
 

Abstract—This paper deals with the stability analysis and  

theHopf bifurcation  at  the equilibrium points of a logistic delay 

differential equation.By applying the Halanay inequality, the 

local stability of the logistic differential equation is discussed. 

The stability of bifurcation periodic solutions and the direction 

of Hopf bifurcation are determined by applying the normal 

form theory and the center manifold theorem. Numerical 

examples show interesting nonlinear behavior of the logistic 

differential equation at the end of the paper. 

 
Index Terms—Differential equations with delay, Hopf 

bifurcation, local stability, global asymptotic stability, periodic 

solutions. 

 

I. INTRODUCTION 

Researches about the delayed logistic equations have 

received significant attention in the recent years [1]-[6], 

especially from biologists and mathematicians. Hutchinson 

[1] assumed egg formation to occur   units of time before 

hatching and proposed the following delayed logistic 

equation:   
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1                (1.1) 

 

wherer>0  is intrinsic growth rate, K>0 is the carrying 

capacity of population and 0  is time delay.Properties of 

Eq. (1.1) were studied by various authors [7]-[9]. It was 

shown in [4] that for parameters r and    the equilibrium 

point  x=K is locally  asymptotically stable.  

K. Gopalsamy [2] considered a realistic and general case 

of Hutchinson’s equation 
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tdx
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(1.2) 

 

where 21,aa  and r are positive constants. By constructing a 

suitable Liapunov function, Gopalsamy proved that if 

1 rer , then the solutions of Eq. (1.2) converge to the 

positive equilibrium 
21
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x


 .  

C. Sun et al. [5] reconsidered Eq. (1.2) and showed that the 

positive equilibrium point is globally asymptotically stable 

and devote their attention to the global existence of periodic 
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solutions to Eq. (1.2). M. Jiang et al. [6] concerned their 

attention to the logistic differential equation 

 
        txtxrtx

dt

tdx
1

         
(1.3) 

 

where  is a known positive parameter, r is an unknown 

parameter and 0  is time delay. They investigated the 

linear stability of Eq. (1.3) by analyzing the associated 

characteristic transcendental equation. M. Jiang et al. 

reconsidered Eq. (1.3) to applied the Halanay inequality and 

discussed the local stability of (1.3). By constructing 

numerical examples they also detect nonlinear behaviors with 

a single parameter delay. 

In this paper, we extend the delayed logistic differential 

equation of (1.2) by adding an extra delayed term as follows 

 

          txtxtxtxr
dt

dx
1

      
(1.4) 

where the parameters   , are known positive real  numbers, 

 0,  Rr    and 0  is time delay.  We emphasize here 

the two unknown parametersr and    , which are important 

to determine the locally asymptotically stability of the 

equilibrium points of Eq. (1.4), the existence of Hopf 

bifurcation and the direction of the bifurcating periodic 

solutions. This paper is organized as follows: In Section II, 

using the lemma in [10] we show that the equilibrium points 

of Eq. (1.4) are locally asymptotically stable. Further, by 

constructing a suitable Liapunov function, we get that the 

solutions of Eq. (1.4) converge to the equilibrium points 

under specific conditions. In Section III, the formula are 

presented for determining bifurcation direction and stability 

of the bifurcating periodic solutions of Eq. (1.4).  

 

II. LOCAL STABILITY AND EXISTENCE  

With the transformation    txtu  , we can rewrite Eq. 

(1.4) as the delay differential equation 

 

 
        1 11  tutututur

dt

tdu
     (2.1) 

 

This equation has two equilibrium points, which are 

01 u and 
 








r

r
u2

, where 0r .  After linearization of 

Eq. (2.1) at the neighborhood of 01 u , one gets: 

 
   1   tutur

dt

tdu
                     (2.2) 

The characteristic equation of Eq. (2.2) is of the form  
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0  er                          (2.3) 

 

On the other hand, after linearization of Eq. (2.1) at the 

neighborhood of
 








r

r
u2

, one obtains: 

 

 
       

   

,122  tyurtyur
dt

tdy


     

(2.4) 

 

where     2ututy  .  The characteristic equation of Eq. 

(2.4) is of the form 

 

    022   eurur        (2.5) 

 

Clearly, the stability of the equilibriums 01 u   and 

 








r

r
u2

 depend on the roots of the characteristic 

equations (2.3) and (2.5), respectively. 

The following theorems are obtained by using the 

references [10] and [11]. Therefore, it will be omitted to the 

readers. 

