller design methodology is finally demonstrated through 

simulation results. It has been shown that the anti-HIV vaccines 

are critically important in reducing the infected cells. 

 

Index Terms—Robust H fuzzy control， Takagi-Sugeno (TS) 

fuzzy model, linear matrix inequalities (LMIs), HIV/AIDS 

infection. 

 

I. INTRODUCTION 

HIV is a retrovirus that primarily infects vital organs of the 

human immune system such as CD4+T cells (a subset of T 

cells), macrophages and dendritic cells. It directly and 

indirectly destroys CD4+T cells. Once HIV has killed so 

many CD4+T cells such that there are fewer than 200 of these 

cells per micro liter (L) of blood then cellular immunity is 

lost. In the absence of antiretroviral therapy, the average time 

of progression from HIV infection to AIDS is about nine to 

ten years, and the average survival time after developing 

AIDS is only 9.2 months [1]. However, the rate of treated 

disease progression is varied between individuals, from two 

weeks up to 20 years. Fig. 1 shows the natural history of HIV 

infections dynamics as currently accepted [1]-[6]. When a 

body has been received HIV virus in primary infection, a 

number of HIV virus will dramatically increase in first 30 

days (resulting CD4+T cells reduction). After the primary 

infection period, a body builds HIV antibodies for agent virus 

so that, the infection still stabilizes an approximate steady 

state. In the last period, the antibody of healthy CD4+T cells 

will be drastically reduced. Finally, the patient develops to be 

an AIDS person. 

Over the past two decades, there has been rapidly growing 

interest in application of fuzzy logic to control problem. 

Recently, a great amount of effort has been devoted to 
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describing a nonlinear system using a Takagi-Sugeno fuzzy 

model; see [7]–[13]. The Takagi-sugeno fuzzy model 

represents a nonlinear system by a family of local linear 

models which smoothly blended together through fuzzy 

membership functions. Fuzzy modelling is essentially a 

multi-model approach in which simple sub-models (typically 

linear models) are fuzzily combined to describe the global 

behavior of a nonlinear system. Based on this fuzzy model, a 

number of systematic model-based fuzzy control design 

methodologies have been developed.  

Over the past few decades, the nonlinear H-control theory 

has been extensively studied by many researchers; see 

[14]-[16]. The nonlinear H-control problem can be stated as 

follows: given a dynamic system with the exogenous input 

noise and the measured output, find a controller such that the 

L2-gain of the mapping from the exogenous input noise to the 

regulated output is less than or equal to a prescribed value. 

Presently, there are two commonly used approaches for 

providing solutions to the nonlinear H-control problems. 

The first approach is based on the dissipativity theory and 

theory of differential games; see [14], [17], [18]. The second 

approach is based on the nonlinear version of classical 

Bounded Real Lemma; see [16]. Both approaches show that 

the solution of the nonlinear H-control problem is in fact 

related to the solvability of Hamilton-Jacobi inequalities 

(HJIs). 

 

 
                  CD4+ T Lymphocyte count (cells/mm³)  
                  HIV RNA copies per mL of plasma 

 
Fig. 1. A generalized graph of the relationship between HIV copies (viral 

load) and CD4+T cell [1-4]. 

 

In this paper, based on an LMI approach, we develop a 

output feedback controller for HIV/AIDS infection system 

with dual drug dosages such that the L2-gain of the mapping 

from the exogenous input noise to the regulated output is 

less than a prescribed value. This paper is organized as 

follows. In Section II, system descriptions and definition are 

presented. In Section III, based on an LMI approach we 
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develop a technique for designing a fuzzy H controller for 

HIV/AIDS infection system with dual drug dosages that 

guarantees the L2-gain of the mapping from the exogenous 

input noise to the regulated output is less than a prescribed 

value. The validity of this approach is finally demonstrated 

through simulation results in Section IV. Finally in Section 

V, the conclusion is given. 

 

II. SYSTEM DESCRIPTION 

A. HIV Dynamic Model 

Fig. 2 shows HIV model which describes the interaction of 

three variables; the healthy cells, the free virus, and the 

infected cells. In most cases, HIV virus affects the level of 

CD4+T cells which these cells are important in helping a 

body fighting to infection. Free virus means the HIV virus 

found in blood plasma. The healthy CD4+T cells are 

produced from a source, such as the thymus represented by 

constant rate s and died at rate d. The coefficient  is the 

infection rate. The infected cells result from the infection of 

healthy CD4+T cells and die at a rate . A free-virus particle 

is known as virions, so called viral load, and cleared at a rate 

c (death rate of virus). The variable k is a rate of virions 

product per infection CD4+T cell. 