Theorem 2.1. Let 01 u   and 
 








r

r
u2

 are the 

equilibrium points of Eq. (2.1), where 0r . The following 

statements are true. 

1) Let 


1
r . The equilibrium point 01 u  of Eq. (2.1) is 

locally stable if rr  


2221
,where   

 tanr ,  0 . 

2) Let  



1

 . The equilibrium point 
 








r

r
u2 of Eq. 

(2.1) is locally stable if   

    



 22

tan12
1

 rr

 

where    



 tan2 r


 ,  0 . 

Theorem 2.2. If 
22 r , then the equilibrium point 

01 u  of Eq. (2.1) is asymptotically stable for all delay 

0 . 

Theorem 2.3. If   and 
    































2

4
,

2

4
r , 

where  224    , then the equilibrium point 

 








r

r
u2

 of Eq. (2.1), where 0r   is asymptotically 

stable for all delay 0 . 

Theorem 2.4. Let 0 , 0r . Suppose for 0 that 

      txtxrtx 120 . Then the equilibrium point 

01 u of Eq. (1.4) is globally asymptotically stable. 

Theorem 2.5. Let  
 












22

2
0 r and






2


 . Suppose that     txtx0 for 0 . Then 

the equilibrium point 
 








r

r
u2

 of Eq. (1.4) is globally 

asymptotically stable. 

Theorem 2.6. Let
2221




  r ,where

 tanr and  0 .  Then there is a Hopf 

bifurcation from the equilibrium 01 u  to a periodic orbit. 

It can be similarly proven that when r passes the critical 

point 

 

    


 22
** tan12

1
 rr , 

 

where    



 tan2 *r


 ,  0 , 

there is a Hopf bifurcation from the equilibrium 

 








r

r
u2  to a periodic orbit. 

 

III. STABILITY AND DIRECTION OF THE BIFURCATING 

PERIODIC SOLUTIONS 

Let   * , where R . In this case 0  is one 

Hopfbifurcation value for Eq. (2.1).  For C , let 

 

     10 *   rL
             

 (3.1) 

 

and 

       100 , 2   rrF       (3.2) 

 

By the Riesz representation theorem, there exists a 

function   ,  of bound variation for  0,1 , such that 

 

   






 

1

,dL for C
          

 (3.3) 

 

In fact, we can choose 

 

       1, *   r         (3.4) 

 

where  0,1  and   is the Dirac delta function. 

For 
  RC ,0,11  , define 
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01-                  ,     

0
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d
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(3.5) 

   and 

 
 









0.              ,,F 

01-           0,      
  




B

              

(3.6) 

Hence, (2.1) can be rewritten as 
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    ttt uBuAu                      (3.7) 

                                                              

where      tuut  for  0,1 . 

For  0,11 C , we define the adjoint operator *A  of A 

as  

 

 

 

   


















 0             ,,d 

10                  ,-     

0

1-

*










tt

d

d

A

       

(3.8) 

                                

and a bilinear inner product as 

 

         dssds
s  


0

1 0
0,00,



    (3.9) 

 

To determine the Poincare normal form of A, we need to 

calculate the eigenvector q of A belonging to the eigenvalue  

0i  and eigenvector 
*q  of *A  belonging to the eigenvalue 

0i .  It can be verified that     0i
eq   is an eigenvector of 

A(0) corresponding to 0i  , and   si
Desq 0* 

  is an 

eigenvector of *A (0)  with respect to the eigenvalue  0i .   

Furthermore, by (3.8), we have     *
0

** qiqA  .  

We normalize q and 
*q  by the condition 1,* qq  to 

determine the value of D. From (3.9), we have 

 

     

  .1e1D           

0,,

0i-
*

0

1 0

**



  
 









s

dssdsqDqq  

 

Hence 

 

  


 0

0
*

*

1

1 i

i
e

e
q


 ,  .10            (3.10) 

                                 

Similarly, we have .0,* qq  

To describe the center manifold 0C at 0 , we want to 

compute the coordinates. For each )(ADomu , we  

associate the pair  sz, , where tuqz ,*  and 

             zquqzzquts tt Re2,   (3.11) 

 

On the center manifold 0C , we have        ,,, tztzsts 

, where       

          ...
622

,,
3

30

2

0211

2

20 
z

s
z

szzs
z

szzs 
 
(3.12) 

Here are z and z  local coordinates for center manifold 0C  

in the direction of qand 
*q . Note that  ,ts  is real, if tu  is 

real. We only deal with real solutions. It is easy to show that 

.0,* sq For solutions 0Cut   of Eq. (2.1) we have 

 

ttt BuAuquq  ,, **  . 

 

Since 0 , we have  

 

𝑧 𝑡 =  𝑞∗,  𝑢 𝑡 =  𝑞∗,𝐴𝑢𝑡 +  𝐵𝑢𝑡    
= 𝑖𝜔0𝑧𝑡 + 𝑞 ∗ 0 𝑓 𝑧, 𝑧  . 

 

We rewrite the above differential equation as  

 

       zzgzizzfqzitz ,,0 0
*

0           (3.13) 

 

where 
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2
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2
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(3.14) 

 

From (3.11), we have 

 

        
2

t 20

z
u s t, 2Re zq  s

2
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2
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z
s zz s e z e z ...
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                                                                                 (3.15) 

Using  (3.2) and (3.15) in (3.14), we get 
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(3.16) 

 

Comparing the coefficientswith (3.14) and (3.16), we have 
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         0 0i i

20 20 11 11e s 0 s 1 2s 1 2e s 0
  

      

Since  20s  and 11s  are unknown in 21g , we want to 

compute and determine them.From (3.11) and  (3.13), we 

obtain 

 

𝑠 = 𝑢 𝑡 − 𝑞𝑧 − 𝑞 𝑧  
= 𝐴𝑤 − 2𝑅𝑒 𝑞 ∗𝑓 𝑧, 𝑧  𝑞 + 𝐵𝑢𝑡 . 

 

So, we have by the definition of B in Eq. (3,6), 

 

    
    










0.            ,.,Re2-As

       01-              .,,Re2-As
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qzzfq
zqzqus t
 (3.17) 

 

We rewrite (3.17) as 
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   ,, zzKAsts                    (3.18) 

 

where 

        ...
22

,,
2

0211

2

20 
z

KzzK
z

KzzK  (3.19) 

 

Substituting the corresponding series into (3.17) and 

comparing the coefficients, we obtain 

 

         ,...As  ,2 111120200  KKsiA  (3.20) 

 

Using (3.19) in (3.17), we have 

 

              ,0...,0,0
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which can also be written as 
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Comparing these coefficients with those of  (3.14), we get 
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From (3.17), (3.21) and by the definition of A, that we 

have 

      qgqgsis 022020020 2 
        

(3.22) 

 

and 

 

      qgqgs 111111              (3.23) 

 

Since    0i
eq  , solving  (3.22) and (3.23), we obtain 
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where 1U  and 2U  are constants. From the definition of A, 

(3.17) and (3.20), we can write 
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From the first equation of system (3.26), we obtain   
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(3.27) 

By the second equation of system (3.26), we have 

 

     .10cos 11*1101111  ssrgg   

 

Computing it, we obtain 
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Finally, from (3.24), (3.25), (3.27) and (3.28), we can see 

that each ijg ( ,....2,1,0j,i  ) is determined by the parameters 

and delays in Eq. (2.1). Thus, we can compute the following 

values   
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A general result for the direction and stability of Hopf 

bifurcation ([12], Chapter 1, Section IV), implies that the 

direction of the Hopf bifurcation is determined by the sign of 

2  and the stability of bifurcating periodic  solutions by the 

sign of 2 , respectively. In this case, if 02  (<0), then the 

Hopf bifurcation is supercritical (subcritical) and if 02 

(>0) the bifurcating periodic solution are orbitally stable 

(unstable).  

 

IV. EXAMPLE 

1) From Theorem 2.6, using 5.0 , r= -4.71238898025, 

5.0 , 8999999.0 , 63186643239952.6  and 

  8001.00 x , the graph of the first  50 iterations of Eq. (1.4) 

is given in Fig. 1 (a) and Fig. 1 (b). These figures show us that 

there is a Hopf bifurcation from the equilibrium point 01 u  

of Eq. (2.1) to a periodic orbit. 

 

 
Fig. 1 (a)                                 
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Fig. 1 (b) 

2) Using 5.0 , r= 1.5707963275, 0005.0 , 

0003.0 , 762214414700.2  and   8001.00 x , 

the graph of the first  50 iterations of Eq. (1.4) is given in Fig. 

2 (a) and Fig. 2 (b). We obtain that there is a Hopf bifurcation 

from the equilibrium point 2u  of Eq. (2.1) to a periodic orbit. 