 
Fig. 2. Schematic illustration of the basic HIV model [1]-[4]. 

 

The infection described previously can be summarized by 

differential equations [1]. 
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where x1(t) is concentration of healthy cells or T cells, x2(t) is 

concentration of infected cells, x3(t) is concentration of 

virions (free virus particles), s is the constant rate to produced 

the healthy CD4+T cells, d is the death rate of the healthy 

CD4+T cells,  is the coefficient of the infection rate,  is 

death rate of the infected cells, k is a rate of virions product 

per infection CD4+T cell, and c is death rate of virus. Current 

treatment for HIV infection consists of highly active 

antiretroviral therapy, or HAART. The HAART treatment 

used drug in the group of protease inhibitor. The doctors will 

assess the viral load, CD4+T counts, rapidity of CD4+T 

decline, and patient readiness. While deciding, the doctors 

recommend initiating treatment to the patient [6]. The 

parameters and typical values are listed in Table I [5]. The 

information of HIV model parameters obtain from [5] which 

the initial conditions correspond to a healthy person infected 

with a virus given by Table I. In 2007, M. Barao and J.M. 

Lemos proposed the nonlinear dynamic model to describe 

HIV with treatment as follows [5]: 
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where the controller input u1(t) and u2(t) are a number of 

expedient drugs in the treatment of HAART represented by 

Reverse Transcriptase Inhibitors-RTI (to reduce the virus 

performance) and Protease Inhibitors-PI (to reduce the 

productivity of free virions), respectively [5].The healthy 

CD4+T cells are produced from a source, such as the thymus 

represented by constant rate s and died at rate d. The 

coefficient  is the infection rate. The death rate of virus is 

described by c. 

 
TABLE I: HIV MODEL PARAMETERS [5] 

Parameter Typical Value Unit 

t - Days 

d 0.02 Per Day 

k 100 Count Cell-1 

s 100 mm3 Per Day 

      2.4 x 10-5 Per Day 

c 2.4 Per Day 

 0.24 Per Day 

 

The model includes antiretroviral treatment and factors 

such as adhesion and medication potency. The concepts of 

our proposes are joined with fuzzy set theory and exogenous 

input noise with biological variable values such as person 

factor, mental state etc. Mostly, HIV virus dynamics are 

modeled using a nonlinear represented by cell. Each cell 

represents an uninfected cell, an infected cell of the type T 

lymphocyte of CD4+, a free virus particle, or specific 

antibodies such as CTL (Cytotoxic T Lymphocyte). Fuzzy 

systems perform an approximate reasoning using the 

compositional rule of inference. In fuzzy rule-based systems, 

the inferred output is a fuzzy set. Often, especially in 

biological systems model, we require a real-valued output. 

B. Nonlinear Fuzzy Model 

In this subsection, we generalize the TS fuzzy system to 

represent a TS fuzzy system with parametric uncertainties. In 

this paper, we examine a TS fuzzy system with parametric 

uncertainties as follows: 

 
1
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where  1( ) ( ) ( )v t v t v t    is the premise variable vector that 

may depend on states in many cases, ))(( ti   denotes the 

normalized time-varying fuzzy weighting functions for each 
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rule (i.e., 1))((0))((
1

  

r

i ii tandt  ),   is the number 

of fuzzy sets, ( ) nx t  is the state vector, ( ) mu t   is the 

input, ( ) pw t  is the disturbance which belongs to L2[0;), 

( )y t  is the measurement, ( ) sz t  is the controlled 

output, the matrices 1 2 1 2 12, , , , ,i i i i i i
A B B C C D and 21i

D are 

of appropriate dimensions, and r is the number of IF-THEN 

rules. The matrices 1 2 1 2 12, , , , ,i i i i i i
A B B C C D      and 

21i
D represent the uncertainties in the system and satisfy the 

following assumption. 
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where ,ji
H  j = 1, 2, …, 7 are known matrix functions which 

characterize the structure of the uncertainties. Furthermore, 

the following inequality holds: 

 

( ( ), )F x t t   

 

for any known positive constant  . 

 

Next, let us recall the following definition. 

 

Definition 1: Suppose   is a given positive number: A 

system (3) is said to have an L2-gain less than or equal to   if 
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T Tf fT Tz t z t dt w t w t dt x         (5) 

for all 0fT   and ( )w t  L2 [0, ],fT  

Note that for the symmetric block matrices, we use (*) as 

an ellipsis for terms that are induced by symmetry. In 

addition, for simplicity without loss originality, we use 

 ( )i iv t   for the rest of the paper. 

 

III. ROBUST H  FUZZY OUTPUT FEEDBACK CONTROLLER 

FOR HIV/AIDS INFECTION SYSTEM 

This section aims at designing a full order dynamic H 

fuzzy output feedback controller of the form 
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where ˆ( ) nx t  is the controller’s state vector, ˆ ˆ,ij iA B  and ˆ
iC  

are parameters of the controller which are to be determined, 

and ¹i denotes the normalized time-varying fuzzy weighting 

functions for each rule (i.e.,  0i   and  
1

1
r

i i



 ), such 

that the inequality (5) holds. Note that for simplicity without 

loss originality, we use ( ( ))i iv t  for the rest of the paper. 

Theorem 1: Consider the system (3). Given a prescribed 

H∞ performance 0   and a positive constant δ, if there 

exist a matrix , ,T T

i iX X Y Y and     i = 1, 2, …, r, 

satisfying the following liner matrix inequalities: 
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then the prescribed  H∞  performance  > 0 is guaranteed. 

Furthermore, a suitable controller is of the form (6) with 
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(19) 

Proof: The proof is omitted for brevity. 

 

IV. SIMULATION RESULTS 

A simulation result is given in this section to illustrate the 

procedure of designing a fuzzy controller. Let us recall (2) 

included with noise term. The parameters and typical values 

are listed in Table 1. 
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where w1(t), w2(t) and w3(t) are the disturbance factor from the 

patients and the controlled output is 
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The nonlinear system plant can be approximated by TS 

fuzzy rules. Let us choose the membership functions of the 

fuzzy sets as follows. 
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The membership functions of three variables are the 

healthy cell of CD4+T, the infected cells and the free cells. 

The TS fuzzy plant model can be obtained as: 

Plant Rule i: 

If 1( )x t is iM  and 2 ( )x t is 
jN and 3( )x t is kq  

then 
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where  i, j, k = 1, …, 3 
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Now by assuming that in (2), 1)),((  ttxF and since 

the value of , d, and c are uncertain but bounded within 10% 

of their nominal value in (18), we have 
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Using the LMI optimization algorithm and following 

Theorem 1 with set as  = 0.1, we obtain the results given in 

Fig. 3 - 5. 

Remark 1: When a body has been received HIV virus in 

primary infection (about 4-8 weeks), the doctors will assess 

the viral load, CD4+T counts, rapidity of CD4+T decline, 

and patient readiness before beginning treatment. Fig. 3 

shows the plot of healthy cells, i.e., if CD4+T are more than 

500 cells/L the patient will develop the disease of HIV at 

low risk. Fig. 4 shows the plot of Reverse Transcriptase 

Inhibitors-RTI, which are a class of antiretroviral drug used 

to treat HIV infection, tumors, and cancer. RTIs inhibit 

activity of reverse transcriptase, a viral DNA polymerase 

enzyme that retroviruses need to reduce the virus 

performance, and Fig. 5 shows the plot of Protease 

Inhibitors-PI, which are molecules that inhibit the function of 

proteases. 

 

V. CONCLUSION 

This paper has presented a robust H fuzzy output 

feedback control design for nonlinear positive HIV infection 

dynamic model. This paper has developed a fuzzy controller 
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for applying in HIV nonlinear dynamic model to solve with 

antiretroviral therapy by using a fuzzy rule-based system 

with two inputs, the medication potency and the treatment 

adhesion rate. The effective of controller can prevent 

infection. The progression is the key to success of fighting 

against AIDS. 

 

 
Fig. 3. The simulation result of dual drug dosages for healthy cell, x1(t). 

 

 
Fig. 4. The simulation result of dual drug dosages for RTI, u1(t). 

 

 
Fig. 5.  The simulation result of dual drug dosages for PI, u2(t). 
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