 

Fig. 2 (a) 

 

Fig. 2(b) 

 

V. DISCUSSION  

It can be shown that if we use the parameters in Example 

1), to get the values of (3.28), then we obtain 

  iC 49156.064676.001  , 3852.52   and 

29352.12  .  In this case, Fig. 1 (a) and Fig. 1 (b) show 

us that the Hopf bifurcation is subcritical and thatbifurcating 

periodic solution areorbitallystable.  

Similarly, in Example 2), computations give that 

  iC 00055611.000018155.001  ,  00059634.02   and 

0003631.02  , which show  that in Fig. 2(a) and Fig. 2 (b), 

we have a supercritical Hopf bifurcation. Therefore,these 

bifurcating periodic solutions are orbitally  unstable. 

ACKNOWLEDGMENT 

This work is supported by the Scientific Research Center 

at the Erciyes University with the project codeFBA-12-4137. 

REFERENCES 

[1] G. E. Hutchinson, Circular causal systems in ecology, Ann. N. Y. 

Acad. Sci., vol. 50, pp. 221- 246, 1948. 

[2] K. Gopalsamy, Stability and oscillations in delay differential 

equations of a population dynamics, Dodrecht: Kluwer Academic 

Press, 1992. 

[3] Y. Kuang, Delay Differential Equations with Applications in 

Population Dynamics, Academic Press, Boston 1993. 

[4] M. Jiang et al., “Nonlinear behavior of the parameterized logistic 

differential systems,” Applied Mathematics and Computation, vol. 

89, pp. 1694-1704, 2007. 

[5] C. Sun, M. Han, and Y. Lin, “Analysis of stability and Hopf 

bifurcation for delayed logistic equation,” Chaos, Solutions and 

Fractals, vol. 31, pp. 672-682, 2007. 

[6] M. Yiang et al., “Stability, bifurcation and a new chaos in the logistic 

differential equation with delay,” Physics Letters A, vol. 350, pp. 

221-227, 2006. 

[7] K. Gopalsamy, “On the global atrractivity in a generalized 

delay-logistic differential equation,” in Proc. Camb. Philos. Soc., vol. 

100, pp. 183-192, 1986. 

[8] H. Betz, P. B. Burcham, and G. M. Ewig, Differential equation with 

application, Harper and  Brothers, New York, 1954. 

[9] J. Uchanski, Classical Mathematical Ecology, PWN, Warsaw, 1992.  

[10] J. Hale and S. Verduyn Lunel, Introduction to Functional 

Differential equations, Springer, New York, 1993. 

[11] S. Ruan and J. Wei, “On the zeros of transcendental functions with 

applications to stability of delay differential equations,” Dynam 

Cont. Discr.Impul.Sys. Series A: Math. Anal., vol. 1, pp. 863-874,  

2003. 

[12] B. Hassard, D. Kazarino, and Y. Wan, Theory and applications of 

Hopfbifurcation, Cambridge University Press, 1981. 

 

 

Fatma Bozkurt was born in Germany in 1979. Since 

1994 she lives in Turkey. She studied Mathematics at 

the Erciyes University (1998-2002), and has two 

MSci, which one is about Applied Mathematics( “The 

periodic character of the solutions of some difference 

equation”, Erciyes University, Turkey, 2002-2005) 

and the other about Mathematics Education 

(Hacettepe University, Turkey, 2003-2005). Her PhD 

thesis is about the population dynamics of single species (“Stability Analysis 

for Differential and Difference Equations in Population Models, Erciyes 

University, Turkey, 2006-2010).  

       She worked from 2005 until 2010 as Research Assistant at the Erciyes 

University and got the Assis. Prof. Dr. title in 2010. Since 2010 she is 

working as Assis. Prof. Dr.  at the Erciyes University in Kayseri (Turkey).          

Her research fields are about the dynamics of species and especially about 

modeling and analyzing the brain tumor GBM.  

       She is head of some projects about modeling GBM tumor and the 

epidemic disease HIV/AIDS(FBA-12-4137, FBY-12-3993) and is 

Researcher at the project  FBA-11-3597. 

 

 

-0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1
-6

-5

-4

-3

-2

-1

0

1

2

3

x(t)

x
'(
t)

0 5 10 15 20 25 30 35 40 45 50
-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

Time t

x
(t

)

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-3

-2

-1

0

1

2

3

x(t)

x
'(
t)

292

International Journal of Modeling and Optimization, Vol. 3, No. 3, June 2013


